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Abstract In order to improve the unitarity of the S-matrix, an improved variational formulism is derived by

proposing new generating functionals and adopting proper asymptotic boundary conditions for trial relative

wave functions. The formulas with the weighted line-column balance for the single-channel and multi-channel

scatterings, where the non-central interaction is implicitly considered, are presented. A numerical check is

performed with a soluble model in a four coupled channel scattering problem. The result shows that the high

accuracy and the unitarity of the S-matrix are reached.
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1 Introduction

Nowadays, many new hadronic states have been

found in high energy experiments. Many of them

might have a molecular-like structure. Understand-

ing the structures and properties of these states is

a challenging problem for physicists. Because of the

non-Abelian character of the fundamental strong in-

teraction theory, Quantum Chromodynamics (QCD),

one of the most efficient methods to solve this prob-

lem is using a QCD model theory, for instance the

chiral constituent quark model. However, due to the

complicated interactions between quarks, one has to

solve it numerically rather than analytically. In order

to solve the bound state problem reliably, one needs

to fix model parameters by explaining the available

experimental data as much as possible, so that the

model has predictive power. Up to now, the avail-

able data are mostly scattering data. The variational

method is a powerful and commonly used approxi-

mation method to treat the scattering problem[4, 10].

The basic mathematical descriptions of the varia-

tional method are the Ritz and Galerkin variational

methods. In fact, M. Kamimura has proposed a vari-

ational procedure[9] which is the generation of the

Kohn-Hulthén-Kato variational method for the S-

matrix in nuclear reactions. In this paper, we try

to improve the Kamimura’s method by proposing a

generating functional where the non-central interac-

tion is explicitly included, adopting a proper asymp-

totic boundary condition, so that the unitarity and

the symmetry of the S-matrix can be ensured, and

considering the weighted line-column balance to in-

crease the numerical accuracy. In Sect. 2, we present

the method for the case of a single scattering chan-

nel with a central potential, and the method in the

case of a single scattering channel with an additional

non-central potential and in the multi-channel case

in Sects. 3 and 4, respectively. Finally, we present a

numerical check in Sect. 5.

2 Single scattering channel with cen-

tral potential

We consider the scattering of two hadrons. In the

case of a spinless hadron moving in a finite-ranged

central force field, the radial Schrödinger equation

can be written as

K̂l ul(r) = 0 , (1)

with
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K̂l = − ~
2

2µ

d2

dr2
+

~
2

2µ

l(l+1)

r2
+V (r)−E , (2)

k =

√
2µE

~
, (3)

and ul(r) being the reduced radial wave function of

the relative motion between two hadrons. Because

the potential between two hadrons is finite-ranged,

the asymptotic boundary condition for the outgoing

radial wave function should be

ul(r) | r→0
−→ 0 , (4)

ul(r) | r→∞
−→ 1

2ik

[

sl ĥ+
l (kr)− ĥ−

l (kr)
]

. (5)

Let us define an auxiliary functional[1]

J [u] =
~

2

2µ
s−2ik

(

u, K̂l u
)

, (6)

with the inner product defined as

(

u,K̂v
)

=

∞∫

r=0

dru(r)K̂v(r). (7)

Now, let us carry out a similar procedure as shown

in Kamimura’s paper[9]. Take a trial wave function

ut(r) which satisfies the asymptotic boundary condi-

tion

ut(r) | r→0
−→ 0 , (8)

ut(r) | r→∞
−→ 1

2ik

[

stĥ
+
l (kr)− ĥ−

l (kr)
]

, (9)

and expand it as

ut(r) =

n
∑

i=0

ci ui(r) , (10)

where the basis function

ui(r) =















αi u
(in)
i (r), r < rC

1

2ik

[

si ĥ+
l (kr)− ĥ−

l (kr)
]

, r > rC

(11)

is a class C1 function and satisfies

ui(r) | r−→0
= 0 , (12)

