
CPC(HEP & NP), 2010, 34(10): 1576–1582 Chinese Physics C Vol. 34, No. 10, Oct., 2010

On analytic formulas of Feynman

propagators in position space *
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Abstract We correct an inaccurate result of previous work on the Feynman propagator in position space

of a free Dirac field in (3 + 1)-dimensional spacetime; we derive the generalized analytic formulas of both

the scalar Feynman propagator and the spinor Feynman propagator in position space in arbitrary (D + 1)-

dimensional spacetime; and we further find a recurrence relation among the spinor Feynman propagator in

(D+1)-dimensional spacetime and the scalar Feynman propagators in (D+1)-, (D−1)- and (D+3)-dimensional

spacetimes.
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1 Introduction

Although one cannot adopt the extreme view that

the set of all Feynman rules represents the full the-

ory of quantized fields, the approach of the Feynman

graphs and rules plays an important role in pertur-

bative quantum field theories. For a generic quan-

tum theory involving interacting fields, the set of its

Feynman rules includes some vertices and propaga-

tors. While for a free field theory there is only one

graph, that is, the Feynman propagator, in the set

of its Feynman rules. Thus the Feynman propagator

describes most, if not all, of the physical contents of

the free field theory. It is true that the real world is

not governed by any free field theory. However, this

kind of theory is the basis of a perturbatively inter-

acting field theory, and the issues of a free theory are

usually in the simplest situation and thus their study

will be attempted at the first step of investigations.

In statistical field theory, the Feynman propagator is

usually called the correlation function. We need to

know its formula in position space to figure out the

critical exponent η and the correlation length ξ, which

is related to another exponent ν. In the path integral

language of quantum field theory, the Feynman prop-

agator in position space can be physically understood

as the energy due to the presence of the two external

sources located at two different points in space and

acting on each other (See Ref. [1] Chapt.I.4).

It has been mentioned in Refs. [1–8] that in (3+1)-

dimensional spacetime, after integrating over momen-

tum, the Feynman propagator of a free Klein-Gordon

field can be expressed in terms of Bessel or modified

Bessel functions, which depends on whether the sep-

aration of two spacetime points is timelike or space-

like. By changing variables to hyperbolic functions

and using the integral representation of the Hankel

function of the second kind, the authors of Ref. [2]

derived the full analytic formulas of the Feynman

propagors of free Klein-Gordon and Dirac fields in

(3+1)-dimensional spacetime. The expressions of the

Feynman propagators of a free Klein-Gordon field in

(1+1)- and that in (2+1)-dimensional spacetime can

be found in Refs. [9] and [10], respectively. How-

ever, in Ref. [2] the expression for the Feynman prop-

agator of a Dirac spinor field is inaccurate, since

there is at least a redundant term in their results.

In this paper we will show that the term actually
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vanishes and we will give the correct expression. Fur-

thermore, we will generalize the results of previous

work and derive the full analytic formulas of the Feyn-

man propagators in position space of, respectively,

the Klein-Gordon scalar and the Dirac spinor in arbi-

trary (D +1)-dimensional spacetime. Eventually we

will find an interesting recurrence relation between

the spinor Feynman propagator in (D+1)-dimensional

spacetime and the scalar Feynman propagators in

(D +1)- and alternate-successive dimensional space-

time.

This paper is organized as follows. In Section 2,

we will briefly review the derivation of the analytic

formulas of the Feynman propagators of a free Klein-

Gordon field in (1+1)- and (2+1)-dimensional space-

time, and we will compute, once and for all, the

scalar Feynman propagator in (D + 1)-dimensional

spacetime. After completion of this work, we became

aware of the analytic formula of the scalar Feynman

propagator in position space in arbitrary dimensional

spacetime which is also given in Ref. [11]. We will

demonstrate that our result exactly agrees with that

of Ref. [11] in this section. In Section 3 we will make

use of the obtained formula of the scalar Feynman

propagator to compute the expression of the spinor

Feynman propagator in (D+1)-dimensional spacetime

and obtain a recurrence relation. We will also com-

pare our result for D = 3 with that of Ref. [2], and we

will show that one additional term in Ref. [2] actually

has no contribution and that the method they used

to prove the term nonzero was inappropriate. The

last section is devoted to conclusions.

