Measurements of $\mathrm{D}^{0}-\overline{\mathrm{D}}^{0}$ mixing and searches for $\boldsymbol{C P}$ violation: HFAG combination of all data

A. J. Schwartz ${ }^{1)}$
(representing the HFAG charm group)
(Physics Department, University of Cincinnati, Cincinnati, Ohio 45221, USA)

Abstract

We present world average values for $\mathrm{D}^{0}-\overline{\mathrm{D}}^{0}$ mixing parameters x and $y, C P$ violation parameters $|q / p|$ and $\operatorname{Arg}(q / p)$, and strong phase differences δ and $\delta_{\mathrm{K} \pi \pi}$. These values are calculated by the Heavy Flavor Averaging Group (HFAG) by performing a global fit to relevant experimental measurements. The results for x and y differ significantly from zero and are inconsistent with no mixing at the level of 6.7σ. The results for $|q / p|$ and $\operatorname{Arg}(q / p)$ are consistent with no $C P$ violation. The strong phase difference δ is less than 45° at 95\% C.L.

Key words mixing, $C P$ violation
PACS 12.15.Ff, 11.30.Er, 13.25.Ft

1 Introduction

Mixing in the $\mathrm{D}^{0}-\overline{\mathrm{D}}^{0}$ system has been searched for for more than two decades without success-until last year. Three experiments - Belle, ${ }^{[1]}$ Babar, ${ }^{[2]}$ and $\mathrm{CDF}^{[3]}$ - have now observed evidence for this phenomenon. These measurements can be combined with others to yield World Average (WA) values for the mixing parameters $x \equiv\left(m_{1}-m_{2}\right) / \Gamma$ and $y \equiv\left(\Gamma_{1}-\Gamma_{2}\right) /(2 \Gamma)$, where m_{1}, m_{2} and Γ_{1}, Γ_{2} are the masses and decay widths for the mass eigenstates $D_{1} \equiv p\left|\mathrm{D}^{0}\right\rangle-q\left|\overline{\mathrm{D}}^{0}\right\rangle$ and $D_{2} \equiv p\left|\mathrm{D}^{0}\right\rangle+q\left|\overline{\mathrm{D}}^{0}\right\rangle$, and $\Gamma=\left(\Gamma_{1}+\Gamma_{2}\right) / 2$. Here we use the phase convention $C P\left|\mathrm{D}^{0}\right\rangle=-\left|\overline{\mathrm{D}}^{0}\right\rangle$ and $C P\left|\overline{\mathrm{D}}^{0}\right\rangle=-\left|\mathrm{D}^{0}\right\rangle$. In the absence of $C P$ violation $(C P \mathrm{~V}), p=q=1 / \sqrt{2}$ and D_{1} is $C P$-even, D_{2} is $C P$-odd.

Such WA values have been calculated by the Heavy Flavor Averaging Group (HFAG) ${ }^{[4]}$ in two ways: (a) adding together three-dimensional loglikelihood functions obtained from various measurements for parameters x, y, and δ, where δ is the strong phase difference between amplitudes $\mathcal{A}\left(\overline{\mathrm{D}}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}\right)$and $\mathcal{A}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}\right)$; and (b) doing a global fit to measured observables for x, y, δ, an additional strong phase $\delta_{\mathrm{K} \pi \pi}$, and $R_{\mathrm{D}} \equiv$ $\left|\mathcal{A}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}\right) / \mathcal{A}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+}\right)\right|^{2}$. For this fit, correlations among observables are accounted for by us-
ing covariance matrices provided by the experimental collaborations. The first method has the advantage that non-Gaussian errors are accounted for, whereas the second method has the advantage that it is easily expanded to allow for $C P \mathrm{~V}$. In this case three additional parameters are included in the fit: $|q / p|$, $\phi \equiv \operatorname{Arg}(q / p)$, and $A_{\mathrm{D}} \equiv\left(R_{\mathrm{D}}^{+}-R_{\mathrm{D}}^{-}\right) /\left(R_{\mathrm{D}}^{+}+R_{\mathrm{D}}^{-}\right)$, where the $+(-)$ superscript corresponds to $\mathrm{D}^{0}\left(\overline{\mathrm{D}}^{0}\right)$ decays. When both methods are applied to the same set of observables, almost identical results are obtained. The observables used are from measurements of $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \ell^{-} v, \mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} / \pi^{+} \pi^{-}, \mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$, $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}, \mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{+} \pi^{-}$, and $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$ decays, and from double-tagged branching fractions measured at the $\psi(3770)$ resonance.

