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Abstract Classical and quantum oscillator of generalized anharmonicity is solved analytically up to the

linear power of ε by using the multiple-scale perturbation method. The commutation relation of position and

momentum operator can be simplified easily and the quantum solutions transformed into the classical form

conveniently under the extreme conditions, which are different from the earlier multiple-scale perturbation

theory. Moreover compared with the Taylor series solution, the frequency shifts in our solutions appear in

the expression of oscillations of all orders in both classical and quantum cases, so multiple-scale perturbation

method is more suitable for solving the weak-coupling anharmonic oscillation than the Taylor series approach.
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1 Introduction

There are lots of problems in mathematical

physics which are solved by using more than one

methods. The anharmonic oscillator is perhaps the

most common example among them. The equation

of motion of a classical quartic anharmonic oscillator

of unit mass and unit frequency is given by

ẍ+x+εx3 = 0, (1)

where ε is the anharmonic constant. Eq. (1) is termed

as Duffing equation with out forcing and the exact

solution in phase plane is available in terms of the

elliptic functions. For positive anharmonic constant

(ε > 0), the solution is periodic with a fixed center

whose period can be obtained in terms of the elliptic

functions. However, this approach is not useful in sev-

eral occasions. For example, the trajectory of a clas-

sical particle executing quartic anharmonic motion at

a later time t is not determined from the initial con-

ditions. To have more insight about the physical be-

havior, various approximate methods are proposed to

obtain the solution of a classical quartic anharmonic

oscillator
[1, 2]

. Straightforward application of pertur-

bation theory to Eq. (1) gives rise to secular terms

that increase unboundedly with time
[1, 2]

even for pe-

riodic motion. There are several methods that enable

one to correct such unphysical behavior of the ap-

proximate solutions; among them
[1, 2]

the Lindstedt-

Poincare technique, the method of renormalization,

the multiple-scale perturbation theory and the Tay-

lor series method. The quantum anharmonic oscilla-

tor problem is even more difficult due to the noncom-

muting nature of position and momentum operators.

The first solution of a quantum quartic oscillator was

given by Bender and Bettencourt using the multiple-

scale perturbation theory
[3, 4]

. They obtained the

frequency shift of the oscillator proportional to ε .

This solution is equivalent to that of the first-order

calculation under usual perturbation theory. Later

on Auberson
[5]

obtained the second-order (ε2) solu-

tion applying the multiple-scale perturbation theory
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to the same problem. Pathak and Mandal proposed

a Taylor series method
[6]

and generalized the first-

order results from quartic to higher anharmonicity
[7]

.

The Taylor series method could give the solution of

higher anharmonic oscillator, but the solution is so

complex that it is not the best in this problem. We

have already given the solution of classical and quan-

tum oscillators of sextic anharmonicity by using the

multiple-scale perturbation theory
[8]

. In this paper,

we find the solution of generalized anharmonic oscil-

lator by using the same method.

2 Classical case

The equation of motion of the classical generalized

anharmonic oscillator of unit mass and unit frequency

is given by

ẍ+x+εx2m−1 = 0, (2)

where ε > 0 is the anharmonic constant. Multiple-

scale analysis assumes the existence of many time

scales T0 = t, T1 = εt, T2 = ε2t, · · · , which can be

temporarily treated as independent variables. Here,

we use only the two variables T0 and T1 and seek a

perturbative solution to Eq. (2) of the form

x(t) = x0(T0,T1)+εx1(T0,T1). (3)

In addition, we replace the derivative with respect to

time by:

d

dt
= D0 +εD1,

d2

dt2
= D2

0 +2εD0D1,

where Dn = ∂/∂Tn is a partial derivatives with re-

spect to the independent time scale Tn. On substi-

tuting Eq. (3) into Eq. (2) and collecting terms with

equal powers of ε, we obtain

D2
0x0 +x0 = 0, (4)

D2
0x1 +x1 = −2D0D1x0−x2m−1

0 . (5)

We assume that the solution of Eq. (4) is

x0 =
1√
2
(Aexp(−iT0)+Āexp(iT0)), (6)

where A = A(T1) is an integral constant and Ā is con-

jugate of A. On substituting Eq. (6) into Eq. (5), we

obtain

D2
0x1 +x1 =i

√
2[(D1A)e−iT0 −(D1Ā)eiT0 ]−

2m−1
∑

r=0

Cr
2m−1

2m−1/2
ArĀ2m−r−1ei(2m−2r−1)T0 .

(7)

To avoid a secular term in T0, we eliminates all contri-

butions on Eq. (7) that are proportional to exp(±iT0).

