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Analytical transfer matrix of a quadrupole fringe *
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Abstract: The analytical linear transfer matrices for different quadrupole fringes including quadratic, high

order power and exponential models are deduced in this paper. As an example, the transfer matrices of the

quadrupole BEPC/ 105Q are computed for the above three models and compared with hard edge and slice-

by-slice models in cases of near 60◦ and 90◦ FODO cells. These models’ results are much better than the hard

edge model’s, and can meet the requirement of accurate calculation.
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1 Introduction

There are many quadrupole magnets in modern

accelerators. They focus the charged particle beam,

so we regard them as lenses. The linear transfer

matrices of a thick lens quadrupole and a thin lens

quadrupole are given in [1, 2]. However, these matri-

ces are only used for delta fringe or so-called hard-

edge magnets. There is an approximation linear map

for a linear fringe in SAD [3]. Recently, there have

been many studies about quadrupole fringes in high

order maps [4, 5]. In this paper, we will deduce the

analytical linear transfer matrix for quadratic, shifted

higher order and exponential fringes. For the solenoid

fringe [6], these solutions are all a hyper-geometric

function. Finally, taking BEPC/ 105Q as an exam-

ple, the transfer matrices are computed according to

the 3 models and compared with hard edge and slice-

by-slice models. The differences for all these models

are shown also by the tune and twiss parameters in

near 60◦ and 90◦ FODO cells.

2 Equation of motion

We used a Cartesian coordinates system. s is the

longtitudinal coordinate, x and y are the transverse

coordinates. For the charged particle, the Lorenz

force is

~F = e~v× ~B = e

∣

∣

∣

∣

∣

∣

∣

∣

~x ~y ~s

ẋ ẏ ṡ

Bx By Bs

∣

∣

∣

∣

∣

∣

∣

∣

= e[(ẏBs− ṡBy)~x

+(ṡBx− ẋBs)~y+(ẋBy− ẏBx)~s ]. (1)

Here “·” is to show the derivation of time “t”.

If we neglect the radiation when a particle is ac-

celerated, γ is a constant in a static magnetic field.

Following ~F = γm0~a, the equation of particle motion

is


















d2x

dt2
=

e(ẏBs− ṡBy)

γm0

d2y

dt2
=

e(ṡBx− ẋBs)

γm0

. (2)

Here γ is the relativistic factor, and m0 is the rest

mass of the particle. In the accelerator, ṡ� ẋ, ṡ� ẏ,

so the total momentum of the particle P = γm0

ds

dt
,

and


















d2x

dt2
=

e(ẏṡBs−(ṡ)2By)

p

d2y

dt2
=

e((ṡ)2Bx− ẋṡBs)

p

. (3)

Transforming the variable time t to position s, we can
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obtain

x′′ =
e(y′Bs−By)

p
; (4a)

y′′ =
e(Bx−y′Bs)

p
. (4b)

3 The expression of magnetic field in

a quadrupole

We assume the expression of a quadrupole field is

Bx(x,y,s) = y

n
∑

i=0

yi i

i+1
fy(i,s); (5a)

By(x,y,s) = x

n
∑

i=0

yify(i,s); (5b)

Bs(x,y,s) = xy

n
∑

i=0

yi 1

1+ i

∂fy(i,s)

∂s
. (5c)

The field in (5) should satisfy the Maxwell Equations

∇·
⇀

B =
∂Bx

∂x
+

∂Bs

∂s
+

∂By

∂y
= 0; (6a)

∇×
⇀

B =

(

∂By

∂s
− ∂Bs

∂y

)

x̂+

(

∂Bx

∂y
− ∂By

∂x

)

ŝ

+

(

∂Bs

∂x
−

∂Bx

∂s

)

ŷ = 0, (6b)

and we have

fy(i,z) =
−1

i(i−1)

∂2
(fy(i−2,z))

i(i−1)
. (7)

Let fy(0,s) = fy0(s), the field in a quadrupole can be

expressed as

Bx = y

n
∑

i=0

(−1)i

(2i+1)!
y2if

(2i)
y0 (s); (8a)

By = x

n
∑

i=0

(−1)i

(2i)!
y2if

(2i)
y0 (s); (8b)