K̂l ui(r) | r>rC
= 0 . (13)

Comparing Eqs. (8, 9 and 11), we obtain the relation
n

∑

i=0

ci = 1 , (14)

n
∑

i=0

cisi = st , (15)

and consequently

ut(r) = u0(r)+
n

∑

i=1

ci [ui(r)−u0(r)] , (16)

δut(r) =

n
∑

i=1

δci [ui(r)−u0(r)] . (17)

Moreover, using the connection conditions for ui(r)

at r = rC, we get the expressions for αi and si

αi =
1

∣

∣

∣

∣

∣

∣

∣

ĥ+
l (kr) u

(in)
i (r)

d

dr
ĥ+

l (kr)
d

dr
u

(in)
i (r)

∣

∣

∣

∣

∣

∣

∣

r=rC

, (18)

si =

∣

∣

∣

∣

∣

∣

∣

ĥ−

l (kr) u
(in)
i (r)

d

dr
ĥ−

l (kr)
d

dr
u

(in)
i (r)

∣

∣

∣

∣

∣

∣

∣

r=rC
∣

∣

∣

∣

∣

∣

∣

ĥ+
l (kr) u

(in)
i (r)

d

dr
ĥ+

l (kr)
d

dr
u

(in)
i (r)

∣

∣

∣

∣

∣

∣

∣

r=rC

. (19)

Carrying out the Galerkin variation, we have

δJ [ut] =−4ik
(

δut, K̂l ut

)

= 0 , (20)

namely

(

δu,K̂lu
)

= 0 . (21)

With the definition

(Kl)ij
=

(

ui,K̂luj

)

, (22)

we rewrite the above equation into the form of linear

equations

n
∑

j=1

(Kl)ij
cj = (Ml)i

i = 1,2,3, · · · ,n, (23)

where

(Kl)ij
= (Kl)ij

−(Kl)i0
−(Kl)0j

+(Kl)00
, (24)

(Ml)i
= (Kl)00−(Kl)i0

, (25)

and the integral kernel Kl and Kl have the symmetry

properties

(Kl)ij
= (Kl)ji

(26)

and

(Kl)ij
−(Kl)ji

= − ~
2

2µ

1

2ik
(si−sj) , (27)

respectively.

For deriving the integral kernel (Kl)ij conve-

niently, we rewrite the basis function as

ui(r) = αi

(

u
(in)
i (r)+u

(ex)
i (r)

)

, (28)
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with

αiu
(ex)
i (r) =











0, r < rC

1

2ik

[

siĥ
+
l (kr)− ĥ−

l (kr)
]

−αiu
(in)
i (r), r > rC

. (29)

Apparently,

K̂lu
(in)
i (r)

∣

∣

∣

r>rC

= − K̂lu
(ex)
i (r)

∣

∣

∣

r>rC

. (30)

Substituting this basis function into the definition

(22), we get

(Kl)ij
= αiαj

[

(

K
(in)
l

)

ij

−
(

K
(ex)
l

)

ij

]

, (31)

where

(

K
(in)
l

)

ij

=

∞∫

r=0

u
(in)
i (r)K̂lu

(in)
j (r)dr , (32)

(

K
(ex)
l

)

ij

=

∞∫

r=rC

u
(in)
i (r)K̂lu

(in)
j (r)dr . (33)

If we take

u
(in)
i (r) = 4πr

(µω

π

) 3

4

exp
[

−µω

2
(r2 +S2

i )
]

×

il(µωSir) , (34)

where il is the l-th modified spherical Bessel function,
(

K
(in)
l

)

ij

can be calculated analytically and the cor-

rection part
(

K
(ex)
l

)

ij

should be evaluated numeri-

cally.