This leads to the solvability conditions:

i
√

2D1A =
Cm

2m−1

2m−1/2
AmĀm−1, (8)

i
√

2D1Ā = −
Cm

2m−1

2m−1/2
Am−1Ām. (9)

Using Eq. (8) and Eq. (9) yields D1(AĀ) = 0. If we

write A = Be−iβ and substitute this form into Eq. (9),

we obtain

β =
Cm

2m−1

2m
(BB̄)m−1T1. (10)

Hence the zeroth order solution can be given by

x0 =
1√
2
(Be−iα +B̄eiα), (11)

where α = T0+β. The second order difference Eq. (7)

can be written in the following form

D2
0x1 +x1 = −

m−2
∑

r=0

Cr
2m−1

2m−1/2
[BrB̄2m−r−1ei(2m−2r−1)α +

B2m−r−1B̄re−i(2m−2r−1)α]. (12)

The solution of Eq. (12) is given by

x1 =

m−2
∑

r=0

Cr
2m−1

2m−1/2(2m−2r)(2m−2r−2)
×

[BrB̄2m−r−1ei(2m−2r−1)α +c.c]. (13)

On substituting Eq. (11) and Eq. (13) into Eq. (3),

we have the solution of multiple-scales of perturba-

tion for generalized classical anharmonic oscillator.

If we introduce the initial conditions x0(0,0) = F ,

ẋ0(0,0) = 0 then B = F/
√

2. Eq. (11) can be written

as

x0 = F cos(Ωt), (14)

where the shifted frequency is given by

Ω = 1+ε
Cm

2m−1

22m−1
F 2m−2. (15)

Finally Eq. (3) can be reduced to

x = F cosΩt+ε

m−2
∑

r=0

Cr
2m−1F

2m−1

22m(m−r)(m−r−1)
×

cos[(2m−2r−1)Ωt]. (16)
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We calculate several specific results from general

expressions. For m = 2 , which the classical quartic

anharmonic oscillator, we have

Ω = 1+ε
3

8
F 2,

x = F cosΩt+ε
1

32
F 3 cos3Ωt .

(17)

For m = 3 we have

Ω = 1+ε
5

16
F 4,

x = F cosΩt+ε
1

384
F 5(cos5Ωt+15cos3Ωt).

(18)

The solution of sextic anharmonic oscillator exactly

coincides with the previous results
[8]

. For m = 4 we

have

Ω = 1+ε
35

128
F 6,

x = F cosΩt+
εF 7

3072
(cos7Ωt+14cos5Ωt+

126cos3Ωt).

(19)

The difference between our results and the Taylor

series method
[7]

is that all the variables in trigonomet-

ric function are Ωt in the former while only zeroth-

order variable is Ωt in the latter. In conclusion, the

method of multiple-scale could give correct solutions

of classical generalized anharmonic oscillator.

3 Quantum case

The equation of motion of a quantum generalized

anharmonic oscillator is given by

Ẍ +X +εX2m−1 = 0. (20)

We now use the method of multiple-scale to Eq. (20)

and only consider the first-order solution. We write

X(t) = X0(T0,T1)+εX1(T0,T1). (21)

This equation is analogous to Eq. (3) but here X0 and

X1 are operator functions. On subsisting Eq. (21)

into Eq. (20), collect the coefficients of ε0 and ε1, we

obtain

D2
0X0 +X0 = 0, (22)

D2
0X1 +X1 = −2D0D1X0−X2m−1

0 . (23)

In quantum case, the position operator X(t) and the

momentum operator Ẋ(t) satisfy the commutation

relation

[X(t), Ẋ(t)] = i, (24)

where

Ẋ(t) = D0X0 +ε(D1X0 +D0X1). (25)

On subsisting Eq. (21) and Eq. (25) into Eq. (24) and

collecting terms with equal powers of ε, we obtain the

following relation

[X0,D0X0] = i, (26)

[X0,D1X0 +D0X1]+[X1,D0X0] = 0, (27)

[X1,D1X0 +D0X1] = 0. (28)

We also assume that the solution of Eq. (22) is

the following complex form

X0 =
1√
2
[A†(T1)e

iT0 +e−iT0A(T1)], (29)

where A† is the conjugate operator of A. In the con-

dition of T0 = 0, on substituting Eq. (29) into Eq. (26)

the following relation is given by

[A(T1),A
†(T1)] = 1, (30)

where A and A† are similar to the usual bosonic

annihilation and creation operators. We substitute

Eq. (29) into Eq. (23) and obtain

D2
0X1 +X1 = −i

√
2[D1A

†eiT0 −e−iT0D1A]−
[

1√
2
(A†eiT0 +e−iT0A)

]2m−1

. (31)

We first construct a normal ordered expansion of

(A†eiT0 +e−iT0A)2m−1, hence

(A†eiT0 +e−iT0A)2m−1 =

m−1
∑

r=0

t2rC
2r
2m−1 : (A†eiT0 +e−iT0A)2m−2r−1 : (32)

with

t2r =











(2r−1)!