Mixing in heavy flavor systems such as those of B^{0} and $\mathrm{B}_{\mathrm{s}}^{0}$ is governed by the short-distance box diagram. In the D^{0} system, however, this diagram is doubly-Cabibbo-suppressed relative to amplitudes dominating the decay width, and it is also GIMsuppressed. Thus the short-distance mixing rate is tiny, and $\mathrm{D}^{0}-\overline{\mathrm{D}}^{0}$ mixing is expected to be dominated by long-distance processes. These are difficult to calculate reliably, and theoretical estimates for x and y range over two-three orders of magnitude ${ }^{[5,6]}$.

With the exception of $\psi(3770) \rightarrow$ DD measurements, all methods identify the flavor of the D^{0}

[^0]or $\overline{\mathrm{D}}^{0}$ when produced by reconstructing the decay $\mathrm{D}^{*+} \rightarrow \mathrm{D}^{0} \pi^{+}$or $\mathrm{D}^{*-} \rightarrow \overline{\mathrm{D}}^{0} \pi^{-}$; the charge of the accompanying pion identifies the D flavor. For signal decays, $M_{D^{*}}-M_{\mathrm{D}^{0}}-M_{\pi^{+}} \equiv Q \approx 6 \mathrm{MeV}$, which is relatively close to the threshold. Thus analyses typically require that the reconstructed Q be small to suppress backgrounds. For time-dependent measurements, the D^{0} decay time is calculated via $(d / p) \times M_{\mathrm{D}^{0}}$, where d is the distance between the D^{*} and D^{0} decay vertices and p is the D^{0} momentum. The D^{*} vertex position is taken to be at the primary vertex ${ }^{[3]}(\overline{\mathrm{p}} \mathrm{p})$ or is calculated from the intersection of the D^{0} momentum vector with the beamspot profile $\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)$.

2 Input observables

The global fit determines central values and errors for eight underlying parameters using a χ^{2} statistic constructed from 26 observables. The underlying parameters are $x, y, \delta, R_{\mathrm{D}}, A_{\mathrm{D}},|q / p|, \phi$, and $\delta_{\mathrm{K} \pi \pi}$. The parameters x and y govern mixing, and the parameters $A_{\mathrm{D}},|q / p|$, and ϕ govern $C P \mathrm{~V}$. The parameter $\delta_{\text {Kл兀 }}$ is the strong phase difference between the amplitude $\mathcal{A}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}\right)$ evaluated at $M_{\mathrm{K}+\pi^{-}}=$ $M_{\mathrm{K}^{*}(890)}$, and the amplitude $\mathcal{A}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \pi^{0}\right)$ evaluated at $M_{\mathrm{K}^{-} \pi^{+}}=M_{\mathrm{K}^{*}(890)}$.

Fig. 1. WA value of R_{M} from Ref. [4], as calculated from $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \ell^{-} v$ measurements ${ }^{[7]}$.

All input values are listed in Table 1. The observable $R_{\mathrm{M}}=\left(x^{2}+y^{2}\right) / 2$ measured in $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \ell^{-} v$ decays ${ }^{[7]}$ is taken to be the WA value ${ }^{[4]}$ calculated by HFAG (see Fig. 1). The observables $y_{C P}$ and A_{Γ} measured in $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} / \pi^{+} \pi^{-}$decays ${ }^{[1,8]}$ are also taken to be their WA values ${ }^{[4]}$ (see Fig. 2). The observables from $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$decays ${ }^{[9]}$ for no- $C P \mathrm{~V}$ are HFAG WA values ${ }^{[4]}$, but for the $C P \mathrm{~V}$-allowed case only Belle
values are available. The $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$observables used are from Belle ${ }^{[10]}$ and Babar ${ }^{[2]}$, as these measurements have much greater precision than previously published $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$results. The $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$ and $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{+} \pi^{-}$results are from Babar ${ }^{[11]}$, and the $\psi(3770) \rightarrow$ DD results are from CLEOc ${ }^{[12]}$.