2 Feynman propagator of Klein-

Gordon theory

Following the notation of Refs. [1, 4], we write

the Feynman propagator of a free Klein-Gordon field

φ(x)≡φ(t,~x) in (D+1)-dimensional spacetime as the

time-ordered two-point correlation function,

DF(x) ≡ 〈0|Tφ(x)φ(0)|0〉

= θ(x0)D(x)+θ(−x0)D(−x) , (1)

with the unordered two-point correlation function,

D(x)≡〈0|φ(x)φ(0)|0〉=

∫
dD~p

(2π)D

1

2E~p

e−i(E~pt−~p·~x). (2)

Combining the above two equations gives

DF(t,~x) = D(|t|,~x) =

∫
dD~p

(2π)D

1

2E~p

e−i(E~p|t|−~p·~x). (3)

Thus, we can obtain the analytic formula of the Feyn-

man propagator in position space by integrating over

the D-dimensional momentum in the expression of

D(|t|,~x). This integral in D-dimensional Euclidean

space can be evaluated by changing the variables from

Cartesian coordinates to spherical coordinates. Since

the angular integral parts look a little different in

(1+1)-, (2+1)- and general (D+1)-dimensional (for

D > 3) spacetimes, in order to be more careful in our

derivation, let us consider these situations case by

case. Eventually we will show that the general result

of (D+1)-dimensional spacetime holds for D = 1,2 as

well.

2.1 (1+1)-dimensional spacetime

When the spatial dimension D = 1, Eq. (3) be-

comes

DF(t,r) =

∫+∞

−∞

dp

2π

1

2E
e−i(E|t|−pr) , (4)

with E =
√

p2 +m2. Using the substitution E = m

cosh η, p = m sinh η (with −∞< η <∞) in the above

integral, we have

DF(t,r) =
1

4π

∫+∞

−∞

dηe−im(|t|coshη−r sinhη). (5)

Due to the Lorentz invariance, the Feynman propa-

gator can depend only on the interval x2 ≡ t2 − r2.

If the interval is timelike, x2 > 0, we can make a

Lorentz transformation such that x is purely in the

time-direction, x0 = θ(t)
√

t2−r2− iε, r = 0. Note

that
√

s is not a single-valued-function of s and here

and henceforth the cut line in the complex plane of

s is chosen to be the negative real axis. The nega-

tive infinitesimal imaginary part, −iε, is because of

the Feynman description of the Wick rotation, i.e.,

x2 → x2 − iε in position space and correspondingly

k2 → k2 +iε in momentum space. Thus,

DF(t,r) =
1

4π

∫+∞

−∞

dηe−im
√

t2−r2−iεcoshη

= − i

4
H(2)

0 (m
√

t2−r2− iε), (6)

where H (2)
0 (x) is the Hankel function of the second

kind, and where we have used the identity in # 3.337

of Ref. [12],∫+∞

−∞

dηe−iβ coshη =−iπH (2)
0 (β), (−π < argβ < 0). (7)

Likewise, if the interval is spacelike, x2 < 0, we have

DF(t,r) =
1

4π

∫+∞

−∞

dηeim
√

r2−t2+iεsinhη

=
1

2π

K0(m
√

r2− t2 +iε), (8)
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where K0(x) is the modified Bessel function, and

where we have used the identity in # 3.714 of

Ref. [12],∫∞
0

dη cos(β sinhη) = K0(β),
(

−π

2
< argβ <

π

2

)

. (9)

It is worthwhile noting that the −iε description as-

sures the proper phase angles of
√

x2− iε in Eq. (6)

and
√
−x2 +iε in Eq. (8), respectively, so that the

mathematical identities (7) and (9) can be applied

to figure out these two expressions. In the limit of

x2 → 0, both Eqs. (6) and (8) are divergent and are

approaching

lim
x2→0

− i

4
H(2)

0 (m
√

x2− iε)∼ 1

4π

ln
1

x2− iε
, (10)

lim
x2→0

1

2π

K0(m
√
−x2 +iε)∼ 1

4π

ln
1

x2− iε
, (11)

which are of the same form and do not depend on the

mass m, and which can be recognized as the scalar

Feynman propagator on the lightcone. The above ex-

pression is indeed the Feynman propagator of a mass-

less scalar field,

DF(x) =
1

4π

ln
1

x2− iε
, for m = 0. (12)