2r−1(r−1)!
for r > 1

1 for r = 0,1

, (33)

where the notation : (A†eiT0+e−iT0A)2m−2r−1 : is sim-

ply a binomial expansion in which powers of the A†

are always kept to the left of the powers of the A.

Hence we have

: (A†eiT0 +e−iT0A)2m−2r−1 : =
2m−2r−1
∑

k=0

Ck
2m−2r−1×

A†kA2m−2r−1−ke−i(2m−2r−2k−1)T0 . (34)
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According to Eq. (32) and Eq. (34), Eq. (31) becomes

D2
0X1 +X1 =− i

√
2[D1A

†eiT0 −e−iT0D1A]−

1

2m−1/2

m−1
∑

r=0

2m−2r−2
∑

k=0

t2rC
2r
2m−1C

k
2m−2r−1×

A†kA2m−2r−k−1e−i(2m−2r−2k−1)T0 . (35)

To eliminate a secular term, we must set the coeffi-

cients of exp(±iT0) to zero and obtain the solvability

donditions

i
√

2D1A−
m−1
∑

r=0

t2rC
2r
2m−1C

m−r−1
2m−2r−1

2m−1/2
A†(m−r−1)Am−r = 0,

i
√

2D1A
†+

m−1
∑

r=0

t2rC
2r
2m−1C

m−r−1
2m−2r−1

2m−1/2
A†(m−r)Am−r−1 = 0.

(36)

To solve Eq. (36), we begin by multiplying the first

equation on the left by A† and the second equation

on the right by A. Adding the resulting two equa-

tions and simplifying, we get D1(A
†A) = 0. Hence

the operator N = A†A is independent of the variable

T1. We again assume that A = e−iβB and substitute

this expression and its conjugate into the first and

second equation the system Eq. (36), separetely. It is

easy to find the following relation

dβ

dT1

=
dβ†

dT1

=

m−1
∑

r=0

(2m−1)!

2m+rr!(m−r)!(m−r−1)!
×

(B†eiβ†)m−r−1(e−iβB)m−r−1 . (37)

Hence β† = β is the Hermite operator and B is in-

dependent of the variable T1. When we introduce

N = A†A = B†B which is the number operator, we

obtain the following relation

N = B†B = AA†−1 = e−iβNeiβ. (38)

We thus know that e±iβ is commutate with N and B

satisfies the commutation relations [B,B†] = 1. By

using the following relation

f(N)B = Bf(N−1), f(N)B† = B†f(N +1), (39)

we have

(B†eiβ)k(e−iβB)k =
k−1
∏

l=0

(N − l). (40)

On substituting Eq. (40) into Eq. (37), we obtain

β = γ2m−1(N)T1, (41)

where

γ2m−1(N) =

m−1
∑

r=0

(2m−1)!

2m+rr!(m−r)!(m−r−1)!
×

m−r−2
∏

l=0

(N − l) (42)

and
∏s

l=0
(N − l) = 1, (if s < 0).

When we substitute the above results into

Eq. (35), we obtain

D2
0X1 +X1 = −

1

2m−1/2

m−2
∑

k=0

m−k−2
∑

r=0

t2rC
2r
2m−1×

Cm−r−k−2
2m−2r−1 [A†(m−r−k−2)Am−r+k+1×

e−i(2k+1)T0 +c.c]. (43)

The special solution of Eq. (43) is

X1 =
m−2
∑

r=0

[Pmke−i(2k+3)T0 +Qmke
i(2k+3)T0 ], (44)

where

Qmk =

m−k−2
∑

r=0

JmkrA
†(m−r+1+k)Am−r−2−k (45)

and

Jmkr =
2−(m+r+3/2)(2m−1)!

r!(m−r−k+2)!(m−r−k+1)!(k+1)(k+2)
.

(46)

By using Eq. (40) and the following equation

A†k = [B†eiγ(N)T1 ]k = B†k exp

(

i

k−1
∑

l=0

γ(N + l−1)T1

)

,

Eq. (45) can be reduced as

Qmk = Omk exp

(

i

2k+2
∑

n=0

γ(N +n)T1

)

. (47)

where

Omk =

m−k−2
∑

r=0

JmkrB
†2k+3

m−k−r−3
∏

l=0

(N − l)

and Pmk = Q†
mk. Hence in the quantum case the so-

lution of the first order multiple-scale perturbation of

generalised anharmonic oscillator is

X =
1√
2
B†eiΩmt +

m−2
∑

k=0

OmkeiΩmkt +c.c, (48)

where

Ωm = 1+εγ2m−1(N),

Ωmk = (2k+3)+ε

2k+2
∑

n=0

γ2m−1(N +n),
(49)
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We calculate sevral specific results from our gen-

eral expression. For m = 2 we have

Ω2 = 1+ε
3

4
(N +1).

