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B→A transitions in the light-cone QCD sum
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Abstract: In this article, we calculate the form-factors of the transitions B → a1(1260), b1(1235) in the

leading-order approximation using the light-cone QCD sum rules. In calculations, we choose the chiral current

to interpolate the B-meson, which has the outstanding advantage that the twist-3 light-cone distribution

amplitudes of the axial-vector mesons make no contributions, and the resulting sum rules for the form-factors

suffer from far fewer uncertainties. Then we study the semi-leptonic decays B → a1(1260)lν̄l, b1(1235)lν̄l

(l = e, µ, τ), and make predictions for the differential decay widths and decay widths, which can be compared

with the experimental data in the coming future.
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1 Introduction

The semi-leptonic B-decays are excellent subjects

for exploring the CKM matrix elements and CP vi-

olations. We can use both the exclusive and inclu-

sive b → u transitions to study the CKM matrix

element Vub. Although the inclusive decays are rel-

atively easier in theoretical studies, the experimental

measurements are very difficult. Furthermore, the

perturbative QCD calculations in the region near the

end-point of the lepton spectrum are less reliable as

many resonances appear [1]. We can resort to the ex-

clusive processes, which are easy to measure experi-

mentally, to overcome the difficulty, and study the

hadronic matrix elements with some nonperturbative

methods, such as the light-cone QCD sum rules and

lattice QCD.

The relevant exclusive semi-leptonic decays in de-

termining the CKM matrix element Vub are B→πlν̄l,

ρlν̄l, Alν̄l, where A denotes the axial-vector mesons.

The semi-leptonic decays B→ πlν̄l, ρlν̄l, which were

firstly observed by the CLEO collaboration [2], have

been extensively studied theoretically. The semi-

leptonic decays B→Alν̄l are expected to be observed

at the LHCb, where the bb̄ pairs will be copiously pro-

duced with the cross section about 500 µb [3]. The

B→ a1(1260) form-factors have been studied with the

constituent quark meson (CQM) model [1], the co-

variant light-front (CLF) approach [4], the improved

Isgur-Scora-Grinstein-Wise (ISGW2) model [5], the

QCD sum rules (QCDSR) [6], the light-cone QCD

sum rules (LCSR) [7, 8] and the perturbative QCD

(pQCD) [9], and the values differ from each other

remarkably. It is interesting to restudy the semi-

leptonic decays B→ a1(1260)lν̄l, b1(1235)lν̄l with the

chiral current using the LCSR [10–14].

In the light-cone QCD sum rules [15], we carry

out the operator product expansion near the light-

cone x2 ≈ 0 instead of the short distance x≈ 0, while

the nonperturbative hadronic matrix elements are
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parameterized by the light-cone distribution ampli-

tudes (LCDAs) of increasing twist instead of the

vacuum condensates. Based on the quark-hadron

duality, we can obtain copious information about

the hadronic parameters at the phenomenological

side, for example, the form-factors. The twist-2 and

twist-3 LCDAs usually enter the sum rules and play

an important role in the LCSR for the form-factors.

A better understanding of those LCDAs is critical to

make the calculations more reliable. In Refs. [16, 17],

K. C. Yang proposes model LCDAs for the axial-

vector mesons, which are expanded in terms of the

Gegenbauer polynomials, and estimates the coeffi-

cients of the LCDAs with the QCD sum rules. If

we choose the chiral currents, the twist-3 LCDAs

make no contributions to the form-factors, the un-

certainties originating from the LCDAs can be re-

duced remarkably [10–14]. In this article, we extend

our previous works to study the semi-leptonic decays

B→ a1(1260)lν̄l, b1(1235)lν̄l.

The paper is organized as follows: In Section 2,

we study the B → a1(1260), b1(1235) form-factors

with the chiral current using the LCSR; in Section 3,

we present the numerical results of the form-factors,

the differential decay widths and decay widths of the

B→ a1(1260)lν̄l, b1(1235)lν̄l; Section 4 is reserved for

summary and discussion.