Bs = xy

n
∑

i=0

(−1)i

(2i+1)!
y2if

(2i+1)
y0 (s). (8c)

4 Deducing the transfer matrix

In this part we will deduce the transfer matrix of

the x direction; the same process will be followed for

the y direction. We deal with the three models: the

quadratic, the high order power and the exponential

model. Let s = 0 at the entrance of the quadrupole.

x[0] = x0, x′[0] = x′
0 are the position and the angle

deviation in the x direction respectively. Solving the

linear differential equations with initial conditions, we

get x function with s, x0 and x′
0. The coefficient of x0

is m11, the coefficient of x′
0 is m12, the derivative of

m11, m12 to s is the m21, m22. These elements make

up a transfer matrix

M =

(

m11 m12

m21 m22

)

.

4.1 The quadratic model

Assuming fy0(s) = G(1+as+bs2) from Eq. (8), we

can get the magnetic field for the quadrupole

Bx = Gy(1+as+bs2)− bGy3

3
, (9a)

By = Gx(1+as+bs2)−bGxy2, (9b)

Bs = Gxy(a+2bs). (9c)

We only consider the linear terms. The nonlinear

terms are neglected, and then we get the equation of

particle motion

x′′ =− e

p
Gx(1+as+bs2) =−G1x(1+as+bs2). (10)

Let x[s] = u[t], where t =
G

1
4

1 (a+2bs)√
2b

3
4

. Then Eq. (10)

becomes
[(

a2

8b
3
2

−
1

2
√

b

)

√

G1−
t2

4

]

u[t]+u′′[t] = 0. (11)

Eq. (11) is a Weber Eqs. (7, 8), the general solution

of (11) is

u[t] = C1D
−4b

3
2 +a2

√
G1−4b

√
G1

8b
3
2

(t)

+C2D
−4b

3
2 −a2

√
G1+4b

√
G1

8b
3
2

(t). (12)

The elements of the transfer matrix are

m11 =−1

2
(−1)

1
4 e

igπ

4

[(

AD− 1+g
2

(iA)

+2iD 1−g
2

(iA)
)

D−1+g
2

(A+Bs)+
(

AD−1+g
2

(A)

−2D 1+g
2

(A)
)

D− 1+g
2

(i(A+Bs))
]

; (13)

m12 =
1

B
(−1)

1
4 e

igπ

4

[

D− 1+g
2

(i(A+Bs))D−1+g
2

(A)

−D− 1+g
2

(iA)D−1+g
2

(A+Bs)
]

; (14)
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m21 = −1

4
(−1)

1
4 Be

igπ

4

{

−(A+Bs)D− 1+g
2

(i(A+Bs))
[

AD−1+g
2

(A)−2D 1+g
2

(A)
]

−2iD 1−g
2

(i(A+Bs))
[

AD−1+g
2

(A)−2D 1+g
2

(A)
]

+
[

AD− 1+g
2

(iA)+2iD 1−g
2

(iA)
]

×
[

(A+Bs)D−1+g
2

(A+Bs)−2D 1+g
2

(A+Bs)
]}

; (15)

m22 = −1

2
(−1)

1
4 e

igπ

4

{

(A+Bs)D− 1+g
2

(i(A+Bs))D−1+g
2

(A)+2iD 1−g
2

(i(A+Bs))D−1+g
2

(A)

+D− 1+g
2

(iA)
[

(A+Bs)D−1+g
2

(A+Bs)−2D 1+g
2

(A+Bs)
]}

, (16)

where g =
a2
√

G1−4b
√

G1

4b3/2
, A =

aG
1
4

1√
2b

3
4

, B =
√

2b
1
4 G

1
4

1 , Dv(x) is the parabolic cylinder function. The transfer

matrix of the quadratic fringe G(1+as+bs2) from 0 to s for Eq. (10) can be expressed as
(

x

x′

)

s

=

(

(13) (14)

(15) (16)

)(

x0

x′
0

)

. (17)

4.2 The high order power of the (b+as) model

Assuming fy0(s) = (b+as)n, neglecting the high-order terms, we obtain the equation of motion

x′′ =− e

p
x(b+as)n = G1x(b+as)n. (18)