It should especially be mentioned that due to

u
(in)
i (r)

∣

∣

∣

r→∞

∝ exp
[

µωSir−
µω

2
(r2 +S2

i )
]

and

ĥ±

l (kr) |
r→∞

−→ exp
[

±i
(

kr− l
π

2

)]

,

the value of αi, and consequently the matrix element

(Kl)ij
, would severely increase with increasing rC,

but not
(

K̃l

)

ij

=
(

K
(in)
l

)

ij

−
(

K
(ex)
l

)

ij

. (35)

Therefore, to make the calculation reliable, we further

perform the operation of the weighted line-column

balance. Define
(

K̃l

)

ij

=
1

αiαj

(Kl)ij
, (36)

(

M̃l

)

i

=
1

αi

(Ml)i
, (37)

c̃j = αjcj , (38)

then
(

K̃l

)

ij

=

[

(

K
(in)
l

)

ij

−
(

K
(ex)
l

)

ij

]

−

α0

αj

[(

K
(in)
l

)

i0
−

(

K
(ex)
l

)

i0

]

−

α0

αi

[

(

K
(in)
l

)

0j

−
(

K
(ex)
l

)

0j

]

+

α0α0

αiαj

[(

K
(in)
l

)

00
−

(

K
(ex)
l

)

00

]

, (39)

(

M̃l

)

i

=
α0α0

αi

[(

K
(in)
l

)

00
−

(

K
(ex)
l

)

00

]

−

α0

[(

K
(in)
l

)

i0
−

(

K
(ex)
l

)

i0

]

. (40)

Finally, we obtain the linear equations

n
∑

j=1

(

K̃l

)

ij

c̃j =
(

M̃l

)

i

i = 1,2,3, · · · ,n . (41)

Solving these coupled equations for c̃j ’s, we can eva-

luate

J [c1, c2, · · · , cn] =
~

2

2µ

n
∑

i=0

cisi−2ik

n
∑

i=0

ci (Kl)0i
,

and subsequently the stationary value of the S-matrix

Sst =
n

∑

i=0

cisi−
2µ

~2
·2ik

n
∑

i=0

ci (Kl)0i
. (42)

3 Single scattering channel with non-

central potential

We first define an operator as

K̂ =









− ~
2

2µ

d2

dr2
+

~
2

2µ

l1(l1 +1)

r2
+Vl1l1(r)−E Vl1l2(r)

Vl2l1(r) − ~
2

2µ

d2

dr2
+

~
2

2µ

l2(l2 +1)

r2
+Vl2l2(r)−E









, (43)

the wave function as

u
(l1) =





ul1

ul2





(l1)

=





u
(l1)
l1

u
(l1)
l2



 , (44)

where the superscript (subscript) indicates the or-

bital angular momentum of the incoming (outgo-

ing) partial-wave, and write the coupled channel

Schrödinger equation as
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













(

K̂

)

l1l1

u
(l1)
l1

(r)+
(

K̂

)

l1l2

u
(l1)
l2

(r) = 0

(

K̂

)

l2l1

u
(l2)
l1

(r)+
(

K̂

)

l1l2

u
(l2)
l2

(r) = 0

. (45)

Now we construct a generating functional for the

S-matrix

J
[

u
(l1),u(l2)

]

=
~

2

2µ
Sl1l2 −2ik

(

u
(l1),K̂u

(l2)
)

, (46)

where u
(lγ)

lδ
satisfies the asymptotic boundary condi-

tion














u
(lγ)

lδ
(r)

∣

∣

∣

r→0
−→ 0

u
(lγ)

lδ
(r)

∣

∣

∣

r→∞

−→ 1

2ik

[

Slδlγ ĥ+
lδ

(kr)−δlδ lγ ĥ−

lδ
(kr)

]

,

(47)

and

J
[

u(l1),u(l2)
]

= J
[

u(l2),u(l1)
]

. (48)