2 The light-cone sum rules with the

chiral current

We extend our previous work [10–14] to study the

B → A form-factors with the chiral current in the

framework of the LCSR. The chiral current warrants

that the LCDAs of the same (opposite) chirality re-

main (disappear).

In the standard model, the semi-leptonic decays

B → Alν̄l take place through the following effective

Hamiltonian:

Heff =
GF√

2
Vubūγµ(1−γ5)bl̄γ

µ(1−γ5)νl ,

where Vub is the CKM matrix element and GF

is the Fermi constant. In calculations, we

are confronted with the hadronic matrix elements

〈A(P,ε∗)|q̄γµγ5b|B̄(P +q)〉 and 〈A(P,ε∗)|q̄γµb|B̄(P +

q)〉, which can be parameterized in terms of the form-

factors A(q2), A1(q
2), A2(q

2), A3(q
2) and A0(q

2) [4],

〈A(P,ε∗)|q̄γµγ5b|B̄(P +q)〉

= −εµνρσε∗νqρP σ 2iA(q2)

mB−mA

, (1)

〈A(P,ε∗)|q̄γµb|B̄(P +q)〉

= −ε∗µ(mB−mA)A1(q
2)+ε∗ ·qPµ

2A2(q
2)

mB−mA

+ε∗ ·qqµ

[

A2(q
2)

mB−mA

+2mA

A3(q
2)−A0(q

2)

q2

]

, (2)

where A3(q
2) =

mB−mA

2mA

A1(q
2) − mB +mA

2mA

A2(q
2),

A3(0) = A0(0), ε0123 = 1, and the ε∗ν is the polarization

vector of the axial-vector meson. The hadronic ma-

trix element 〈A(P,ε∗)|q̄γµb|B̄(P+q)〉 can be redefined

as

〈A(P,ε∗)|q̄γµb|B̄(P +q)〉

= −ε∗µ(mB−mA)A1(q
2)+ε∗ ·qPµ

2A+(q2)

mB−mA

+ε∗ ·qqµ

A+(q2)+A−(q2)

mB−mA

, (3)

where

A2(q
2) = A+(q2) , (4)

A3(q
2) =

mB−mA

2mA

A1(q
2)− mB +mA

2mA

A+(q2), (5)

A0(q
2) =

mB−mA

2mA

A1(q
2)− mB +mA

2mA

A+(q2)

− q2

2mA(mB−mA)
A−(q2). (6)

In the following, we write the correlation function

with a chiral current,

Πµ(P,q) = i

∫
d4xeiqx〈A(P,⊥)|T{q̄1(x)γµ(1−γ5)b(x),

b̄(0)i(1+γ5)q2(0)}|0〉 , (7)

where P 2 = m2
A. We study the relevant form-factors

with the transversely polarized axial-vector mesons

[8], and obtain simple relations among the form-

factors as the corresponding ones in the B→V tran-

sitions.

According to the quark-hadron duality [18] and

unitarity, we can insert a complete set of interme-

diate states with the same quantum numbers as the

current operator b̄(0)i(1−γ5)q1(0) in the correlation

function to obtain the hadronic representation. Af-

ter isolating the ground state contribution from the

pole term of the pseudoscalar B meson, we obtain the

result,
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Πµ(P,q) =
〈A(P,⊥)|q̄1γµ(1−γ5)b|B̄(P +q)〉〈B̄(P +q)|b̄iγ5q2|0〉

m2
B−(P +q)2

+
∑

h

〈A(p,⊥)|q̄1γµ(1−γ5)b|B̄h(P +q)〉〈B̄h(P +q)|b̄i(1+γ5)q2|0〉
m2

Bh −(P +q)2
. (8)

