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Quantal symmetries in the non-linear σ model with

Maxwell and non-Abelian Chern-Simons terms
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Abstract The quantal symmetry property of the CP
1 nonlinear σ model with Maxwell non-Abelian Chern-

Simons terms in (2+1) dimension is studied. In the Coulomb gauge, the system is quantized by using the

Faddeev-Senjanovic (FS) path-integral formalism. Based on the quantaum Noether theorem, the quantal

conserved angular momentum is derived and the fractional spin at the quantum level in this system is presented.
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1 Introduction

The non-linear sigma model, which was intro-

duced by Schwinger [1] is widely used in statistical

mechanics and quantum field theory. It effectively

describes the asymptoticlly free theroy, and has non-

trivial relations with Yang-Mills gauge theory [2–4].

The theoretically possibile particles, namely anyons,

exhibit the properties of fractional spin and statis-

tics in 2+1 dimensions. Anyons model was studied

intensively in expectation to explain the fractional

quantum Hall effect and high-Tc superconductivity

[5, 6]. The O(3) nonlinear sigma model with Hopf

and Chern-Simons (CS) terms was studied, because

fractional spin and statistics also occur in such a kind

of model [7, 8]. The CP 1 nonlinear sigma model,

as a low energy effective model for vortices, has ap-

plications in ferromagnets physics. It is also a toy-

model displaying many important features of gauge

field theories, which is intimately related to the O(3)

nonlinear sigma model in the long-range limit. A lot

of recent works on (2+1)-dimensional Abelian Chern-

Simons gauge theories revealed the existence of frac-

tional spin property [9, 10]. The classical angular

momentum for non-Abelian Chern-Simons was dis-

cussed, and it was pointed out that the non-Abelian

Chern-Simons term in certain models could change

the property of fractional statistics. The spin prop-

erty of the CP 1 non-linear sigma model at the quan-

tum level has also been studied [11–13]. In our pa-

per, the quantal symmetry properties of the CP 1 non-

linear sigma models in a non-Abelian case are studied.

According to the path integral quantization rule for

the constrained Hamilton system§we first quantize

this system in the Faddeev-Senjanovic scheme. Based

on the quantal Noether theorem, the conserved angu-

lar momentum has been calculated at the quantum

level, and the fractional spin property of this system

is presented.

2 Faddeev-Senjanovic (FS) path-inte-

gral quantization of O(3) σ model

In (2+1)-dimensions, the lagrangian density of the

CP 1 nonlinear σ model with the Maxwell term and

non-Abelian Chern-Simons term is given by [7, 8]

L=
1

4
F a

µνF µν
a +(DµZa

k )∗(DµZa
k )+

κ

4
εµνρ(∂µ Aa

νAa
ρ +

1

3
εabcAa

µAb
νAc

ρ) , (1)
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where Dµ = ∂µ−iT aAa
µ,T a are generators of non-

abelian gauge groups O(3), satisfying [T a,T b] =

iεabc T c, tr(T aT b) =
1

2
δab. The gauge field strength

is F a
µν = ∂µ Aa

ν −∂ν Aa
µ + εabcAb

µAc
ν . εabc and εµνρ are

the totally anti-symmetric Levi-Civita tensor. In con-

ventional Latin symbols a,b,c = 1,2,3. Greek symbol

µ,ν,ρ = 0,1,2. κ is a Chern-Simons coefficient. Cou-

pling constant is assumed to be unity, and Za
k are

complex fields which satisfy:

Za
kZa∗

k = |Za
1 |

2
+ |Za

2 |
2
= 1 . (2)

The canonical momentums conjugate to the fields Aa
µ,

Za
k , Za∗

k are defined as

π
a
0 = 0, (3a)

π
a
i = F a

0i +
κ

4
εijA

a
j , (3b)

π
a
k = (D0Z

a
k )∗, (3c)

π
a∗
k = D0Z

a
k , (3d)

respectively. where εij = ε0ij in shorthand. The

primary constraints of the system are

Λ1 = π
a
0 ≈ 0, θ1 = Za

k Za∗
k −1≈ 0 , (4)

where symbol “≈” means weakly equality in Dirac

sense. The canonical Hamiltonian density is given by

Hc = π
a
i Ȧa

i +π
a
kŻ

a
k +π

a∗
k Ża∗

k −L=

H0−Aa
0 [(∂i π

i +
κ

4
εij ∂i Aj)−Ja

0 ] , (5)

with

H0 =
1

2
π

a
i π

a
i +

1

4
F a

ijF
ij
a +

κ2

16
Aa

j A
a
j +πa∗

k πa
k +

(DiZ
a
k )∗(DiZa

k )−
κ

4
εijπa

i Aa
j , (6a)