In summary, the scalar Feynman propagator in posi-

tion space may be written in a compact way as

DF(x) = θ(x2)

(

− i

4
H(2)

0 (m
√

x2− iε)

)

+ θ(−x2)
1

2π

K0(m
√
−x2 +iε), (13)

where the theta function θ(x) is defined as

θ(x) =

∫x

−∞

δ(y)dy =

{

1 , (x > 0)

0 , (x < 0)
(14)

and the value of θ(x = 0) depends on whether the ar-

gument x is approaching 0 from the positive or neg-

ative real axis, that is, θ(0+) = 1 and θ(0−) = 0.

2.2 (2+1)-dimensional spacetime

In (2 + 1)-dimensional spacetime, the Feynman

propagator of a free scalar field is

DF(t,r) =
1

(2π)2

∫2π

0

dθ

∫∞
0

dp
p

2E
e−i(E|t|−prcosθ), (15)

with E =
√

p2 +m2. Using a similar calculation proce-

dure, we can obtain the analytic formula of the scalar

Feynman propagator in (2+1)-dimensional spacetime

as follows,

DF(x) = θ(x2)
−i

4π

√
x2− iε

e−im
√

x2−iε

+ θ(−x2)
1

4π

√
−x2 +iε

e−m
√

−x2+iε. (16)

Eqs. (13) and (16) agree well with the results of pre-

vious work [9, 10].

2.3 (D+1)-dimensional spacetime (for D >>>3)

Now, let us proceed to compute the scalar Feyn-

man propagator in (D+1)-dimensional spacetime (for

D > 3). Since the method we use in the following

differs from that used in Ref. [2], let us wait to see

whether the results from these two approaches are

consistent or not. Changing the variables from Carte-

sian coordinates to spherical coordinates, Eq. (3) be-

comes

DF(t,r) =
1

(2π)D

2π

D−1

2

Γ

(

D−1

2

)

∫
π

0

sinD−2 θdθ

×
∫∞
0

dp
pD−1

2E
e−i(E|t|−prcosθ), (17)

with E =
√

p2 +m2. To evaluate the above inte-

gral, we need to figure out the angular integral∫
π

0

dθ sinD−2 θeiprcosθ . From the formula # 3.387 of

Ref. [12],
∫1

−1

dx(1−x2)ν−1eiµx

=
√

π

(

2

µ

)ν− 1
2

Γ (ν)Jν− 1
2
(µ), (Re ν > 0), (18)

we can easily find that

∫
π

0

dθ sink θeipr cosθ =
√

π

(

2

pr

) k
2

Γ

(

k+1

2

)

J k
2
(pr).

(19)

Then, substituting Eq. (19) with k = D − 2 into

Eq. (17), we obtain

DF(t,r) =
1

2(2π)
D
2 r

D
2
−1

∫∞
0

dp
p

D
2

E
JD

2
−1(pr)e−iE|t|,

(20)

which, by changing the variable of integration to

x = E/m, leads to

DF(t,r) =
m

D
2

2(2π)
D
2 r

D
2
−1

∫∞
1

dx(x2−1)
1
2
( D

2
−1)

×JD
2
−1(mr

√
x2−1)e−im|t|x. (21)

To compute the above integral, we can make the an-

alytical continuation of the 2nd formula of # 6.645 of

Ref. [12],
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∫∞
1

dx(x2−1)
1
2

νe−αxJν(β
√

x2−1) =

√

2

π

βν(α2 +β2 +iε)−
1
2

ν− 1
4 Kν+ 1

2

(

√

α2 +β2 +iε
)

(22)

and obtain the following identity:

∫∞
1

dx(x2 −1)
1
2

νe−iaxJν(b
√

x2−1) =



















√

2

π

bν(b2−a2 +iε)−
1
2

ν− 1
4 Kν+ 1

2
(
√

b2−a2 +iε), (b > a > 0)