The relationships between the observables and the fitted parameters are listed in Table 2. For each set of correlated observables, we construct the difference vector \boldsymbol{V}, e.g., for $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$decays $\boldsymbol{V}=$ $(\Delta x, \Delta y, \Delta|q / p|, \Delta \phi)$, where Δ represents the difference between the measured value and the fitted parameter value. The contribution of a set of measured observables to the χ^{2} is calculated as $\boldsymbol{V} \cdot\left(M^{-1}\right) \cdot \boldsymbol{V}^{\mathrm{T}}$, where M^{-1} is the inverse of the covariance matrix for the measurement. All covariance matrices used are listed in Table 1.

Fig. 2. WA values of $y_{C P}$ (top) and A_{Γ} (bottom) from Ref. [4], as calculated from $\mathrm{D}^{0} \rightarrow$ $\mathrm{K}^{+} \mathrm{K}^{-} / \pi^{+} \pi^{-}$measurements ${ }^{[1,8]}$.

Table 1. Observables used for the global fit, from Refs. [1, 2, 7-12].

observable	value	comment
$\begin{gathered} y_{C P} \\ A_{\Gamma} \\ \hline \end{gathered}$	$\begin{aligned} & \hline(1.132 \pm 0.266) \% \\ & (0.123 \pm 0.248) \% \end{aligned}$	WA $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} / \pi^{+} \pi^{-}$results $^{[4]}$
$\begin{gathered} \hline x(\text { no } C P \mathrm{~V}) \\ y(\text { no } C P \mathrm{~V}) \\ \|q / p\|(\text { no direct } C P \mathrm{~V}) \\ \phi(\text { no direct } C P \mathrm{~V}) \end{gathered}$	$\begin{gathered} \hline(0.811 \pm 0.334) \% \\ (0.309 \pm 0.281) \% \\ 0.95 \pm 0.22_{-0.09}^{+0.10} \\ (-0.035 \pm 0.19 \pm 0.09) \mathrm{rad} \end{gathered}$	No $C P \mathrm{~V}$: WA $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$results ${ }^{[4]}$
$\begin{gathered} x \\ y \\ \|q / p\| \\ \phi \end{gathered}$	$\begin{gathered} \left(0.81 \pm 0.30_{-0.17}^{+0.13}\right) \% \\ \left(0.37 \pm 0.25_{-0.10}^{+0.15}\right) \% \\ 0.86 \pm 0.30_{-0.09}^{+0.10} \\ (-0.244 \pm 0.31 \pm 0.09) \mathrm{rad} \end{gathered}$	$C P \mathrm{~V}$-allowed: Belle $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$results. Correlation coefficients: $\left\{\begin{array}{cccc} 1 & -0.007 & -0.255 \alpha & 0.216 \\ -0.007 & 1 & -0.019 \alpha & -0.280 \\ -0.255 \alpha & -0.019 \alpha & 1 & -0.128 \alpha \\ 0.216 & -0.280 & -0.128 \alpha & 1 \end{array}\right\}$ Note: $\alpha=(\|q / p\|+1)^{2} / 2$ is a variable transformation factor
$R_{\text {M }}$	(0.0173 $\pm 0.0387) \%$	WA $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \ell^{-} v$ results ${ }^{[4]}$
$\begin{gathered} \hline x^{\prime \prime} \\ y^{\prime \prime} \\ \hline \end{gathered}$	$\begin{gathered} \hline(2.39 \pm 0.61 \pm 0.32) \% \\ (-0.14 \pm 0.60 \pm 0.40) \% \\ \hline \end{gathered}$	Babar $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$ result. Correlation coefficient $=-0.34$. Note: $x^{\prime \prime} \equiv x \cos \delta_{\mathrm{K} \pi \pi}+y \sin \delta_{\mathrm{K} \pi \pi}, y^{\prime \prime} \equiv y \cos \delta_{\mathrm{K} \pi \pi}-x \sin \delta_{\mathrm{K} \pi \pi}$.
$R_{\text {M }}$	(0.019 $\pm 0.0161) \%$	Babar $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{+} \pi^{-}$result.