Let x[s] = u[t]
√

b+as [7, 9, 10], where t = (b+as)
2+n
2 , Eq. (18) becomes

(

− 1

(2+n)2
− 4G1t

2

a2(2+n)2

)

u[t]+ t(u′[t]+ tu′′[t]) = 0, (19)

Eq. (19) is a Bessel equation, the general solution is

u[t] = C1J 1
2+n

(

−2i
√

G1t

a(2+n)

)

+C2Y 1
2+n

(

−2i
√

G1t

a(2+n)

)

. (20)

The elements of the transfer matrix are

m11 =
gπ

√
b+as[JA(gB)J(1+n)A(g)+J−A(gB)J−1+A(g)]csc(πA)

2
√

b
; (21)

m12 = −
√

bπ
√

b+as[J−A(gB)JA(g)−J−A(g)JA(gB)]csc(πA)

a(2+n)
; (22)

m21 = −
ag2(2+n)π

√

(b+as)1+n[J(1+n)A(gB)J−1+A(g)−J(1+n)A(g)J−1+A(gB)]csc(πA)

4b
(3+n)

2

; (23)

m22 =
gπ

√

(b+as)1+n[JA(g)J(1+n)A(gB)+J−A(g)J−1+A(gB)]csc(πA)

2b
(1+n)

2

, (24)

where
g2(2+n)2a2

4b2+n
= G1 =− e

p
, A =

1

2+n
, B = b−1−n

2 (b+as)1+
n
2 .

The transfer matrix of the fringe (b+as)n from 0 to s can be expressed as
(

x

x′

)

s

=

(

(21) (22)

(23) (24)

)(

x0

x′
0

)

. (25)
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4.3 The exponential model

Assuming fy0(s) = G(a+ebs), neglecting the high-

order terms, we obtain the equation of motion

x′′ =− e

p
Gx(a+ebs) = G1x(a+ebs). (26)

Let x[s] = u[t], where

t =
2
√

ebsG1

b
,

and Eq. (26) becomes
(

4aG1

b2
+ t2

)

u[t]+ t(u′[t]+ tu′′[t]) = 0. (27)

Eq. (27) is a Bessel equation, the general solution is

u[t] = C1J 2
√

aG1
b

(t)+C2Y 2
√

aG1
b

(t), (28)

The elements of the transfer matrix are

m11 =
π

√
G1

[

(I−1+A(B)+I1+A(B))I−A(
√

ebsB)−(I−1−A(B)+I1−A(B))IA(
√

ebsB)
]

csc[Aπ]

2b
; (29)

m12 = −
π

[

I−A(
√

ebsB)IA(B)−I−A(B)IA(
√

ebsB)
]

csc[Aπ]

b
; (30)

m21 =

√
ebsG1π

4b

{

[

I−1−A

(√
ebsB

)

+I1−A(
√

ebsB)
]

[I−1+A(B)+I1+A(B)]

− [I−1−A(B)+I1−A(B)]
[

I−1+A(
√

ebsB)+I1+A(
√

ebsB)
]

}

csc[πA], (31)

m22 =

√
ebsG1π

2b

{

[

I−1+A

(√
ebsB

)

+I1+A

(√
ebsB

)]

I−A(B)

−
[

I−1−A

(√
ebsB

)

+I1−A

(√
ebsB

)]

IA(B)

}

csc[πA], (32)

where

A =
2
√

a
√

G1

b
, B =

2
√

G1

b
.

In(ν) is the modified Bessel function of the first kind.

The transfer matrix of the exponential fringe

G(a+ebs) from 0 to s can be expressed as
(

x

x′

)

s

=

(

(29) (30)

(31) (32)

)(

x0

x′
0

)

. (33)

5 Fitting fringe field and calculating

the transfer matrix

We take the quadrupole magnet Q105 in BEPC/

for example. By fitting the left fringe, the matrix of

right fringe can be obtained from the symmetry. If

the transfer matrix of the left fringe is
(

a b

c d

)

,

then the transfer matrix of right fringe is
(

d b

c a

)

[11]. The optimized energy of BEPC/ is 1.89 GeV,

so
e

p
= 0.1586.

