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η string formation in QCD chiral phase transition *
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Abstract In the paper we discuss the role of the axial U(1)A symmetry in the chiral phase transition using

the U(Nf )R×U(Nf )L linear sigma model with two massless quark flavors. It is expected that above a certain

temperature the axial U(1)A symmetry will be restored. A string-like static solution, the η string can be

formed and detected in the ultrarelativistic heavy-ion collision process.
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1 Introduction

Exploring the phase structure of quantum chro-

modynamics (QCD) is one of the primary goals of

ultrarelativistic heavy-ion collisions. It was argued

that at a sufficiently high temperature there should

be a transition from ordinary hadronic matter to a

chirally symmetric plasma of quark and gluons [1, 2].

For Nf massless quark flavors, the QCD Lagrangian

has a chiral U(Nf)R×U(Nf)L = SU(Nf)R×SU(Nf)L×
U(1)V ×U(1)A symmetry. Here V = R + L, while

A = R − L. The U(1)V symmetry corresponds to

baryon number conservation, it is always respected

and thus plays no role in the symmetry breaking pat-

terns considered in the following. In vacuum, a non-

vanishing expectation value of the quark-antiquark

condensate, 〈qRqL〉 6= 0, spontaneously breaks the

above symmetry to the diagonal SU(Nf)V group of

vector transformation. This gives to N 2
f Goldstone

bosons which dominate the low-energy dynamics of

the theory. The axial U(1)A symmetry is broken

to Z(Nf)A by a non-vanishing topological suscepti-

bility [3]. Consequently, one of the N 2
f Goldstone

bosons becomes massive, leaving N 2
f − 1 Goldstone

bosons. The SU(Nf)R × SU(Nf)L ×U(1)A group is

also explicitly broken by the effects of nonzero quark

masses. It was shown by Pisarski and Wilczek that

for three or more massless flavors, the phase transi-

tion for the restoration of the SU(Nf)R × SU(Nf)L

is the first order, while for two massless flavors the

phase transition is the second order [1].

The U(1)A symmetry may be effectively restored,

if only partially, since the instanton effects will

rapidly disappear as the temperature increases. If

the chiral condensate 〈qRqL〉 6= 0, also the U(1)A axial

symmetry is broken, therefore there are two possibili-

ties: either the U(1)A symmetry is restored at a tem-

perature much greater than the SU(Nf)R×SU(Nf)L
symmetry or the two symmetries are restored at

(approximately) the same temperature. The lat-

tice gauge theory computations have demonstrated

a rapid dropping of the topological susceptibility

around the chiral phase transition, seemingly sug-

gesting the simultaneous restoration [4, 5], this is

also supported by the random matrix models [6]. On

the other hand, the fate of the U(1)A anomaly in

nature is not completely clear since instanton liquid

model calculations indicate that the topological sus-

ceptibility is essentially unchanged at Tc [7], also the

Lattice results obtained from the SU(3) pure gauge

theory show that the topological susceptibility is ap-

proximately constant up to the critical temperature

Tc, it has a sharp decrease above the transition, but

remains different from zero up to ∼ 1.2Tc [8]. Ad-

ditionally, other lattice computations which measure

the chiral susceptibility find that the U(1)A symme-

try restoration is at or below the 15% level [9, 10].

For simplicity, in this paper we make an assumption
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that the two symmetries are restored at approxi-

mately the same temperature and the U(1)A can be

effectively restored.

Several years ago, the issue of finding signals for

the restoration of chiral symmetry in ultrarelativistic

heavy-ion collisions has received considerable atten-

tion. For example, the signals for the restoration of

the SU(2) chiral symmetry associated with the σ me-

son have been proposed in Refs. [11–13]. In partic-

ular, signals for detecting the effective restoration of

the U(1)A chiral symmetry in ultrarelativistic heavy-

ion collisions have been proposed by using the full

SU(3) linear sigma model at finite temperature [14].

