Measurement of the total reaction cross section for the mirror nuclei ^{12}N and $^{12}B^*$

LI Jia-Xing(李加兴)^{1;1)} LIU Ping-Ping(刘平萍)¹ WANG Jian-Song(王建松)² HU Zheng-Guo(胡正国)² MAO Rui-Shi(毛瑞士)² SUN Zhi-Yu(孙志宇)² LI Chen(李琛)² CHEN Ruo-Fu(陈若富)² XU Hu-Shan(徐瑚珊)² XIAO Guo-Qing(肖国青)² GUO Zhong-Yan(郭忠言)²

¹ School of Physical Science and Technology, Southwest University, Chongqing 400715, China
² Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract The mirror nuclei ¹²N and ¹²B are separated by the Radioactive Ion Beam Line in Lanzhou (RIBLL) at HIRFL from the breakup of 78.6 MeV/u ¹⁴N on a Be target. The total reaction cross-sections of ¹²N at 34.9 MeV/u and ¹²B at 54.4 MeV/u on a Si target have been measured by using the transmission method. Assuming ¹²N consists of a ¹¹C core plus one halo proton, the excitation function of ¹²N and ¹²B on a Si target and a C target were calculated with the Glauber model. It can fit the experimental data very well. The characteristic halo structure for ¹²N was found with a large diffusion of the protons density distribution.

Key words mirror nuclei ¹²N and ¹²B, total reaction cross section, Glauber model

PACS 25.60.Dz, 24.10.-i

1 Introduction

In the past decades projectile fragmentation has been widely used to study the reaction mechanism of heavy ion collisions. Since the discovery of neutron skin and neutron halo nuclei, such as ¹¹Li and ¹¹Be, etc, [1, 2] interest in the study of very neutronrich and proton-rich nuclei has grown in view of their anomalous structures. The structure of exotic neutron-rich or proton-rich nuclei has been investigated in considerable detail through measurements of the total reaction cross section or interaction cross section, fragment momentum distribution in fragmentation reactions, quadrupole moments and Coulomb dissociation. The neutron skin or halo nuclei ⁶He, ⁸He, ¹¹Li, ¹¹Be, ¹⁴Be, ¹⁹C, etc, have been identified by these experimental methods. Due to the centrifugal and Coulomb barriers, the formation of a proton halo is more difficult compared to a neutron halo.

The proton-rich nucleus 12 N has a very small separation energy ($S_p{=}0.6$ MeV). It satisfies a (necessary but not sufficient) criterion given by Hansen et al. for

the existence of a halo: $S \times A^{2/3} \approx 2$ to 4 MeV [3]. Interaction cross sections for ¹²N on Be, C and Al targets have been measured at 700 MeV/u by Ozawa et al [4]. A halo structure has been revealed. Warner et al. measured the total reaction cross section of ¹²N on a Si target at an energy of about 30 MeV/u at NSCL [5]. The results showed that ¹²N has a somewhat larger $\sigma_{\rm R}$ than their more tightly bound protonrich neighbors. But the difference is so small that ¹²N is a weaker halo candidate than ⁸B. Our previous experimental results also showed that ¹²N is a proton halo nuclei [6]. Although several experiments have been dedicated to ¹²N, the experimental results for ¹²N are not consistent. In order to understand the details of the halo structure of ¹²N, the experiment of ¹²N was performed at RIBLL [7, 8].

We report here on the total reaction cross section of ¹²N at 34.9 MeV/u and ¹²B at 54.4 MeV/u on a Si target at RIBLL. The nuclear matter distribution as well as their rms radii were deduced from the present experimental data together with the high energy experimental data through the Glauber model analysis.

Received 5 June 2009

^{*} Supported by National Natural Science Foundation of China (10205019, 10475098) and Doctoral Foundation of Southwest University (SWNUB2005028B)

¹⁾ E-mail: lijx@swu.edu.cn

^{©2009} Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

2 Experimental setup and detection methods

The experiment was carried out at RIBLL. The $^{14}N^{7+}$ primary beam of 78.6 MeV/u was accelerated by the Heavy Ion Research Facility of Lanzhou (HIRFL). The typical beam intensity was $\sim\!20$ nA on the production target. A production target of Be with 3123 µm thickness was installed at the entrance of RIBLL (T0). We produced ^{12}N and ^{12}B by the projectile fragmentation process at the production target. The momentum acceptance of RIBLL was controlled by the slit at C1, which was set to $\pm1\%$. A wedge-shaped A1 degrader (thickness of 1937 µm at the central po-

sition) was installed at C1 for an energy-loss analysis of the secondary beam separation.