The effective length of Q105 is 0.3114 m , and the

maximum field gradient is 13.3256T/m.

The fringe models and the transfer matrix of Q105

with slice-by-slice, hard-edge, linear, quadratic and

exponential fringe models are given in Table 1 and 2

respectively.

Table 1 gives the fitting effect, the abscissas of pic-

tures are the longitudinal positions of the quadrupole,

in m, and the perpendicular coordinates are the

quadrupole’s grads (T/m2). The dished lines are

measured values, and the real lines are the fitting

curves.
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Table 1. Fringe fitting five models.

model fitting effect fitting function

slice-by-slice

Take each point as a slice, the gradient value is measured

value. The first and the last slice lengths are 0.0025 m, the

other’s length is 0.005 m

hard-edge















0 s6 0.1943

13.3269

0

0.1943 6 s 6 0.5057

0.5057 6 s 6 0.7

linear















0 s6 0.14

122.702(s−0.14)

13.3265

0.14 6 s6 0.25

0.25 6 s6 0.45

quadratic















0.3707−10.7693s+127.479s
2

s6 0.175

2.3902+203.915(s−0.175)−930.989(s−0.175)2

13.3266

0.175 6 s 6 0.27

0.27 6 s6 0.43

exponential















0.2863+0.0231e
26.43s

s 6 0.2

13.8162−8.9789e
−46.02(s−0.2)

13.3266

0.2 6 s6 0.27

0.27 6 s 6 0.43

Table 2. The transfer matrices of five models.

transfer matrix transfer matrix
model

for focusing for defocusing

slice-by-slice

(

0.7750 0.6277

−0.6336 0.7772

) (

1.2381 0.7756

0.6832 1.2357

)

hard-edge

(

0.7757 0.6263

−0.6359 0.7757

) (

1.2365 0.7770

0.6809 1.2365

)

linear

(

0.7759 0.6270

−0.6347 0.7759

) (

1.2368 0.7763

0.6822 1.2368

)

quadratic

(

0.7761 0.6279

−0.6334 0.7761

) (

1.2370 0.7754

0.6837 1.2370

)

exponential

(

0.7761 0.6280

−0.6332 0.7761

) (

1.2370 0.7752

0.6838 1.2370

)

Assuming a FODO cell and its elements are Q105

(for focusing)–drift–Q105 (for defocusing)–drift. The

transfer matrix of a cell is






cos(∆ϕ)+α sin(∆ϕ) β sin(∆ϕ)

−γ sin(∆ϕ) cos(∆ϕ)−α sin(∆ϕ)






.

(34)

Assuming the phase advance ∆ϕ in a slice-by-slice

model is
π

2

(

π

3

)

,

and the length of drift is L, we obtain the other

model’s phase advance in the same cell. The results

are given in Table 3. Table 3 also gives the minimum

beta and maximum beta of every model in the

π

2

(

π

3

)

cell.
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Table 3. Difference of the results of four models compared with the slice-by-slice result in a FODO cell.

phase maximum minimum phase maximum minimum
model

advance(◦) beta/m beta/m advance(◦) beta/m beta/m

slice-by-Slice 90 7.6113 1.3494 60 5.5846 1.9219

hard-edge 90.6226 7.5733 1.3423 60.5137 5.5449 1.9081

linear 90.2918 7.5936 1.3460 60.2388 5.5663 1.9155

quadratic 89.9303 7.6162 1.3501 59.9375 5.5900 1.9235

exponential 89.8886 7.6194 1.3505 59.9028 5.5931 1.9243

6 Conclusions

The transfer matrices of three quadrupole fringe

models are presented. The expressions look messy,

but they can be used very easily. If the field is given

we can calculate the parameters in transfer matrices,

and then by substituting the real parameters into

the elements of the transfer matrix, we can get the

precise value. It is very useful for some accurate

calculations. We compare the three new transfer ma-

trices with the hard-edge and slice-by-slice matrices.

The results have very small differences that can verify

the correctness of our transfer matrices calculation

and they are more accurate.

I thank my colleagues Z. Duan, X. H. Cui and Y.

W. An for helpful discussions.
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