By a similar procedure as in the last section, we

get the relations

nlδ
∑

i=0

c
(lγ)

lδi = δlδ lγ , (49)

nlδ
∑

i=0

c
(lγ)

lδi slδi = (St)lδ lγ
, (50)

and

αlδi =
1

∣

∣

∣

∣

∣

∣

∣

ĥ+
lδ

(kr) u
(in)
lδi (r)

d

dr
ĥ+

lδ
(kr)

d

dr
u

(in)
lδi (r)

∣

∣

∣

∣

∣

∣

∣

r=rC

, (51)

slδi =

∣

∣

∣

∣

∣

∣

∣

ĥ−

lδ
(kr) u

(in)
lδi (r)

d

dr
ĥ−

lδ
(kr)

d

dr
u

(in)
lδi (r)

∣

∣

∣

∣

∣

∣

∣

r=rC
∣

∣

∣

∣

∣

∣

∣

ĥ+
lδ

(kr) u
(in)
lδi (r)

d

dr
ĥ+

lδ
(kr)

d

dr
u

(in)
lδi (r)

∣

∣

∣

∣

∣

∣

∣

r=rC

. (52)

Defining integral kernels

K
(in)
lγi,lδj =

∞∫

r=0

u
(in)
lγ i (r)K̂u

(in)
lδj (r)dr (53)

and the external correction

K
(ex)
lγ i,lδj = δlγ lδ

∞∫

r=rlγC

u
(in)
lγi (r)K̂u

(in)
lγj (r)dr , (54)

we get

Klγ i,lδj = αlγ iαlδj

[

K
(in)
lγi,lδj −K

(ex)
lγi,lδj

]

. (55)

Carrying out the Galerkin variation, the coupled

linear equations are obtained as































nlγ
∑

j=1

Klγ i,lγ jc
(lγ)

lγj +

nlδ
∑

j=1

Klγ i,lδjc
(lγ)

lδj =M(lγ)

lγi

nlγ
∑

j=1

Klδi,lγjc
(lγ)

lδj +

nlδ
∑

j=1

Klδi,lδjc
(lγ)

lδj =M(lγ)

lδi

. (56)

Solving these equations for c
(lγ)

lδj ’s, one finally obtains

the S-matrix elements

(Sst)lγ lγ
=

nlγ
∑

i=0

c
(lγ)

lγ i slγ i−
2µ

~2
•2ik

nlγ
∑

i=0

Klγ0,lγ ic
(lγ)

lγ i −

2µ

~2
•2ik

nlδ
∑

i=0

Klγ0,lδic
(lγ)

lδi , (57)

(Sst)lδ lδ
=

nlδ
∑

i=0

c
(lδ)
lδi slδi−

2µ

~2
•2ik

nlγ
∑

i=0

Klδ0,lγ ic
(lδ)
lγ i −

2µ

~2
•2ik

nlδ
∑

i=0

Klδ0,lδic
(lδ)
lδi , (58)

(Sst)lγ lδ
=

nlγ
∑

i=0

c
(lδ)
lγ i slγ i−

2µ

~2
•2ik

nlγ
∑

i=0

Klγ0,lγ ic
(lδ)
lγ i −

2µ

~2
•2ik

nlδ
∑

i=0

Klγ0,lδic
(lδ)
lδi . (59)

4 Multiple scattering channels

Similar to the derivation in the last section, we

define operators


















(

K̂l

)

ii

=− ~
2

2µi

d2

dr2
+

~
2

2µi

l(l+1)

r2
+Vii(r)+Mi −E

(

K̂l

)

ij

= Vij(r) i 6= j

(60)

and the wave function with orbital angular momen-

tum l

u
(m)
l =



















u
(m)
1l

u
(m)
2l

· · ·

u
(m)
NCl



















, (61)

with the superscript (subscript) indicating the in-

coming (outgoing) channel. To ensure the unitarity

and symmetry of the S-matrix, we use the following
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boundary condition






























u
(m)
i (r)

∣

∣

∣

r→0
−→ 0

u
(m)
i (r)