It should be stressed that there are contributions from the scalar B-meson, the pseudoscalar B-meson, and their

resonances [19], we can attribute the (ground state) scalar B-meson into the higher resonances and continuum

states |Bh〉. Taking into account the definition of the B-meson decay constant 〈B̄|b̄iγ5q2|0〉 =
fBm2

B

mq2
+mb

, we

can obtain the hadronic representation,

Πµ(P,q) =

[

−(mB−mA)A1ε
∗
⊥µ +

(

A2(q
2)

mB−mA

+2mA

A3(q
2)−A0(q

2)

q2

)

ε∗⊥ ·qqµ

+
2A2(q

2)

mB−mA

ε∗⊥ ·qPµ +
2iA(q2)

mB−mA

εµνρσε∗ν
⊥ qρP σ

]

1

m2
B−(P +q)2

m2
BfB

mq2
+mb

+
1

π

∫∞

s0

ds
ρh

µ(s)

s−(P +q)2
. (9)

The spectral density ρh
µ(s) can be approximated as

ρh
µ(s) = ρQCD

µ (s)θ(s−s0), (10)

by invoking the quark-hadron duality ansatz, where the ρQCD
µ (s) is the perturbative QCD spectral density.

Here the threshold s0 is near the squared mass of the lowest scalar B-meson.

Now, we briefly outline the operator product expansion for the correlation function in perturbative QCD.

The calculations are performed at the large space-like momentum region (P+q)2 �m2
b and 0 6 q2 < (mb−mA)2−

2(mb−mA)ΛQCD [20], or more specific, 0 6 q2 < 12 GeV2 for the axial-vector mesons a1(1260) and b1(1235).

We contract the b-quark fields in the correlation function, substitute it with the free b-quark propagator, and

obtain the result,

Πµ(P,q) = i

∫
d4kd4x

(2π)4
ei(q−k)x

m2
b−k2

Tr
{

[γµ(1−γ5)(6k+mb)(1+γ5)]δα
〈A(P,⊥)|q̄1δ(x)q2α(0)|0〉

}

. (11)

The light-cone distribution amplitudes of the axial-vector mesons are defined by [8]

〈A(P,λ)|q̄1 δ(x)q2 α(0)|0〉 = − i

4

∫1

0

dueiu Px

{

fAmA

[

6Pγ5

ε∗(λ)x

Px

(

Φ‖(u)+
m2

Ax2

16
A

2
‖(u)

)

+

(

6ε∗− 6P
ε∗(λ)z

Px

)

γ5g
(a)
⊥ (u)− 6xγ5

ε∗(λ)x

2(Px)2
m2

Aḡ3(u)+εµνρσ ε∗(λ)
µP ρxσ γµ g(v)

⊥ (u)

4

]

+f⊥
A

[

1

2

(

6P 6ε∗(λ)− 6ε∗(λ) 6P
)

γ5

(

Φ⊥(u)+
m2

Ax2

16
A

2
⊥(u)

)

−1

2

(

6P 6x− 6x 6P
)

γ5

ε∗(λ)x

(Px)2
m2

Ah̄(t)

‖ (u)− 1

4

(

6ε∗(λ) 6x− 6x 6ε∗(λ)

)

γ5

m2
A

Px
h̄3(u)

+i(ε∗(λ)x)m2
Aγ5

h(p)

‖ (u)

2

]}

αδ

, (12)

where u is the fraction of the light-cone momentum of the axial-vector meson carried by the quark, and ū = 1−u.