√

π

2
bν

(−i)2(ν+1)

(
√

a2−b2− iε)ν+ 1
2

H(2)

ν+ 1
2

(√
a2−b2− iε

)

, (a > b > 0)

. (23)

Substituting Eq. (23) (with ν =
D

2
−1, a = mt, b = mr) into Eq. (21), we obtain

DF(t,r) =
(−i)Dm

D−1

2

2
D+3

2 π

D−1

2 (t2−r2− iε)
D−1

4

H(2)
D−1

2

(m
√

t2−r2− iε), (for t2−r2 > 0), (24)

DF(t,r) =
m

D−1

2

(2π)
D+1

2 (r2− t2 +iε)
D−1

4

KD−1

2

(m
√

r2− t2 +iε), (for r2− t2 > 0). (25)

In the limit of x2 → 0, the above two formulas are

approaching a common asymptotic expression, that

is, the scalar Feynman propagator on the lightcone,

DF(x)∼
Γ

(

D−1

2

)

4π

D+1

2

(

− 1

x2− iε

)
D−1

2

, (for x2 → 0),

(26)

which is indeed the exact formula of the Feynman

propagator of a massless scalar field. In summary, the

full analytic expression of the scalar Feynman propa-

gator in (D+1)-dimensional spacetime is given by

DF(x)

= θ(x2)
(−i)Dm

D−1

2

2
D+3

2 π

D−1

2 (x2− iε)
D−1

4

H(2)
D−1

2

(m
√

x2− iε)

+θ(−x2)
m

D−1

2

(2π)
D+1

2 (−x2 +iε)
D−1

4

×KD−1

2

(m
√
−x2 +iε). (27)

In particular, taking D = 3, it follows from the above

equation that

DF(x) = θ(x2)
im

8π

√
x2− iε

H(2)
1 (m

√
x2− iε)

+θ(−x2)
m

4π
2
√
−x2 +iε

K1(m
√
−x2 +iε),(28)

which is consistent with the results in (3 + 1)-

dimensional spacetime of Ref. [2]. Moreover, Eq. (27)

holds not only for D > 3 but also for D = 1,2. Noting

the facts that

H(2)
1
2

(x) = i

√

2

πx
e−ix, K 1

2
(x) =

√

π

2x
e−x , (29)

it can easily be verified that if the spatial dimen-

sion is taken to be D = 1,2, Eq. (27) will reduce

to Eqs. (13),(16), respectively. Therefore, in the fol-

lowing we will use Eq. (27) to describe the scalar

Feynman propagator in (D + 1)-dimensional space-

time for D > 1. The shapes of the scalar Feynman

propagators with spacelike or timelike separations in

different dimensional spacetime are shown in Figs. 1

and 2, respectively. The figures show that in any di-

mensional spacetime, the spacelike propagation am-

plitude is dominated by the exponential decay, while

the timelike propagation amplitude behaves as the

damped oscillation; and in both cases the more the

dimension of spacetime, the more rapidly the propa-

gation amplitude decreases.

Fig. 1. The scalar Feynman propagator DF(0, r)

with spacelike separation r in (D + 1)-dim-

ensional spacetime, where we have set the

mass parameter m =1, and the solid-line cor-

responds to D = 1, while the dashed-lines,

from long to short, correspond to D =2,3,4,5,

respectively.
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Fig. 2. The real and imaginary parts of the

scalar Feynman propagator DF(t,0) with

timelike separation t in (D + 1)-dimensional

spacetime, where we have set the mass param-

eter m = 1, and the solid-line corresponds to

D = 1, the long dashed-line D = 2 and the

short dashed-line D = 3.

After completion of this work, we became aware of

the analytic formula of the scalar Feynman propaga-

tor in position space in arbitrary dimensional space-

time which is also presented in Ref. [11],

DF(x) =
(−i)Dm

D−1

2

2
D+3

2 π

D−1

2 (x2− iε)
D−1

4

H(2)
D−1

2

(m
√

x2− iε).