At T2 one plastic scintillator [9] with 50 μ m thickness, one silicon detector (1000 μ m in thickness, both as a reaction target and a ΔE detector), 2 PPACs (of 100 mm×100 mm effective size) and one telescope detector were placed respectively. The telescope detector consists of 2 silicon semiconductor detectors and one CsI(Tl) stopping detector. Both semiconductors had a thickness of 325 μ m and an effective area of 45 mm×45 mm. The CsI(Tl) had a thickness of 10 mm and an effective area 70 mm×70 mm. Fig. 1 shows the schematic view of the experiment setup at T2.

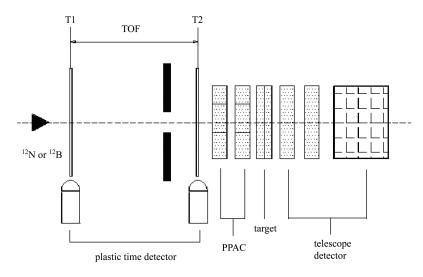


Fig. 1. Schematic view of the detection setup.

The plastic scintillator at T1 served as a start signal for the TOF and the one at T2 gave a stop signal for the TOF. Thus, the setup provided a complete particle identification before the reaction target by the TOF- ΔE method. An additional PPAC was installed at C2 to check the beam positions at C2.

The incoming ¹²N and ¹²B particles passing through the silicon detectors were stopped by the CsI(Tl) detector. The energy resolution of the silicon detectors was better than 1%.

3 Data analysis

The transmission method, also called the beam attenuation method, is independent of theoretical models. The total reaction cross section is expressed as

$$\sigma_{\rm R} = \frac{1}{N_{\rm t}} \ln \left(\frac{N_{\rm in}}{N_{\rm out}} \right),\tag{1}$$

where $N_{\rm in}$ is the number of upstream particles, $N_{\rm out}$ is the number of downstream particles and $N_{\rm t}$ is the number of target nuclei in the square unit. $\sigma_{\rm B}$ at intermediate energies are quite indispensable to deduce the effective matter density distributions based on its energy dependence [10]. The total reaction cross section can be obtained by the accurate measurement of the incoming and outgoing number of ¹²N and ¹²B particles before and after the reaction target. The ΔE -TOF spectrum of the incoming particles is shown in Fig. 2(a), in which ¹²N can be clearly selected and the number $N_{\rm in}$ can be obtained. The obtained total energy spectra of ¹²N after the target is shown in Fig. 2(b). The events left to the fitted elastic peak (drawing by dotted line) are counted as reactions. The experimental results are shown in Table 1. The errors include systematic errors, statistical errors and errors from the way to select the outgoing particles.

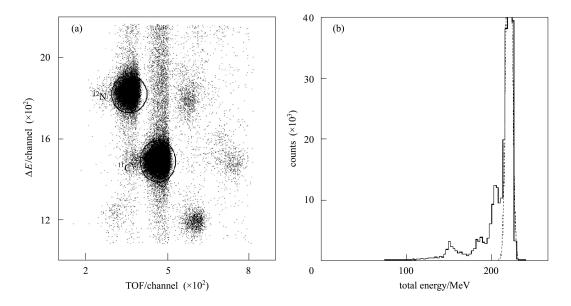


Fig. 2. (a) ΔE -TOF spectrum for the incoming particles. (b) Total energy spectra of ^{12}N after the target. The events left to the dotted line (peak obtained by Gaussian fit) are counted as reaction events.

Table 1. Results for σ_R of ^{12}N and ^{12}B

	rabie 1.	Results for σ_R	or ivalid i	٥.
nucleus	target	${\rm energy}/({\rm MeV/u})$	$\sigma_{\rm R}$ or $\sigma_{\rm I}/{\rm mb}$	Ref.
¹² N	Si	34.9	1760±30	this work
		24.7	$1840 {\pm} 50$	[5]
		22.7	1770 ± 50	[5]
		29.25	1850 ± 50	[5]
¹² B	$^{\rm C}$	670	889 ± 27	[4]
		720	$856 {\pm} 55$	[4]
	Si	54.4	1490 ± 40	this work
		25.6	$1680 {\pm} 420$	[6]
	$^{\mathrm{C}}$	790	866 ± 7	[2]