∣

∣

∣

r→∞

−→ 1

2iki

√

µiki

µmkm

×
[

simĥ+
l (kir)−δimĥ−

l (kir)
]

. (62)

Then the auxiliary functional for the S-matrix of the

multichannel scattering can be written as

J
[

u
(m),u(n)

]

=
~

2

2

√

1

µmµn

smn−

2i
√

kmkn

(

u
(m),K̂lu

(n)
)

, (63)

with

(

u
(m)
l ,Klu

(n)
l

)

=

NC
∑

i=1

NC
∑

j=1

(

u
(m)
i ,K̂lu

(n)
j

)

and

J
[

u
(m),u(n)

]

= J
[

u
(n),u(m)

]

. (64)

By expanding the trial wave function with the sim-

ilar basis functions as shown in the former sections,

we obtain the relations
np
∑

i=0

c
(m)
pi = δpm, (65)

np
∑

i=0

c
(m)
pi spi =

√

µpkp

µmkm

(st)pm
. (66)

Using the connection conditions, we get

αpi =
1

∣

∣

∣

∣

∣

∣

∣

ĥ+
l (kpr) u

(in)
pi (r)

d

dr
ĥ+

l (kpr)
d

dr
u

(in)
pi (r)

∣

∣

∣

∣

∣

∣

∣

r=rC

, (67)

and

spi =

∣

∣

∣

∣

∣

∣

∣

ĥ−

l (kpr) u
(in)
pi (r)

d

dr
ĥ−

l (kpr)
d

dr
u

(in)
pi (r)

∣

∣

∣

∣

∣

∣

∣

r=rC
∣

∣

∣

∣

∣

∣

∣

ĥ+
l (kpr) u

(in)
pi (r)

d

dr
ĥ+

l (kpr)
d

dr
u

(in)
pi (r)

∣

∣

∣

∣

∣

∣

∣

r=rC

. (68)

Apparently, this formulation ensures the unitarity of

the S-matrix. Denoting the integral kernel as

(Kl)pi,qj
=

∞∫

r=0

upi(r)K̂luqj(r)dr , (69)

we can also prove the symmetry relation

(Kl)pi,qj
−(Kl)qj,pi

=− ~
2

2µp

1

2ikp

(spi−spj)δpq (70)

and provide a formula for the kernel as

(Kl)pi,qj
= αpiαqj

[

(

K
(in)
l

)

pi,qj

−
(

K
(ex)
l

)

pi,qj

]

,

(71)

with

(

K
(in)
l

)

pi,qj

=

∞∫

r=0

u
(in)
pi (r)K̂lu

(in)
qj (r)dr (72)

and

(

K
(ex)
l

)

pi,qj

= δpq

∞∫

r=rpC

u
(in)
pi (r)Klu

(in)
pj (r)dr . (73)

Carrying out the Galerkin variational procedure, we

arrive at the final coupled linear equations

NC
∑

q=1

nq
∑

j=1

(

K̃l

)

pi,qj

c̃
(n)
qj =

(

M̃(n)
l

)

pi

i = 1,2,3, · · · ,n,

(74)

with
(

K̃l

)

pi,qj

=

[

(

K
(in)
l

)

pi,qj

−
(

K
(ex)
l

)

pi,qj

]

−

αq0

αqj

[

(

K
(in)
l

)

pi,q0
−

(

K
(ex)
l

)

pi,q0

]

−

αp0

αpi

[

(

K
(in)
l

)

p0,qj

−
(

K
(ex)
l

)

p0,qj

]

+

αp0αq0

αpiαqj

[

(

K
(in)
l

)

p0,q0
−

(

K
(ex)
l

)

p0,q0

]

(75)

and
(

M̃(n)
l

)

pi

=
αp0αq0

αpi

[

(

K
(in)
l

)

p0,q0
−

(

K
(ex)
l

)

p0,q0

]

−

αq0

[

(

K
(in)
l

)

pi,q0
−

(

K
(ex)
l

)

pi,q0

]

, (76)

and the stationary value of the S-matrix

(Sst)mn
=

√

µnkn

µmkm

nm
∑

i=0

c
(n)
mi smi−

4i

~2

√

µmkmµnkn

NC
∑

q=1

nq
∑

j=0

(

K̂l

)

m0,qj

c
(n)
qj .