On the other hand, in QCD, in the chiral

limit, spontaneous symmetry breaking U(Nf)R ×
U(Nf)L →U(Nf)V allows for existence of topological

string defects, and formation of topological and non-

topological string defects during the chiral transition

in QCD has been invoked in Refs. [15, 16]. These

defects and their effects can be taken as signals for

detecting the corresponding chiral phase in ultrarel-

ativistic heavy-ion collisions as well as in the early

universe. In the following, we are going to study the

effects from effective restoration of the U(1)A symme-

try by using the U(Nf)R×U(Nf)L linear sigma model

with chiral symmetry for two flavors.

2 General formalism

The Lagrangian of the U(Nf)R × U(Nf)L linear

sigma model is given by [11]

(Φ) = Tr(∂µ Φ+ ∂µ
Φ−m2Φ+Φ)−λ1[Tr(Φ+Φ)]2−

λ2Tr(Φ+Φ)2 +c[det(Φ)+det(Φ+)]+

Tr[H(Φ+Φ+)]. (1)

Φ is a complex Nf ×Nf matrix parameterizing the

scalar and pseudoscalar mesons,

Φ = Taφa = Ta(σa +iπa), (2)

where σa are the scalar (Jp = 0+) fields and πa are

the pseudoscalar (Jp = 0−) fields. The Nf×Nf matrix

H breaks the symmetry explicitly and is chosen as

H = Taha, (3)

where ha are the external fields, a = 0,1, · · · ,N 2
f − 1

and Ta,a 6= 0 are a basis of generators for the SU(Nf)

Lie algebra. T0 = 1 is the generator for the U(1)A Lie

algebra.

In the above model, the determinant terms corre-

spond to the U(1)A anomaly, as shown by ’t Hooft [3],

they arise from instantons. These terms are invariant

under SU(Nf)R × SU(Nf)L ∼= SU(Nf)V × SU(Nf)A,

but break the U(1)A symmetry of the Lagrangian ex-

plicitly. The last term in Eq. (1) which is due to

nonzero quark masses breaks the axial and possibly

the SU(Nf)V vector symmetry explicitly.

When ha = 0, c = 0, for m2 < 0 the global

SU(Nf)V×U(Nf)A symmetry is broken to SU(Nf)V,

and 〈Φ〉 develops a non-vanishing vacuum expectation

value, 〈Φ〉 = T0σ0. Spontaneously breaking U(Nf)A
beads to N 2

f Goldstone bosons which form a pseu-

doscalar, N 2
f dimensional multiplet. However when

ha = 0, c 6= 0, the U(1)A is further broken to Z(Nf)

by the axial anomaly, and SU(Nf)V×SU(Nf)A is still

the symmetry of the Lagrangian. A non-vanishing

〈Φ〉 spontaneously breaks the symmetry to SU(Nf)V,

with the appearance of N 2
f −1 Goldstone bosons which

form a pseudoscalar, N 2
f − 1 dimensional multiplet.

The N 2
f pseudoscalar meson is no longer massless, be-

cause the U(1)A symmetry is already explicitly bro-

ken, e.g for Nf = 2, the η meson is massive compared

with other pseudoscalar mesons. The symmetry is in

addition explicitly broken by non-zero quark masses

making all the Goldstone bosons massive.

In this paper, since we only concentrate on the ef-

fects of the effective restoration of the U(1)A symme-

try, we can ignore the possible effects of the restora-

tion of SU(2)R×SU(2)L, this implies that we can for-

get π and a0 fields, keeping only the σ and η mesons

which are used to specify the U(1)A phase. With this

restriction on Φ, the effective Lagrangian we adopt

here is

(Φ) = Tr(∂µ Φ+ ∂µ
Φ−m2Φ+Φ)−λ1[Tr(Φ+Φ)]2−

λ2Tr(Φ+Φ)2 +c[det(Φ)+det(Φ+)], (4)

where Φ =
1

2
(σ+iη)1.

One expects that above a certain critical temper-

ature TU(1), also the axial U(1)A symmetry will be

effective restored. We will try to see if this transition

has to do something with the usual chiral transition.