After carrying out the integrals of x and k, we obtain the following result,

Πµ(P,q) = i

∫
duTr

{

[γµ(1−γ5)(6k+mb)(1+γ5)]δα
MA

⊥αδ

}

1

m2
b−k2

∣

∣

∣

∣

∣

k=q+uP

, (13)
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where the transverse projectors, which project the

transverse components of the axial-vector meson, are

given by [8],

MA
⊥ = i

f⊥
A

4
E

{

6ε∗(λ)
⊥ 6n−γ5 Φ⊥(u)− fA

f⊥
A

mA

E

×
[

6ε∗(λ)
⊥ γ5 g(a)

⊥ (u)− E

∫u

0

dv (Φ‖(v)−g(a)
⊥ (v)) 6n

−γ5 ε∗(λ)
⊥µ

∂
∂k⊥µ

+iεµνρσ γµε∗(λ)ν
⊥ nρ

−

×
(

nσ
+

g(v)′
⊥ (u)

8
−E

g(v)
⊥ (u)

4

∂
∂k⊥σ

)]∣

∣

∣

∣

∣

k=uP

+O
(

m2
A

E2

)}

, (14)

here we have taken P µ = Enµ
− + m2

Anµ
+/4E ≈ Enµ

−

and the exactly longitudinal and transverse polariza-

tion vectors of the axial-vector meson, independent

of the coordinate variable x, are defined as

ε∗(L)µ
⊥ =

E

mA

[(

1− m2
A

4E2

)

nµ
−− m2

A

4E2
nµ

+

]

, (15)

ε∗(λ)µ
⊥ = ε∗(λ)µ− ε∗(λ)n+

2
nµ

−− ε∗(λ)n−

2
nµ

+, (λ =±).

(16)

We carry out the trace in Eq. (13), and observe that

only the leading-twist LCDAs Φ⊥(u) contribute,

Πµ(P,q) = f⊥
A

∫1

0

du
Φ⊥(u)

m2
b−(q+uP )2

[2P ·(q+uP )ε∗⊥µ

−2(ε∗⊥ ·q)Pµ −2iεµνρσε∗ν
⊥ qρP σ].

With reference to the LCDAs and decay constants

of the axial-vector mesons, a few words should be

given. In the flavor SU(3) symmetry limit, due to

G-parity the twist-2 LCDA Φ⊥(u) obeys the normal-

ization ∫1

0

duΦ⊥(u) = 0 (17)

for the 3P1 meson and∫1

0

duΦ⊥(u) = 1 (18)

for the 1P1 meson. Based on the conformal symmetry

of the QCD Lagrangian, Φ⊥(u,µ) can be expanded in

terms of a series of Gegenbauer polynomials C3/2
m (ξ)

with increasing conformal spin [16, 17],

Φ⊥(u,µ) = 6uū
[

a⊥
0 (µ)+a⊥

1 (µ)C3/2
1 (ξ)

+a⊥
2 (µ)C3/2

2 (ξ)+ · · ·
]

, (19)

where ξ = 2u−1, the values of the coefficients a⊥
m(µ)

at the energy scale µ = 1 GeV are a⊥
0 = a⊥

2 = 0,

a⊥
1 =−1.04±0.34 for the a1(1260) and a⊥

0 = 1, a⊥
1 = 0,

a⊥
2 = 0.03± 0.19 for the b1(1235), respectively. We

plot the LCDAs Φ⊥(u,µ) of the axial-vector mesons

a1(1260) and b1(1235) at the energy scale µ = 1.0 GeV

in Fig. 1. The G-parity conserving decay constants

of the axial-vector mesons are defined by [8]

〈13P1(P,λ)|q̄1γµγ5q2|0〉 = if3P1
m3P1

ε∗(λ)
µ , (20)

〈11P1(P,λ)|q̄1σµνγ5q2|0〉 = f⊥
1P1

(ε∗(λ)
µ Pν−ε∗(λ)

ν Pµ),

(21)

where the decay constant f3P1
(f⊥

1P1
) is scale inde-

pendent (dependent). The G-parity violating decay

constants are defined by f⊥
3P1

= f3P1
and f1P1

= f⊥
1P1

at the energy scale µ = 1 GeV.

Fig. 1. The twist-2 LCDAs Φ⊥(u,µ) of the

axial-vector mesons a1(1260) and b1(1235) at

the energy scale µ =1.0 GeV.