(77)

5 Numerical check with a soluble

model

Here, we employ a square-well potential as the

soluble model to examine the accuracy of the de-

rived variational method. We calculate the scattering

process with a four coupled channel and a potential
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V (r) =















































−













−10 −200 −50 50

−200 −20 −100 70

−50 −100 −30 38

50 70 38 −40













r < 2 fm

0 r > 2 fm

.

(78)

The masses of the particles a and b in different chan-

nels are tabulated in Table 1. We first solved this

scattering problem analytically[1]. The resultant val-

ues of the S-matrix are tabulated in Table 2. Then,

we calculated the values of the S-matrix with the de-

rived variational method by employing 10 trial basis

functions with a local Gaussian shape[1]. The results

are also tabulated in Table 2. From this table, one

sees that the accuracy of the S-matrix elements from

the derived variational method is quite high and can

reach at least 7 significant digits. One also finds that

the S-matrix is unitary by calculating

4
∑

i=1

|Si1|2 = 1 (79)

and symmetric by equation (64).

Table 1. The masses of the particles a and b in

different channels.

channel number ma/MeV mb/MeV

1 170 180

2 110 250

3 150 220

4 155 225

In summary, in order to improve the unitarity of

the S-matrix, an improved variational formalism is

derived by proposing new generating functionals and

adopting proper asymptotic boundary conditions for

the trial relative wave functions. Formulae with the

weighted line-column balance for the single-channel

and multi-channel scatterings, where the non-central

interaction is implicitly considered, were presented.

A numerical check has been performed with a soluble

model in a four coupled channel scattering problem.

The result shows that high accuracy and the unitarity

of the S-matrix are reached.

Table 2. The values of S-matrix elements in a four coupled channel scattering problem with a square well

potential. The incoming channel is number 1.

30 MeV 90 MeV

analytical solution (0.4473515, −0.68056643) (6.895854×10−2 , −0.448038367)
S11

variational method (0.4473519, −0.68056645) (6.895851×10−2 , −0.448038363)

analytical solution (−0.343851265, −0.13108581) (−0.464547, 0.347278435)
S21

variational method (−0.343851259, −0.13108579) (−0.464547, 0.347278439)

analytical solution (−0.262105725, −0.24491177) (−0.51804951, −7.1553477×10−2)
S31

variational method (−0.262105728, −0.24491176) (−0.51804952, −7.1553476×10−2)

analytical solution (0.1949905898, 0.185973840) (0.423895405, 7.0125298×10−2)
S41

variational method (0.1949905849, 0.185973836) (0.423895404, 7.0125293×10−2)

150 MeV 500 MeV

analytical solution (1.4212612×10−2 , −0.272897362) (0.364338585, −6.2302472×10−2)
S11

variational method (1.4212618×10−2 , −0.272897344) (0.364338581, −6.2302473×10−2)

analytical solution (−0.31520531, 0.61034166) (0.154766900, 0.817862838)
S21

variational method (−0.31520530, 0.61034163) (0.154766899, 0.817862832)

analytical solution (−0.524048564, 6.7681866×10−2) (−0.2757592835, 0.174463445)
S31

variational method (−0.524048557, 6.7681872×10−2) (−0.2757592853, 0.174463443)

analytical solution (0.414182052, −5.1953794×10−2) (0.18481194, −0.172879302)
S41 variational method (0.414182048, −5.1953793×10−2) (0.18481194, −0.172879304)
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