$\begin{gathered} R_{\mathrm{M}} \\ y \\ R_{\mathrm{D}} \\ \sqrt{R_{\mathrm{D}}} \cos \delta \end{gathered}$	$\begin{gathered} (0.199 \pm 0.173 \pm 0.0) \% \\ (-5.207 \pm 5.571 \pm 2.737) \% \\ (-2.395 \pm 1.739 \pm 0.938) \% \\ (8.878 \pm 3.369 \pm 1.579) \% \end{gathered}$	CLEOc results from "double-tagged" branching fractions measured in $\psi(3770) \rightarrow$ DD decays. Correlation coefficients: $\left\{\begin{array}{cccc} 1 & -0.0644 & 0.0072 & 0.0607 \\ -0.0644 & 1 & -0.3172 & -0.8331 \\ 0.0072 & -0.3172 & 1 & 0.3893 \\ 0.0607 & -0.8331 & 0.3893 & 1 \end{array}\right\}$ Note: the only external input to these fit results are branching fractions.
$\begin{gathered} R_{\mathrm{D}} \\ x^{\prime 2+} \\ y^{\prime+} \end{gathered}$	$\begin{gathered} (0.303 \pm 0.0189) \% \\ (-0.024 \pm 0.052) \% \\ (0.98 \pm 0.78) \% \end{gathered}$	Babar $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$results. Correlation coefficients: $\left\{\begin{array}{ccc} 1 & 0.77 & -0.87 \\ 0.77 & 1 & -0.94 \\ -0.87 & -0.94 & 1 \end{array}\right\}$
$\begin{gathered} A_{\mathrm{D}} \\ x^{\prime 2-} \\ y^{\prime-} \end{gathered}$	$\begin{gathered} (-2.1 \pm 5.4) \% \\ (-0.020 \pm 0.050) \% \\ (0.96 \pm 0.75) \% \end{gathered}$	Babar $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$results. Correlation coefficients same as above.
$\begin{gathered} R_{\mathrm{D}} \\ x^{\prime 2+} \\ y^{\prime+} \end{gathered}$	$\begin{gathered} (0.364 \pm 0.018) \% \\ (0.032 \pm 0.037) \% \\ (-0.12 \pm 0.58) \% \end{gathered}$	Belle $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$results. Correlation coefficients: $\left\{\begin{array}{ccc} 1 & 0.655 & -0.834 \\ 0.655 & 1 & -0.909 \\ -0.834 & -0.909 & 1 \end{array}\right\}$
$\begin{gathered} A_{\mathrm{D}} \\ x^{\prime 2-} \\ y^{\prime-} \end{gathered}$	$\begin{gathered} \hline(2.3 \pm 4.7) \% \\ (0.006 \pm 0.034) \% \\ (0.20 \pm 0.54) \% \\ \hline \end{gathered}$	Belle $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$results. Correlation coefficients same as above.

3 Fit results

The global fit uses MINUIT with the MIGRAD minimizer, and all errors are obtained from MINOS. Three separate fits are performed: (a) assuming $C P$ conservation (A_{D} and ϕ are fixed to zero, $|q / p|$ is fixed to one); (b) assuming no direct $C P \mathrm{~V}\left(A_{\mathrm{D}}\right.$ is fixed to zero); and (c) allowing full $C P \mathrm{~V}$ (all parameters floated). The results are listed in Table 3. For the $C P \mathrm{~V}$-allowed fit, individual contributions to the χ^{2} are listed in Table 4. The total χ^{2} is 23.5 for $26-8=18$ degrees of freedom; this corresponds to a confidence
level of 0.17 .
Confidence contours in the two dimensions (x, y) or in $(|q / p|, \phi)$ are obtained by letting, for any point in the two-dimensional plane, all other fitted parameters take their preferred values. The resulting $1 \sigma-5 \sigma$ contours are shown in Fig. 3 for the $C P$-conserving case, and in Fig. 4 for the $C P \mathrm{~V}$-allowed case. The contours are determined from the increase of the χ^{2} above the minimum value. One observes that the (x, y) contours for no- $C P \mathrm{~V}$ and for $C P \mathrm{~V}$-allowed are almost identical. In both cases the χ^{2} at the no-mixing point $(x, y)=(0,0)$ is 49 units above the minimum value; this has a confidence level corresponding to 6.7σ.