After matching with the hadronic representation

and performing the Borel transformation with respect

to the variable (P +q)2, we obtain the sum rules for

the form-factors:
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A(q2) = −mq2
+mb

m2
BfB

(mB−mA)f⊥
A

∫1

∆

du
Φ⊥(u)

u
eFF, (22)

A1(q
2) = −mq2

+mb

m2
BfB

f⊥
A

mB−mA

∫1

∆

du
Φ⊥(u)

u

m2
b−q2 +u2P 2

u
eFF, (23)

A2(q
2) = −mq2

+mb

m2
BfB

(mB−mA)f⊥
A

∫1

∆

du
Φ⊥(u)

u
eFF, (24)

A3(q
2) = −mq2

+mb

m2
BfB

f⊥
A

2mA

∫1

∆

du
Φ⊥(u)

u

m2
b−q2 +u2P 2

u
eFF

+
mq2

+mb

m2
BfB

f⊥
A

2mA

(m2
B−m2

A)

∫1

∆

du
Φ⊥(u)

u
eFF, (25)

A0(q
2) = −mq2

+mb

m2
BfB

f⊥
A

2mA

∫1

∆

du
Φ⊥(u)

u

m2
b−q2 +u2P 2

u
eFF

+
mq2

+mb

m2
BfB

f⊥
A

2mA

(m2
B−m2

A)

∫1

∆

du
Φ⊥(u)

u
eFF +

mq2
+mb

m2
BfB

q2f⊥
A

2mA

∫1

∆

du
Φ⊥(u)

u
eFF, (26)

where

∆ =
1

2m2
A

[

√

(s0−m2
A +Q2)2 +4(m2

b +Q2)m2
A−(s0−m2

A+Q2)
]

,

FF = − 1

uM 2
[m2

b +u(1−u)m2
A+(1−u)Q2]+

m2
B

M 2
,

M 2 is the Borel parameter and Q2 =−q2. The form

factors A+(q2) and A−(q2) can be obtained from the

relations (4), (5) and (6).

It is surprising that the expressions of the form-

factors are very simple, and only the leading twist

LCDA Φ⊥(u,µ) appears in the final sum rules. The

form-factors A+ and A− have the following simple

relations,

A−(q2) = −A+(q2) , (27)

A(q2) = A+(q2) . (28)

Similar relations can be obtained for the B→V form-

factors if we use the chiral current in the LCSR [21].

The simple relations obtained for the B→ S, V, P, A

form-factors in Refs. [14, 21, 22] and the present work,

up to the hard-exchange corrections, are consistent

with the predictions of the soft collinear effective the-

ory [23].

3 Numerical results and discussions

The input parameters for the semi-leptonic decays

B→ a1(1260)lν̄l, b1(1235)lν̄l are taken as [16, 17, 24–

26]:

GF = 1.166×10−2GeV−2,

|Vub| = 3.96+0.09
−0.09×10−3,

mu(1 GeV) = 2.8 MeV,

md(1 GeV) = 6.8 MeV,

mb = (4.8±0.1) GeV,

me,µ = 0 MeV,

mτ = 1776.82 MeV, (29)

ma1(1260) = 1.23±0.06 GeV,

mb1(1235) = 1.21±0.07 GeV,

f⊥
a1(1260) = 0.238±0.010 GeV,

f⊥
b1(1235) = 0.180±0.008 GeV,

mB = 5.279 GeV,

fB = (0.19±0.02) GeV.