(30)

In the following, let us demonstrate that Eq. (27) is

equivalent to Eq. (30). That is, we need to prove the

two parts in Eq. (27) are actually equal in the spirit

of analytical continuation. For simplicity of the no-

tation, let us take D = 3 as an example and show

that

im

8π

√
x2− iε

H(2)
1 (m

√
x2− iε)

=
m

4π
2
√
−x2 +iε

K1(m
√
−x2 +iε). (31)

Proof: Let the cut line in the complex plane be the

negative real axis, so that the argument range of the

variable x of the complex function f(x) =
√

x must

be (−π/2, π/2). First of all, let us show that
√
−x2 +iε = i

√
x2− iε (32)

holds in the spirit of analytical continuation:

1) If x2 > 0, we have
√

x2− iε= |x2| 12 . On the other

hand,
√
−x2 +iε =

√

|x2|eiπ = |x2| 12 ei π

2 = i|x2| 12 .

Thus Eq.(32) holds.

2) If x2 < 0, we have
√
−x2 +iε = |x2| 12 . On the

other hand,
√

x2− iε =
√

|x2|e−iπ = |x2| 12 e−i π

2 =

−i|x2| 12 . Thus Eq.(32) holds as well.

Now, to prove Eq. (31), it is sufficient to prove

im

8πz
H(2)

1 (mz) =
m

4π
2iz

K1(imz), (33)

where the argument of z is Argz ∈ (−π/2, 0), and

which is equivalent to

K1(iz) =−π

2
H(2)

1 (z), (34)

which can be checked from the definition of the

function Kν(z). Therefore, we complete our proof of

Eq. (31). Since any function f(x) can be written as

f(x) = θ(x)f(x)+θ(−x)f(x), we finally obtain

DF(x) = θ(x2)
im

8π

√
x2− iε

H
(2)
1 (m

√
x2− iε)

+θ(−x2)
m

4π
2
√
−x2 +iε

K1(m
√
−x2 +iε)

=
im

8π

√
x2− iε

H(2)
1 (m

√
x2− iε)

=
m

4π
2
√
−x2 +iε

K1(m
√
−x2 +iε), (35)

which demonstrates the equivalence of our result and

that of Ref. [11].

3 Feynman propagator of Dirac

theory

In this section, let us calculate the analytic for-

mula of the Feynman propagator in position space

of a free Dirac spinor field in (D + 1)-dimensional

spacetime. Since we have obtained the exact expres-

sion of the scalar Feynman propagator in any dimen-

sional spacetime, Eq. (27), it is straightforward to get

the expression of the spinor Feynman propagator by

means of the relation SF(x) = (i/∂ + m)DF(x). The

result we obtain is
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SF(x) = θ(x2)
(−i)D−1m

D+1

2 /x

2
D+5

2 π

D−1

2 (x2− iε)
D+1

4

[

H(2)
D−3

2

(m
√

x2− iε)−H (2)
D+1

2

(m
√

x2− iε)

]

+θ(−x2)
im

D+1

2 /x

2
D+3

2 π

D+1

2 (−x2 +iε)
D+1

4

[

KD−3

2

(m
√
−x2 +iε)+KD+1

2

(m
√
−x2 +iε)

]

− (D−1)

2

i/x

x2− iε
DF(x)+mDF(x)

=
(−i)D−1m

D+1

2 /x

2
D+5

2 π

D−1

2 (x2− iε)
D+1

4

[

H(2)
D−3

2

(m
√

x2− iε)−H (2)
D+1

2

(m
√

x2− iε)

]

− (D−1)

2

i/x

x2− iε
DF(x)+mDF(x), (36)

where /x≡ γµxµ, and where we have used the following

recurrence relations of the Hankel function H (2)
ν (x)

and the modified Bessel function Kν(x),

d

dx
H(2)

ν (x) =
1

2

[

H(2)
ν−1(x)−H(2)

ν+1(x)
]

, (37)

d

dx
Kν(x) = −1

2

[

Kν−1(x)+Kν+1(x)
]

. (38)

In particular, when the spatial dimension D = 3,

Eq. (36) becomes

SF(x) = −θ(x2)
m2/x

16π(x2− iε)

[

H(2)
0 (m

√
x2− iε)

−H(2)
2 (m

√
x2− iε)

]

+θ(−x2)
im2/x

8π
2(−x2 +iε)