Fig. 3. Two-dimensional contours for mixing parameters (x, y), for no $C P \mathrm{~V}$.

Table 2. Left: decay modes used to determine fitted parameters $x, y, \delta, \delta_{\mathrm{K} \pi \pi}, R_{\mathrm{D}}, A_{\mathrm{D}},|q / p|$, and ϕ. Middle: the observables measured for each decay mode. Right: the relationships between the observables measured and the fitted parameters.

decay mode	observables	relationship
$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} / \pi^{+} \pi^{-}$	$\begin{gathered} y_{C P} \\ A_{\Gamma} \\ x \end{gathered}$	$\begin{gathered} 2 y_{C P}=(\|q / p\|+\|p / q\|) y \cos \phi-(\|q / p\|-\|p / q\|) x \sin \phi \\ 2 A_{\Gamma}=(\|q / p\|-\|p / q\|) y \cos \phi-(\|q / p\|+\|p / q\|) x \sin \phi \end{gathered}$
$\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$	$\begin{gathered} y \\ \|q / p\| \\ \phi \end{gathered}$	
$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \ell^{-}$v	$R_{\text {M }}$	$R_{\mathrm{M}}=\left(x^{2}+y^{2}\right) / 2$
$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$		$x^{\prime \prime}=x \cos \delta_{\mathrm{K} \pi \pi}+y \sin \delta_{\mathrm{K} \pi \pi}$
(dalitz plot analysis)	$y^{\prime \prime}$	$y^{\prime \prime}=y \cos \delta_{\mathrm{K} \pi \pi}-x \sin \delta_{\mathrm{K} \pi \pi}$
$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{+} \pi^{-}$	$R_{\text {M }}$	$R_{\mathrm{M}}=\left(x^{2}+y^{2}\right) / 2$
	$R_{\text {M }}$	
"double-tagged" branching fractions measured in $\psi(3770) \rightarrow$ DD decays	$\begin{gathered} y \\ R_{\mathrm{D}} \\ \sqrt{R_{\mathrm{D}}} \cos \delta \end{gathered}$	$R_{\mathrm{M}}=\left(x^{2}+y^{2}\right) / 2$
$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$		$\begin{aligned} & R_{\mathrm{D}}=\left(R_{\mathrm{D}}^{+}+R_{\mathrm{D}}^{-}\right) / 2 \\ & A_{\mathrm{D}}=\left(R_{\mathrm{D}}^{+}-R_{\mathrm{D}}^{-}\right) /\left(R_{\mathrm{D}}^{+}+R_{\mathrm{D}}^{-}\right) \end{aligned}$
	$\begin{aligned} R_{\mathrm{D}}^{+}, & R_{\mathrm{D}}^{-} \\ x^{\prime 2+}, & x^{\prime 2-} \\ y^{\prime+}, & y^{\prime-} \end{aligned}$	$\begin{aligned} & x^{\prime}=x \cos \delta+y \sin \delta \\ & y^{\prime}=y \cos \delta-x \sin \delta \\ & A_{\mathrm{M}} \equiv\left(\|q / p\|^{4}-1\right) /\left(\|q / p\|^{4}+1\right) \\ & x^{\prime \pm}=\left[\left(1 \pm A_{M}\right) /\left(1 \mp A_{\mathrm{M}}\right)\right]^{1 / 4}\left(x^{\prime} \cos \phi \pm y^{\prime} \sin \phi\right) \\ & y^{\prime \pm}=\left[\left(1 \pm A_{M}\right) /\left(1 \mp A_{\mathrm{M}}\right)\right]^{1 / 4}\left(y^{\prime} \cos \phi \mp x^{\prime} \sin \phi\right) \end{aligned}$

Table 3. Results of the global fit for different assumptions concerning $C P \mathrm{~V}$.

