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The inverse of the g-analog boson creation and annihilation operators is introduced. By
virtue of the properties of a;l and a“;"‘, the g-analog deformation form of the
photon-added coherent states is constructed and its completeness relation is discussed.
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1. INTRODUCTION

It is well known that boson operators a and a*, which form a Heisenberg algebra, play an
important role in group theory and many branches of physics, e.g., quantum mechanics, quantum
optics, condensed matter theory, etc.

Various physical states of a radiation field can be described by the eigenstates of boson operators
or their combinations. For example, the coherent state is the eigenstate of a and the eigenstates of a
* g are nothing but the Fock states. Recently, the boson inverse operators ¢! and a* ™! introduced by
Metha ez al. [1] have been used to develop the nonunitary transformation theory in quantum mechanics
{2]. On the other hand, the g-analog boson operators a,and a‘; , which generate a g-analog Heisenberg
algebra [3]:

aa’ —qaa,=q ", 1.1)
[Nyal= ~a, [N,af]=a} (1.2)

q

and their related problems have been paid much more attention. The boson realization of many
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quantum algebras, e.g., SU(2) [3] and SUL1, 1) [4], etc., has been studied through use of the
g-analog boson operators. Furthermore the elgenstates of g- analog boson operators or some of their
combinations have been used to describe various g-analog quantum states: the g-coherent state [3], the
g-charged coherent state [5], and g-even and odd coherent states [6], etc. Do the g-analog boson
inverse operators exist also? In this paper, we first introduce the inverse of g-analog boson inverse
operators a; and a;~ ! by their action on the g-deformed number states. By virtue of the properties of
a, and a++1 we shall construct the g-analog form of the photon-added coherent states and dlscuss its
completeness relation.

2. INVERSE OF ¢g-ANALOG BOSON CREATION AND ANNIHILATION OPERATORS

It seems that we may always define the inverse of g-analog boson operators a;; and a’r"1 by the
following conditions: aa;' = 1, a“a = 1;and a, + a}~ t=1,a;" '+a; =1 However this is
not true. Since g-analog boson operators a,and a; are smgular they do not possess any inverse in a
strict sense. We now introduce the generallzed 1nverse of g-analog boson operators by their action on
the representation space of g-analog Heisenberg algebra, i.e., the g-analog Fock space:
{In) g |n)q = @) 10) " (n=0,1,2,.)}. With the help of the following relations [3]:

(]!

a, |n>q = \/_[_ﬂ ln— 1>q, a| n>q =+h+1] n+ 1>q, )

where [n] = 2.".:_‘1_1‘ and g is the deformation parameter, the generalized inverse of g-analog boson
q9—q
operators can be defined by

a' In); = ——= o=

+ 1 , =1 6 A, + 1
__.__.. [n >q a,"'|n n,o). ,._.____[n 1] |n )7 3)

We notice that a;' behaves as a creation operator while a;~! behaves as an annihilation operator. It

is easily shown that a;‘ is the right inverse of a,;:
aa'=1, a 'a,=1-10),0 =1 @)
g ’ q q 9 ’
while a;“‘ is the left inverse of a’;, ie.,

alaf =1, ataT'=1-10),0]=1, ®)

q

Here |0), is the g-analog vacuum state defined by a,|0), = 0. From Egs. (3) and (4), one has -

1 -
aa’a, '=a, a'aa’ =a;, (6.1)
la, a7 1=1[a;"", a}1=10),0] , 6.2)
and
m-—1
- +— - - A o
aja;"=a, "a" =1, a;"a;=a;"a;""=1~- z Il>qq<ll , 0]

where m > 1 is an arbitrary integer. It is worth pointing out that g-coherent state |er), [3]

@), = A(a)zlo——\/%‘— ), , .
: (
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is the eigenstate of a,

aje), = da), , ©)

but it is not the eigenstate of ay, i.e., a,;l | o), a™| ), InEq. (8), [n]! = [n][n — 1]!, [0] = 1, and

= 23y-12 2y - (o|?)"
Ae) = (exp(| %), where (explo|?) = T, .ot

is the g-analog exponential function. In fact,

there exists no right eigenstate of the operator a,. Using Eq. (3), we have

a; ), = a” (@), = A@I0),) . (10)

Similarly, we can prove that there exists no right eigenstate of the operator a;‘l also except for the
vacuum |0), with zero eigenvalue.

3. -DEFORMATION OF PHOTON-ADDED COHERENT STATES AND
ITS COMPLETENESS

So far, researchers have not understood the physical meaning of g-deformation clearly. In the
last decade, some attention has been paid to the problem by studying the non-linear effect in quantum
optics and using the g-analog Heisenberg algebra to describe the radiation field. In 1992, Agarwal er
al. [7] first introduced the photon-added coherent state, which was generated by the repeated
application of boson creation operator a* on the coherent state |c;) . Although this state still has not
been realized experimentally, it is interesting as a theory because of its non-classical features. In the
following, we shall investigate the g-analog of such a state.