[

K0(m
√
−x2 +iε)

+K2(m
√
−x2 +iε)

]

− i/x

x2− iε
DF(x)

+mDF(x), (39)

which is a little different from the results of Ref. [2],

besides the less important factor of i owing to the

convention that DF(x) here equals i∆F(x) there. The

essential difference between our results and those of

Ref. [2] lies in the fact that there is an additional

term multiplied by δ(x2) in that book, which is pro-

portional to Eq. (34) on page 80 of Ref. [2]. However,

we find that this term is redundant, since its propor-

tional factor can be shown to vanish as follows,

lim
x2→0

[

1√
x2− iε

H(2)
1 (m

√
x2− iε)

− i√
−x2 +iε

H(2)
1 (−im

√
−x2 +iε)

]

∼ 1√
x2− iε

i

π

2

m
√

x2− iε

− i√
−x2 +iε

i

π

2

(−im
√
−x2 +iε)

=
2i

mπ(x2− iε)
+

2i

mπ(−x2 +iε)
= 0. (40)

The reason the authors of Ref. [2] regarded the above

term to be nonzero may come from the fact that they

had taken both x2 and −x2 to be the absolute value

|x2| simultaneously in their calculation. However, it is

obviously impossible that both x2 and −x2 are equal

to |x2|, even if x2 → 0, because x2 can only approach

zero from either the positive or the negative axis di-

rection, that is, in any case x2 and −x2 always have

opposite signs even if they are infinitesimal.

Moreover, from Eq. (36) together with Eq. (27),

we obtain an interesting recurrence relation for the

spinor Feynman propagator in (D + 1)-dimensional

spacetime and the scalar Feynman propagators in

(D−1)-, (D+1)- and (D+3)-dimensional spacetime,

as follows,

S(D+1)
F (x) =

(

− i/x

x2− iε
+m

)

D(D+1)
F (x)

− im2/x

4π(x2− iε)
D(D−1)

F (x)

+iπ/xD(D+3)
F (x), (41)

where the superscripts denote the spacetime dimen-

sions of the respective physical quantities. The above

relation essentially stems from the fact that the Feyn-

man propagator in any dimensional spacetime can be

expressed in terms of Bessel and modified Bessel func-

tions, which has been proved in this paper. And it

shows that the free Dirac theory and the free Klein-

Gordon theories in alternate-successive dimensional

spacetime might be related to each other.

4 Conclusions

In this paper, we have pointed out and corrected

an error of the results of previous work on the analytic

expression of the Feynman propagator in position

space of a Dirac spinor in (3+1)-dimensional space-

time, and we have derived the generalized analytic
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formulas of both the scalar Feynman propagator and

the spinor Feynman propagator in position space in

any (D +1)-dimensional spacetime. The method we

have used in this paper is different from that used in

Ref. [2]. And the result we have obtained shows that

the analytic formula of the Feynman propagator in

position space can be also expressed in terms of Han-

kel functions of the second kind and Modified Bessel

functions in a general (D + 1)-dimensional space-

time, just like the known case in (3+1)-dimensional

spacetime. From the obtained results, we have found

an interesting recurrence relation among the spinor

Feynman propagator in (D + 1)-dimensional space-

time and the scalar Feynman propagators in (D+1)-,

(D−1)- and (D+3)-dimensional spacetime. The re-

sult we have obtained for the scalar case agrees with

the previous result of Ref. [11]. The equivalence of

the two results was shown at the end of Section 2.

This agreement supports our work and thus supports

our correction of Ref. [2] . The analytic formula of

the spinor Feynman propagator in position space in

arbitrary spacetime, obtained by us, is hitherto ab-

sent in literature so far as we know. According to

Ref. [1], the Feynman propagator in position space

represents the energy due to the two external sources

located at two different points in spacetime. Figs. 1

and 2 show that in any dimensinal spacetime, the

energy from two spacelike-separated external sources

decays exponentially with respect to their distance,

while the energy from two timelike-separated exter-

nal sources is dampedly oscillating with respect to

their distance. In both cases, the more the dimension

of spacetime, the more rapidly the energy decreases.

We would like to thank an anonymous referee for

very useful suggestions.
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