parameter	no $C P \mathrm{~V}$	no direct $C P \mathrm{~V}$	$C P \mathrm{~V}$-allowed	$C P \mathrm{~V}$-allowed 95\% C.L.
$x(\%)$	$0.98_{-0.27}^{+0.26}$	$0.97_{-0.29}^{+0.27}$	$\left[0.97_{-0.29}^{+0.27}\right.$	$[0.39,1.48]$
$y(\%)$	0.75 ± 0.18	$0.78_{-0.19}^{+0.18}$	$0.78_{-0.18}^{+0.19}$	$[0.41,1.13]$
$\delta /\left(^{\circ}\right)$	$21.6_{-12.6}^{+11.6}$	$23.4_{-12.5}^{+11.6}$	$21.9_{-12.5}^{+11.5}$	$[-6.3,44.6]$
$R_{\mathrm{D}}(\%)$	0.335 ± 0.009	0.334 ± 0.009	0.335 ± 0.009	$[0.316,0.353]$
$A_{\mathrm{D}}(\%)$	-	-	-2.2 ± 2.5	$[-7.10,2.67]$
$\|q / p\|$	-	$0.95_{-0.14}^{+0.15}$	$[0.59,1.23]$	
$\phi /\left(^{\circ}\right)$	-	$-2.7_{-5.8}^{+5.4}$	$0.86_{-0.15}^{+0.18}$	$[-30.3,6.5]$
$\delta_{\mathrm{K} \pi \pi} /\left(^{\circ}\right)$	$30.8_{-25.8}^{+25.0}$	$-92.5_{-25.7}^{+25.0}$	$-9.6_{-9.5}^{+8.3}$	$[-20.3,82.7]$

Table 4. Individual contributions to the χ^{2} for the $C P \mathrm{~V}$-allowed fit.

observable	χ^{2}	$\sum \chi^{2}$
$y_{C P}$	2.06	2.06
A_{Γ}	0.10	2.16
$x_{\mathrm{K}^{0} \pi^{+} \pi^{-}}$	0.20	2.36
$y_{\mathrm{K}^{0} \pi^{+} \pi^{-}}$	1.94	4.30
$\|q /\|_{\mathrm{K}^{0} \pi^{+} \pi^{-}}$	0.00	4.30
$\phi_{\mathrm{K}^{0} \pi^{+} \pi^{-}}$	0.46	4.76
$R_{\mathrm{M}}\left(\mathrm{K}^{+} \ell^{-} \gamma\right)$	0.06	4.83
$x_{\mathrm{K}^{+} \pi^{-} \pi^{0}}$	1.24	6.06
$y_{\mathrm{K}}+\pi^{-} \pi^{0}$	1.62	7.69
$R_{\mathrm{M}} / y / R_{\mathrm{D}} / \sqrt{R_{\mathrm{D}}} \cos \delta(\mathrm{CLEOc})$	5.59	13.28
$R_{\mathrm{D}}^{+} / x^{\prime 2+} / y^{\prime+}($ Babar $)$	2.54	15.82
$R_{\mathrm{D}}^{-} / x^{\prime 2-} / y^{\prime-}($ Babar $)$	1.75	17.57
$R_{\mathrm{D}}^{+} / x^{\prime 2+} / y^{\prime+}($ Belle $)$	3.96	21.53
$R_{\mathrm{D}}^{-} / x^{\prime 2-} / y^{\prime-}($ Belle $)$	1.43	22.95
$R_{\mathrm{M}}\left(\mathrm{K}^{+} \pi^{-} \pi^{+} \pi^{-}\right)$	0.49	23.45

Fig. 4. Two-dimensional contours for parameters (x, y) (left) and $(|q / p|, \phi)$ (right), allowing for $C P \mathrm{~V}$.

Fig. 5. The function $\Delta \chi^{2}=\chi^{2}-\chi_{\text {min }}^{2}$ for fitted parameters $x, y, \delta, \delta_{\mathrm{K} \pi \pi},|q / p|$, and ϕ. The points where $\Delta \chi^{2}=2.70$ (denoted by the dashed horizontal line) determine a 90% C.L. interval.