Therefore the solution of the quantum quartic anhar-

monic oscillator is

X =
1√
2
B†eiΩ2t +

ε

16
√

2
B†3ei3[1+ε 3

4
(N+2)]t +c.c. (50)

Similarly for m = 3 we have

Ω3 = 1+ε
5

8
(2N 2 +4N +3).

The solution of quantum sextic oscillator is

X =
1√
2
B†eiΩ3t +

ε

96
√

2
[B†5ei5(1+ευ)t +

15B†3(N +2)ei3(1+εν)t]+c.c. (51)

where

υ =
5

8
(2N 2 +12N +3),

ν =
5

24
(6N 2 +24N +31).

For m = 4, we have

Ω4 = 1+ε
35

16
(N 3 +3N 2 +5N +3).

Hence the solution of quantum octic oscillator is

X =
1√
2
B†eiΩ4t +

ε

384
√

2
[B†7ei7(1+εχ)t +

2B†5(N +3)ei5(1+εκ)t +

126B†3(N 2 +4N +10)ei3(1+ελ)t]+c.c. (52)

where

χ =
35

16
(N 3 +12N 2 +62N +120),

κ =
35

16
(N 3 +9N 2 +35N +51),

λ =
35

16
(N 3 +6N 2 +16N +16).

The above results are more concise than the solution

of the Taylor series approach and comparable with

the classical results.

4 Concluding remarks

The first difference between classical solution and

quantum is that in quantum we want to consider

the commutation relations. We have used the com-

mutation relation Eq. (26) which is the zeroth or-

der form of the canonical equal time commutation

relation Eq. (24). It is easy to verify that our so-

lutions satisfy the first order form of the commu-

tation relation Eq. (27) and the second order form

Eq. (28). Therefore in the powers of ε the expansion

of the equal time commutation relation could be used

to study the problem of multiple-scales perturbation

analyses of anharmonic oscillator.

The second difference we want to know is by com-

paring the quantum results with the classical results.

On introducing the initial conditions that X0(0,0) =

Q0, D0X0(0,0) = P0, we have

[Q0,P0] = i (53)

and then from Eq. (29) we have

Q0 =
1√
2
(B†+B), P0 =

i√
2
(B†−B). (54)

It is clear that B† and B are creation and annihilation

operators of unperturbed field, respectively. Because

N = A†A = B†B is the number operator, the quan-

tum solution can be translated into classical solution

in the condition of N � 1. For example, for m = 2,

when N � 1 we have Ω2 ≈
(

1+ ε
3

4
(N +2)

)

. If in-

troducing B = F/
√

2 Eq. (50) can be translated into

Eq. (17). Similarity for m = 3,4, · · · the quantum

solution can also be translated into classical solution.

In conclusion we have studied the time evolution

of position for classical and quantum oscillator of gen-

eralized anharmonicity. In particular our quantum

results can be transformed into the classical solution

easily which is better than the other one.



1 10 Ï §ûL�µ2Â�{��f�õºÝ�6nØ 949

References

1 Nayfeh A H. Introduction to Perturbation Techniques. New

Yok: Wikey, 1981

2 Fernández F M. Introduction to Perturbation Theory in

Quantum Mechanics. Noca Ratom: CRC Press, 2000

3 Bender C M, Bettencourt L M A. Phys. Rev., 1996, D54:

7710

4 Bender C M, Bettencourt L M A. Phys. Rev. Lett., 1996,

54: 4114

5 Auberson G, Capdequi P M. Phys. Rev., 2002, A65: 1

6 Pathak A, Mandal S. Phys. Lett., 2001, 286: 261

7 Pathak A, Mandal S. Phys. Lett., 2002, 298: 259

8 CHENG Yan-Fu, DAI Tong-Qing. HEP & NP, 2006, 30(6):

513 (in Chinese)

(§ûL, �Ó�. pUÔn�ØÔn, 2006, 30(6): 513)

2Â�{��f�õºÝ�6nØ

§ûL
1)

�Ó�

(¥H¬x�Æ>f&Eó§Æ� ÉÇ 430074)

Á� A^õºÝ�6nØ�2Â�{��f, ��
��²;Úþf�6). AO´·��þf)34�^�

eU�B/=C�²;), ¿��IÚÄþ�Î�é´'X�{z�©g,. �Taylor?ê)�'�, ÃØ´3

²;�´3þf)¥ªÇ£ÄÑÑy3���ÄL�ª¥, ¤±õºÝ�6)´fÍÜ�{��Ä��Ð){.

'�c 2Â�{��f õºÝ�6nØ ²;Úþf)

2006 – 02 – 27 Âv, 2006 – 03 – 18 Â?Uv

1)E-mail: chengyf@scuec.edu.cn