As mentioned above, because the chiral condensate

〈qRqL〉 6= 0 also breaks the U(1)A axial symmetry, the

scenario with TU(1) < Tc is immediately ruled out.

Therefore, we are left essentially with the two follow-

ing scenarios.

SCENARIO 1: TU(1) � Tc, that is, the com-

plete U(Nf)R ×U(Nf)L chiral symmetry is restored

only well inside the quark gluon plasma domain. In

the case of Nf = 2, at T = Tc the restoration of

SU(2)R × SU(2)L ∼ O(4). Therefore, it is possible

to construct two flavor linear sigma models by using
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only four lightest mesons π
±, π

0 and σ. We take

Φ =
1

2
σ+

i

2
~π ·~τ, (5)

and the Lagrangian takes the form

L =
1

2
∂µ σ∂µ

σ+
1

2
∂µ ~π ·∂µ ~π−

λ

4
(σ2 +~π2−f 2

π
)2 +Hσ . (6)

During chiral symmetry breaking, the eta string [15]

is expected to be produced and the eta string config-

urations are specified by the SU(2)A phase.

SCENARIO 2: TU(1) ∼ Tc. If TU(1) = Tc, then in

the case of Nf = 2 light flavors, the restored symmetry

across the transition is U(2)R×U(2)L, the chiral phase

transition can be described by Eq. (4). During chiral

symmetry breaking, the field σ takes on a nonvanish-

ing expectation value, which breaks U(2)R ×U(2)L
down to U(2)V. This results in a massive σ and

four massless Goldstone bosons. In addition, we will

demonstrate below that there are both a static string-

like solution, the η string and a static kink-like solu-

tion, the domain walls are expected to be produced

during this phase transition.

The η string is a static configuration of the La-

grangian of Eq. (4) with c = 0. In our discussion of

the η string and domain walls it proves convenient to

define the new fields

φ =
σ+iη√

2
. (7)

The linear sigma model in Eq. (4) now can be rewrit-

ten as

L= (∂µ φ)∗(∂µ
φ)−λ

(

φ∗φ− v2

2

)2

, (8)

where v2 =
−m2

λ
and λ = λ1 +

λ2

2
. For static config-

urations, the energy functional corresponding to the

above Lagrangian is

E =

∫
d3x

[

∇φ∗∇φ+λ

(

φ∗φ− v2

2

)2
]

. (9)

The time independent equation of motion is

∇2φ = 2λ

(

φ∗φ− v2

2

)

φ. (10)

The η string solution extremising the energy func-

tional of Eq. (9) is given by [15, 17]

φ =
v√
2
ρ(r)exp(iθ), (11)

where ρ(r) = [1−exp(−µr)], the coordinates rand are

polar coordinates in the x-y plane, the η string is as-

sumed to lie along the z axis and µ2 = λ
89

144
v2. The

energy per unit length of the string is

E = [0.75+lg(µR)]πv2. (12)

For global symmetry in general the energy density of

the string solution is logrithmically divergent, R is in-

troduced as a cutoff which in the following numerical

calculation we will take to be O(fm).

The evolution of temperature in the small region

of critical temperature at the central rapidity in the

center of mass frame can be estimated by

dT (t)

dt
≈−T (t)

τQ

, (13)

where dT (t)/dt≈ 2−6 MeV/fm at Tc = 140 MeV [18–

25]. This suggests τQ ≈ 20 ∼ 70 fm . Kibble-Zurek

mechanism states that in a second order phase tran-

sition [23, 24], when the QGP fireball cools through

the critical temperature, the chiral symmetry will be

spontaneously broken and domains of similar orienta-

tions will be formed. At the boundaries, where differ-

ent causality disconnected regions meet, as the order

parameter does not necessarily match, this leads to

the formation of topological defects [26].

In non-equilibrium phase transition, when the

temperature goes below Tc, the order parameter fluc-

tuates simultaneously and independently in many

parts of the system, and many independent small re-

gions of new low-temperature phase starts to form.