Consider the following quantum state

lam), = Ca "), an

where m is the positive integer and C is a normalization constant. Using Egs. (7) and (9), we readily
find that the state |c, m), is a right eigenstate of a;” a, a; ™" with eigenvalue ¢, i.e.,

aqq-maqa;—mla,m)q = a[a,m),, . (12)
We notice that the g-analog Heisenberg algebra is reduced to the usual Heisenberg algebra as g—1.
Therefore, |, m), is nothing but the g-analog of the photon-added coherent state defined in Ref. [7].
We now discuss the completeness of such a g-analog photon-added coherent state. Substituting Eq. (8)

into Eq. (11), we have

o dV[n+mll

laf,m>q = CA(a)zn=oT |n + m>q . (13)
It is observed that the number states {|n),, n = 0, 1, 2, .-, m — 1} are absent from this family of
states. Equation (12) implies that these number states are the eigenstates of ;™ a, @, =™ with a common
eigenvalue o = 0, Thus, we obtain (2 + 1)-fold degeneracy for this eigenvalue. This means that the
family of state |c, m), does not form a complete set. However, they, along with the number states
{Impn=0,1,2,.,m— 1}, do form a complete set. The corresponding completeness relations can

be obtained through the identity relation involving the g-coherent state | ), [8]

[1e) ,{addu(e) = 1 (14)
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where du() = .21_ exp,(|a|?) exp, (- la|?d, |l 2d0. The integral over df is a normal integration but
T

the integration over d, | «| 2 is the g-integration. We multiply this relation by a,™ from the left and a7

from the right, and then obtain

f C’zla,m>qq<a,m[dy(a)q = a;’"’a;" . (15)

where Eq. (11) was used. Multiplying Eq. (15) by a;” a; " from the right and using Eq. (7), we have

[C e, m> (a’ ml,a; "a; " "dp(e) + Z ]i>qq<i| =1. (16)

Equation (16) is essentlally the completeness relation of state |c, m),.

Similarly to a}, the operator a; behaves as a creation operator. Therefore, another family of
g-analog photon-added coherent states can be generated by the repeated application of a; on the
g-coherent state |a),:

|2, m>q = Daq""la'>q , amn

where D is a normalization constant. In an analogous way, we can also obtain the completeness
relation of these states (17). It is worth pointing out that though the g-coherent state can form a
representation space of the g-analog Heisenberg algebra by stating the g-analog photon-added coherent
states together with the number states {In)q, n=0,1,2, -, m— 1} can form a representation space
of the g-analog Heisenberg algebra.

It is interesting to point out that another typical quantum state, i.e., the g-analog photon-depleted
coherent state, can be generated by the repeated application of aj~ 1 on the g-coherent state |a),:

|, — m), = Ga; ~"|a), (18)

where G is a normalization constant. Since a} —1 behaves as an annihilation operator, the state |,
—m), indicates that it is a state in which m photons have been depleted from the g-coherent state | c),.
It is easﬂy seen that |a, —m), is nothing but the eigenstate of operator a; ™", a;", i.e.,

a+—maqaq+mla’_m>q= a‘a,—m>q s (19)

q

We will show that the family of |, —m), can form a complete set like that of the g-coherent state
|}, The corresponding completeness relation of |, —m), reads as

| G~ ,—m) L, —m| ala; "dula) = 1, (20)

This is in contrast to that of the family of the g-analog photon-added coherent state |, m), as above.
Using Eq. (20), any quantum state |y) can be expressed in terms of the state |c, —m), as

=[G " e, ~ miaya; "y Na, — m),du (d) - @1)
4. CONCLUSION
The inverse of g-analog boson creation and annihilation operators is first introduced by their

action on the g-deformed number states in this paper. It is shown that a; behaves as a creation
operator, while ay’ ‘! behaves an annihilation operator. We also find that a; 1s the right inverse of a,,
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while a} ™! is the left inverse of a}. By virtue of the generalized inverse of g-analog boson operators,
we have constructed the g-analog photon-added coherent state by the repeated application of aj or a;
on the g-coherent state; and the g-analog photon-depleted coherent state by the repeated application
of a}~' on the g-coherent state. It is shown that the g-coherent state |c)g is not the eigenstate of
operator a. The operator a;™ and a; ™™ (m = 1) acting on the g-coherent state will result in the new
g-analog quantum states |c, m), and |c, —m),, respectively. The former is the eigenstate of the
operator a;™ a;~", while the latter is the eigenstate of the operator a; ™" a;”. We have also shown that
the family of g-analog photon-deleted coherent states |, —m), can form a complete set. However,
the family of g-analog photon-added coherent states |ct, m),, along with the number states {|n),, n =
0,1, 2, .,m—1}, do form a complete set. Finally, it is worth pointing out that our g-analog
photon-added coherent state is reduced to the photon-added coherent state defined in Ref. [7] as g =
1. When g # 1, we can study the nonlinear effects of the g-analog photon-added coherent state by the
numerical method.
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