We take into account the binding energy differ-

ence between the scalar and pseudoscalar B mesons
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from the QCD sum rules in the heavy quark effec-

tive theory [27], and choose the suitable threshold

parameter s0 to avoid contamination from the scalar

B-meson [19], and obtain the value s0 = (32±1) GeV2,

which is smaller than the ones used in the conven-

tional QCD sum rules to reproduce the experimental

values of the pseudoscalar B-meson. On the other

hand, we can estimate the mass of the scalar B0 me-

son with the scalar current b̄(x)q(x) using the conven-

tional two-point QCD sum rules, and obtain the value

MB0
= 5.74 GeV. The strong decays B0 → Bπ are

Okubo-Zweig-Iizuka allowed; we can take the value

gB0Bπ = 21 GeV or gB0Bπ ≈ gBs0BK = 20 GeV from

the light-cone QCD sum rules [28, 29], and obtain

the decay width ΓB0→Bπ ≈ 0.2 GeV, which is sup-

posed to saturate the width of the scalar B0 meson.
(

MB0
− ΓB0

2

)2

≈ 32 GeV2, the contaminations from

the scalar B0 meson and thereafter the Bπ continuum

states are very small, and can be neglected. Also,

it is possible to determine the threshold parameters

in other approaches, among which the scenario sug-

gested in Ref. [30] is more effective. The Borel pa-

rameter M 2 shared by all the QCD sum rules in the

pseudoscalar channel is M 2 = (10− 15) GeV2. In

this interval, the higher resonances and continuum

states contribute less than 20% and the uncertainties

originating from the Borel parameter M 2 are about

(0.7–1.5)%.

The values of the form-factors B → a1(1260),

b1(1235) at zero momentum transfer are rather stable

with variations of the Borel parameter M 2. In Fig. 2,

we present numerical results for the A1(0) with the

central values of the input parameters as an example.

The LCDAs of the axial-vector mesons 3P1 and
1P1 have been evaluated using the QCD sum rules

[16, 17]. Owing to the G-parity, the chiral-even

two-particle LCDAs of the 3P1 (1P1) mesons are

symmetric (antisymmetric) under the exchange of

the quark and antiquark momentum fractions in the

flavor SU(3) symmetry limit. For the chiral-odd

LCDAs, the situation is opposite. We show the nu-

merical values of the LCDAs Φ⊥(u,µ) of the axial-

vector mesons a1(1260) and b1(1235) at the energy

scale µ = 1.0 GeV explicitly in Fig. 1. The inte-

gral interval in the sum rules is about 0.7–1, and

the decay constants of the a1(1260) and b1(1235)

mesons have the same sign, therefore the form-factors

A1, A2, A0, A for the B → a1(1260), b1(1235) tran-

sitions have opposite signs, see Table 1. The uncer-

tainties of the LCDAs Φ⊥(u) and b-quark mass mb

both result in errors for the form-factors, which are

shown as the first and second errors respectively in

Table 1.

Fig. 2. The form-factor A1(0) with variation of

the Borel parameter M2 at the energy scale

µ = 1.0 GeV. The threshold parameter s0 =

31,32,33 GeV2.

Here we will take a short digression to discuss

the LCDAs of the axial-vector mesons. The distri-

bution amplitudes of an energetic light hadron mov-

ing nearly on the light-cone can be described by a

set of LCDAs, which are governed by the special

collinear subgroup SL(2,R) of the conformal group

and characterized by the conformal spin j [16, 17].

The large widths of the axial-vector mesons reflect the

fact that their lives are short and they are not stable

(for example, the width of the a1(1260) is mainly de-

termined by the Okubo-Zweig-Iizuka allowed strong

decay a1(1260) → ρ(770)π, as both the phase space

and the coupling constant are large), and do not

mean that they cannot move nearly on the light-cone

and the momentum fractions carried by the u and

d quarks are changed. If we take into account the

widths of the axial-vector mesons in estimating the

coefficients of the LCDAs using the QCD sum rules,

the net effects of the widths can lead to a numerical

factor, which can be absorbed in the decay constants.



1052 Chinese Physics C (HEP & NP) Vol. 36

Table 1. The B → a1(1260), b1(1235) form-factors at zero momentum transfer, where the first and second

errors originate from the uncertainties of the LCDA Φ⊥(u) and the b-quark mass mb, respectively. In

calculations, we have taken the values M2 = 12 GeV2 and s0 =32 GeV2.