The theoretical calculation was carried out by the so-called modified Glauber model [11–13]. It can be used to extract the nuclear density distribution by fitting the experimental results. With the input den-

sity distribution of the projectile and target, the reaction cross section can be obtained after the multidimensional numerical integration. The input of the model includes the matter distribution of the projectile and the target. The rms radius is defined by

$$\langle r^2 \rangle^{1/2} = \frac{\left(4\pi \int \rho(r) r^4 dr\right)^{1/2}}{A^{1/2}} \ .$$
 (2)

We adopt a Gaussian-Gaussian distribution [14] for 11 C, 12 N and 12 B. By fitting the experimental data at high and medium energies the proton and neutron distributions are obtained and shown in Fig. 3. The rms. radii of 11 C, 12 N and 12 B are 2.15 fm, 2.41 fm and 2.33 fm.

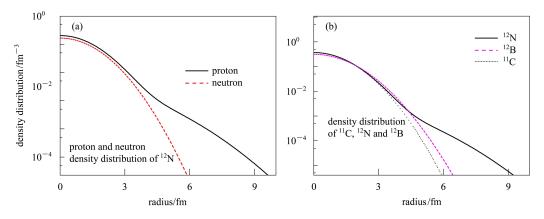


Fig. 3. (a) Neutron and proton density distributions for ¹²N; (b) Density distribution of ¹¹C, ¹²B and ¹²N.

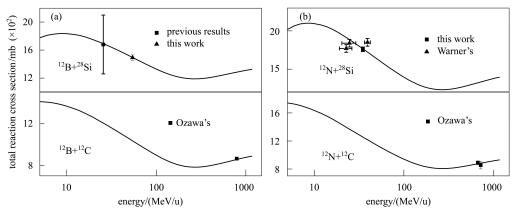


Fig. 4. Measured total reaction cross sections (dots) of ¹²B(a) and ¹²N(b) as a function of the incident energy together with the prediction of the Glauber model (solid line).

The present experimental data and the data at high energies are plotted in Fig. 4 together with the Glauber model calculation. The calculation is in good agreement with the experimental data. The obtained proton matter distribution of ¹²N is a very dispersed one. Compared with ¹¹C, ¹²N's large density distribution shows a proton halo structure.

4 Discussion

The total reaction cross section of the mirror nuclei ¹²N and ¹²B on a Si target was measured at in-

termediate energies and analyzed by a Glauber model calculation considering also other data at high energies. The obtained 12 N and 12 B rms radii are 2.41 fm and 2.33 fm as deduced from the Gaussian-Gaussian function distribution of the matter density.

Compared with ¹¹C, the nuclear matter distribution of ¹²N is a very dispersed one and consistent with a ¹¹C+p halo structure. The obtained rms radius is more reliable by simultaneously fitting the experimental data at different energies, compared to our previous result based on only one specific energy.

References

- 1 Tanihata I, Hamagaki H, Hashimoto O et al. Phys. Rev. Lett., 1985, **55**: 2676
- 2 Tanihata I, Kobayashi T, Yamakawa O et al. Phys. Lett. B, 1995, 206: 592
- 3 Hansen P G, Jensen A S, Jonson B. Ann. Rev. Nucl. Part. Sci., 1988, 45: 591
- 4 Ozawa A, Tanihata I, Kobayashi T et al. Nucl. Phys. A, 1995, **583**: 807–810
- 5 Warner R E, Thirumurthy H, Woodroffe J et al. Nucl. Phys. A. 1998, 635: 292–304
- 6 LI Jia-Xing, GUO Zhong-Yan, XIAO Guo-Qing et al. HEP & NP, 2002, **26**: 683–689 (in Chinese)

- 7 SUN Z, ZHAN W, GUO Z et al. Nucl. Instrum. Methods A, 2003, 503: 496–503
- 8 ZHAN W L, GUO Z Y, LIU G H et al. Science in China (Series A), 1999,42(5): 528-536
- 9 LI Jia-Xing, ZHAN Wen-Long, GUO Zhong-Yan et al. HEP & NP, 1999, 23(3): 231–236 (in Chinese)
- 10 Fukuda M, Ichihara T, Inabe N et al. Phys. Lett. B, 1991, 268: 339–344
- 11 Charagi S K, Gupta S K. Phys. Rev. C, 1990, 41: 1610– 1618
- 12 Charagi S K. Phys. Rev. C, 1995, **51**: 3521–3523
- Ozawa A, Suzuki T, Tanihata I. Nucl. Phys. A, 2001, 693: 32–62
- 14 Alkhazov G D, Dobrovolsky A V, Egelhof P. Nucl. Phys. A, 2002, **712**: 269–299