Ja
0 =−iπc

k T c
abZ

b
k +iπc∗

k T c
abZ

b∗
k . (6b)

The total Hamiltonian is written as

HT =

∫
d2x(Hc +λa

1Λ
a
1 +µa

1θ
a
1 ) . (7)

The consistency conditions Λ̇1 = {Λ1,HT} ≈ 0 and

θ̇1 = {θ1,HT}≈ 0 lead to secondary constraints

Λ2 = J0−∂i π
i−

κ

4
εij ∂i Aj ≈ 0 , (8a)

θ2 = π
a
k Za

k +π
a∗
k Za∗

k ≈ 0 , (8b)

respectively, and no further constraints are generated

by this iterative procedure. It is easy to check that

the constraints Λ1 and Λ2 are f irst-class constraints,

and θ1 and θ2 are second-class constraints.

According to the Faddeev-Senjanovic (FS) path-

integral quantization scheme, for each first-class con-

straint, one must choose a gauge condition. We

choose to work in Coulomb gauge Ωa
1 = ∂i A

a
i ≈

0. The consistentence of Coulomb gauge requires,

∂i Ȧi ≈ {Ω1,HT} ≈ 0, this leads to another gauge

constraint

Ωa
1 =∇2Aa

0 +∂i
π

a
i −εabc Ab

i ∂i
Ac

0 ≈ 0 . (9)

The phase-space generating functional of Green func-

tion for the model (1) reads

Z[J,K] =

∫
Dϕα

aDπ
a
α

∏

i

δ(Λa)δ(Ωa)δ(θa
i )×

det |{Λa, Ωa}| ·(det
∣

∣{θa
i , θa

j }
∣

∣)1/2×

exp{i

∫
d3x(πa

αϕ̇α
a −Hc +Ja

αϕα
a +Kα

a π
a
α)} , (10)

where ϕα represents all fields, πα are the canonical

momenta conjugate to ϕα, and Jα,Kαare exterior

sources with respect to ϕα, πα respectively. Calcu-

lating the factors in (10), we get

det |{θa
i ,θa

j }|= 4(Za
k ·Z

a∗
k )2 ,

det
∣

∣{Λa,Ωb
∣

∣ = detMabδ(2)(x−y) ,

Mac = (δac∇2−εabcAb
i ∂i

)δ(x−y) . (11)

The factor det |{Λa, Ωb}|δ(∂i
Aa

i )can be replaced by

det MLδ(∂µ
Aa

µ).

Using the properties of δ-function and integral

properties of Grassman variables, the phase-space

generating functional of Green function for the model

(1) can be written as [14]

Z [Jα
a ,Ka

α, ξ̄a, ξa,U
l
a,V

n
a ,W i

a ] =

∫
Dφa

αDπ
α
aDC̄a×

DCaDλa
l Dµa

nDωa
i exp{i

∫
d3x(LP

eff +Jα
a φa

α +

Ka
απ

α
a + ξ̄aC

a + C̄aξa +U l
aλ

a
l +V n

a µa
n +W i

aω
a
i )}, (12)

where

Lp
eff =Lp +Lm +Lgh , (13)

Lp = π
µȦµ +π

a
kŻ

a
k +π

a∗
k Ża∗

k +

P̄aĊ
a + ˙̄CaPa−Hc (14)

Lm = λa
l Λ

a
l +µa

nΩa
n +ωa

i θa
i , (15)

Lgh =−∂µ
C̄aDa

bµCb , (16)

λl, µn and ωi are the multiplier fields, C̄a and Ca are

the ghost fields (Grassmann variables), and P̄a, Pa

are the canonical momentums conjugate to C̄a and

Ca respectively.
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3 Angular momentum and fractional

spin term

We first formulate the results of the quantal

canonical Noether theorem [15, 16]: If the effective

canonical action IP
eff =

∫

d2xLP
eff is invariant under

the following global transformation in extended phase

space



















xµ′

= xµ +∆xµ = xµ +εστµσ(x,ϕ,π)

ϕ′(x′) = ϕ(x)+∆ϕ(x) = ϕ(x)+εσξσ(x,ϕ,π) .