Subsequently during further cooling, these indepen-

dent regions grow together to form the new broken

symmetry phase. The fluctuating configuration of the

order parameter is frozen out at εz =(1−Tz/Tc) > 0,

and the topological defects are formed.

If the chiral symmetry breaking occurs in QGP

phase transition, the topological defects (the η string

loops) will produce. The characteristic correlation

length ξz corresponding to εz is

ξz = ξ0(τQ/τ0)
1/4 ≈ (τQ/m3

σ
)1/4, (14)

where ξ0 ≈ τ0 ≈ 1/mσ. For mσ = 400–600 MeV,

ξz ≈ 0.918–1.26 fm (mσ = 600 MeV), ξz ≈ 1.24–

1.70 fm (mσ = 400 MeV). At Zurek temperature,

Tz = Tc(1−
√

τ0/τQ), (15)

the η string is formed. Tz ≈ 118–128 MeV (mσ =

400 MeV), Tz ≈ 122–130 MeV (mσ = 600 MeV). Tz

is just in the region of QGP freeze out temperature,

Tf ≈ 110–130 MeV. So we get the result Tf ≈ Tz.

For simplicity, in the following discussion we use the

parameters: mσ = 400 MeV, v2 = m2/λ = 90 MeV,

λ = λ1 + λ2/2 = 9.877. In heavy ion collisions, the

string loops are formed in various independent do-

mains, each domain has the size of ∼ ξ2
z , the π string
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energy of unit length is E ≈ 180 MeV/fm. The dis-

tribution of the string loops can be obtained from the

non-equilibrium evolution of cosmic string loops [27],

n(l) = K
exp(−βl)

ξ3/2
z l5/2

, (16)

where K ≈ 1. β ≈Γ ≈mσ can be approximately taken

as the width of the sigma decay width. In heavy-ion

collisions only the string loops will be formed. The

shortest loops have the length of l0 = 2π/µ≈ 5.6 fm.

The number of loops is

N ≈Vf

∫ 2πRf

l0

n(l)dl , (17)

where the parameter Rf is approximately the radius

of the hadronic phase. Rf ≈ 10 fm at RHIC, and

Rf ≈ 18 fm at LHC [20]. The volume of hadronic

phase is about Vf ≈ 4× 103 fm3 and 2.4× 104 fm3

at RHIC and LHC respectively. The total number of

loops is NRHIC ≈ 20–30, NLHC ≈ 70–110. Below Tf , all

eta strings will decay into the sigma particles and eta

mesons. To estimate the number of the particle pro-

duced we notice that for the ansatz Eqs. (7) and (12),

the sigma field in Eq. (7) contributes about 50% of

the total energy of the string. Due to energy conser-

vation half of the string energy should convert into

that carried by the sigma particles. The remaining

50% of the string energy will go to the eta mesons.

One expects the mesons produced from the decay of

the eta strings with length l have a typical momen-

tum p ∼ 1/l ≈ 35 MeV. The total number of sigma

mesons is about 50–90 in RHIC Pb-Pb and 190–300

in LHC Pb-Pb collisions. The total number of eta

mesons from the decay of eta string is just the same

as sigma mesons.

As mentioned above it is expected that the even-

tually resultant pion and eta spectra will have a non-

thermal enhancement at a low momentum region be-

cause all produced eta mesons from eta strings are dis-

tributed at low momentum. The eta string and sigma

particles are dominant in the low momentum region,

and the momentum distribution of the pions and eta

mesons produced at the decay of the eta string can be

taken as a distinctive signal of the formation of the

eta string in heavy ion collisions.

3 Conclusions

We have discussed the possible effects of the

restoration of the axial U(1)A symmetry during the

chiral phase transition by using the U(Nf)R×U(Nf)L
linear sigma model with two massless quark flavors.

It is pointed out that if the axial U(1)A symmetry

is to be restored above a certain temperature, the

η string is expected to be formed during the chiral

phase transition. These eta strings will decay into

the η mesons, and it can be viewed as a signal of

restoration of the axial U(1)A symmetry in ultrarel-

ativistic heavy-ion collisions.
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