Thus, no mixing is excluded at this high level. In the $(|q / p|, \phi)$ plot, the point $(1,0)$ is on the boundary of the 1σ contour; thus the data is consistent with $C P$ conservation.

One-dimensional confidence curves for individual parameters are obtained by letting, for any value of the parameter, all other fitted parameters take their preferred values. The resulting functions $\Delta \chi^{2}=$ $\chi^{2}-\chi_{\text {min }}^{2}$ (where $\chi_{\text {min }}^{2}$ is the minimum value) are shown in Fig. 5. The points where $\Delta \chi^{2}=2.70$ determine 90% C.L. intervals for the parameters as shown in the figure. The points where $\Delta \chi^{2}=3.84$ determine 95% C.L. intervals; these are listed in Table 3.

4 Conclusions

From the global fit results listed in Table 3 and shown in Figs. 4 and 5, we conclude the following:

1) the experimental data consistently indicate that D^{0} mesons undergo mixing. The no-mixing point $x=y=0$ is excluded at 6.7σ. The parameter x differs from zero by 3.0σ; the parameter y differs from zero by 4.1σ. The effect is presumably dominated by long-distance processes, which are difficult to calculate. Thus unless $|x| \gg|y|$ (see Ref. [5]), it may be difficult to identify new physics from mixing alone.
2) Since $y_{C P}$ is positive, the $C P$-even state is shorter-lived, as in the $\mathrm{K}^{0}-\overline{\mathrm{K}}^{0}$ system. However, since x also appears to be positive, the $C P$-even state is heavier, unlike in the $\mathrm{K}^{0}-\overline{\mathrm{K}}^{0}$ system.
3) It appears difficult to accomodate a strong phase difference δ larger than 45°.
4) There is no evidence yet for $C P \mathrm{~V}$ in the $\mathrm{D}^{0}-\overline{\mathrm{D}}^{0}$ system. Observing $C P \mathrm{~V}$ at the level of sensitivity of the current experiments would indicate new physics.

References

1 Staric M et al. (Belle). Phys. Rev. Letts., 2007, 98: 211803
2 Aubert B et al. (Babar). Phys. Rev. Letts., 2007, 98: 211802
3 Aaltonen T et al. (CDF). arXiv: 0712.1567
4 http://www.slac.stanford.edu/xorg/hfag/charm/index.html
5 Bigi I, Uraltsev N. Nucl. Phys. B, 2001, 592: 92
6 Petrov A A. Charm Physics: Theoretical Review. eConf, 2003, C030603. arXiv: hep-ph/0311371; Nucl. Phys. Proc. Suppl., 2005, 142: 333
7 Aitala E M et al. (E791). Phys. Rev. Letts., 1996, 77: 2384; Cawlfield C et al. (CLEO). Phys. Rev. D, 2005, 71: 071101; Bitenc U et al. (Belle). Phys. Rev. D, 2005, 72: 071101; Aubert B et al. (Babar). Phys. Rev. D, 2007, 76: 014018

8 Aitala E M et al. (E791). Phys. Rev. Letts., 1999, 83: 32; Link J M et al. (FOCUS). Phys. Letts. B, 2000, 485: 62; Csorna S E et al. (CLEO). Phys. Rev. D, 2002, 65: 092001; Abe K et al. (Belle). Phys. Rev. Letts., 2002, 88: 162001; Aubert B et al. (Babar). arXiv: 0712.2249
9 Asner D M et al. (CLEO). Phys. Rev. D, 2005, 72: 012001; arXiv: hep-ex / 0503045 (revised April 2007); ZHANG L M et al. (Belle). Phys. Rev. Letts., 2007, 99: 131803
10 ZHANG L M et al. (Belle). Phys. Rev. Letts., 2006, 96: 151801
11 Aubert B et al. (Babar). arXiv: hep-ex / 0607090; Lockman W (Babar). presented at LP'07, Daegu, S. Korea (13 August 2007); see also: TIAN X C et al. (Belle). Phys. Rev. Letts., 2005, 95: 231801
12 Asner D M et al. (CLEOc). arXiv: 0802.2268

[^0]: Received 25 February 2008

 1) E-mail:schwartz@physics.uc.edu