π
′(x′) = π(x)+∆π(x) = π(x)+εσησ(x,ϕ,π)

(17)

In the model to be discussed, ϕ and π denote:

ϕ = (Za
k ,Za∗

k ,Aµ,λl,µn,ωi), π = (πa,πµ,P
a
P a), and

εσ(σ = 1,2, · · · , r) are infinitesimal arbitrary parame-

ters, τµσ , ξσ,ησare some smoothed functions of canon-

ical variables and time. If the Jacobian of the trans-

formation (17) is equal to unity, according to the

canonical Noether theorem in quantum formalism,

there are conserved quantities at the quantum level

[15, 16]

Qσ =

∫
V

d2x[π(ξσ −ϕ,kτ
kσ)−Heffτ 0σ ] =

const, σ = (1,2, · · · , r) (18)

where Heff is an effective Hamiltonian density corre-

sponding to LP
eff . Now, we consider the spatial rota-

tion, τ 0σ = 0, and the Jacobian is equal to unity. The

Lgh term does not involve the time derivative of field

variables. Thus, using (18) the quantal conserved an-

gular momentum for this system is given by

L =

∫
d2xεij [xiπ

a
k ∂j Za

k +xiπ
a∗
k ∂j Za∗

k +(πaµSµν
ij Aa

ν +

xiπ
µ
a ∂j Aa

µ)]+xiP̄a ∂j Ca +xiC̄
a ∂j Pa] , (19)

where Skl
ij = δk

i δl
j − δk

j δl
i. Substituting (3b) into (19),

using the relations εjkεil = δj
i δ

k
l −δj

l δ
k
i , this Eq. (19)

can be simplified to

L =

∫
d2xε

ij
(xiπ

a
k ∂j Za

k +xiπ
a∗
k ∂j Za∗

k )+

εij [xiP̄a ∂j Ca +xiC̄
a ∂j Pa]+

∫
d2xεij [Fk0S

kl
ij Al +

xiF
k0 ∂j Ak]+κ

∫
d2x[εijxiA

a
j (ε

lk ∂l A
a
k)] . (20)

The Lagrange equation of motion for Aa
µ is given by

−∂µ F aµν +
1

2
εabcF µν

b Aµ
c +

κ

4
ενµλ×

(2∂µ Aa
λ +εabcAb

νAc
λ) = J ′aν . (21)

In Coulomb gauge ∂iA
a
i = 0, and seting ν = 0, (21)

reads

−∂i F
ai0 +

1

2
εabcF i0

b Ai
c +

κ

4
εij(2∂i A

a
j +εabcAb

iA
c
j) = J ′a0 . (22)

The asymptotic form of the non-abelian vortex con-

figuration is structurally identical to [17]

Aa
i (x) =−

2Q′a

πκ
εij

xj

x2
, (23)

where Q′a =
∫

d2xj ′a
0(x) is the non-Abelian charge.

The Eq. (20) is reduced to

L =

∫
d2xεij(xiπa ∂j Za

k +xiπa∂jZ
a∗
k )+

∫
d2xεij [Fk0S

kl
ij Al +xiF

k0 ∂j Ak]+

∫
d2xεij [xiP̄a ∂j Ca +xiC̄

a ∂j Pa]+
2(Q′a)2

πκ
. (24)

Then we can find that the angular momentum has a

anomalous term. The first two terms appearing on

the right hand side of (24) contains both the orbital

angular momentum which generates rotation in the

ordinary space and spin term which generates rota-

tions in the internal space. A notibale term is the

Ghost term due to the quantization. The last term

is independent of the origin of coordinates, and inter-

preted as a spin operator [18]. It is different with the

abelian case, because it has non-abelian group index.

So anyons still survive in our model.

4 Conclusion and discussion

The property of fractional spin is presented in

the CP 1 nonolinear σ model with non-abelian Chern-

Simons term at the quantum level. The angular mo-

mentum can take any arbitrary value which is deter-

mined by the CS parameter κ. Here we first quantize

this system in the Faddeev-Senjanovic path-integral

formalism. Then we rigously calculated the angular

momentum based on the quantal Noether theorem.

Fractional spin term is contained in the total angu-

lar momentum. The additional Maxwell kinetic term

in the model does not change the property of frac-

tional spin. But the non-abelian Chern-Simons term

dominates in 2+1 dimension. Without this term the

anomaly spin will not occur [18].
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