B→A A1(0) A2(0) A0(0) A(0)

B→ a1(1260) 0.67±0.11±0.06 0.38±0.07±0.03 0.09±0.02±0.01 0.38±0.07±0.03

B→b1(1235) −0.26±0.05±0.03 −0.15±0.03±0.02 −0.04±0.01±0.01 −0.15±0.03±0.02

Table 2. The B→ a1(1260) form-factors A1(0),A2(0),A0(0) and A(0) from different theoretical approaches.

CQM [1] CLF [4] ISGW2 [5] QCDSR [6] LCSR [7] LCSR [8] pQCD [9] this work

A1(0) 2.10 0.59 0.87 0.68 0.67 0.60 0.43 0.67

A2(0) 0.21 0.11 −0.03 0.33 0.31 0.26 0.13 0.38

A0(0) 1.20 0.13 1.01 0.23 0.29 0.30 0.34 0.09

A(0) 0.06 0.16 0.13 0.42 0.41 0.30 0.26 0.38

We present the central values of the B→ a1(1260)

form-factors A1(0), A2(0), A0(0), A(0) in Table 2

compared with the predictions from the CQM model

[1], CLF approach [4], ISGW2 model [5], QCDSR [6],

LCSR [7, 8], and pQCD [9]. From the table, we can

see that the present predictions are consistent with

the ones from QCDSR [6] and LCSR [7, 8] except for

the A0(0), and differ from the values from other the-

oretical approaches remarkably. It has been pointed

out by K.C.Yang in Ref.[8] that the higher twist ef-

fects might be negligible, while we exclude all con-

tributions from the higher twist LCDAs by using the

chiral current in the correlation function. In addition,

the form-factors A1, A2, A0, A are not independent;

they are related with the formulae like (27) and (28).

In Fig. 3, we plot the q2 dependence of the form-

factors A1(q
2), A2(q

2), A0(q
2), A(q2) for the transi-

tions B → a1(1260), b1(1235) in the region 0 6 q2 <

12 GeV2, which is similar to the accessible region

0 6 q2 < 10 GeV2 in the QCD sum rules [6], be-

yond that values the nonperturbative contributions

become large and the operator product expansion

breaks down. The pole models are merely suitable for

describing those form-factors with momentum trans-

fers q2 near the squared pole masses m2
pole. In the

present B→A case, the m2
pole are far away from their

kinematical regions, we do not extrapolate the form-

factors from small q2 to large ones with the pole mod-

els.

Now, we study the differential decay widths of the

B→A semi-leptonic decays, which can be written as

[6, 9]

dΓL(B̄→Alν̄l)

dq2
=

(

q2−m2
l

q2

)2
√

λ(m2
B,m2

A, q2)G2
FV 2

ub

384m3
Bπ3

× 1

q2

{

3m2
l λ(m2

B,m2
A, q2)V 2

0 (q2)

+(m2
l +2q2)

∣

∣

∣

∣

1

2mA

[

(m2
B−m2

A−q2)(mB−mA)V1(q
2)− λ(m2

B,m2
A, q2)

mB−mA

V2(q
2)

]
∣

∣

∣

∣

2
}

, (30)

dΓ±(B̄ →Alν̄l)

dq2
=

(

q2−m2
l

q2

)2
√

λ(m2
B,m2

A, q2)G2
FV 2

ub

384m3
Bπ3

×
{

(m2
l +2q2)λ(m2

B,m2
A, q2)

∣

∣

∣

∣

∣

A(q2)

mB−mA

∓ (mB−mA)V1(q
2)

√

λ(m2
B,m2

A, q2)

∣

∣

∣

∣

∣

2}

, (31)

where λ(m2
B, m2

A, q2) = (m2
B +m2

A − q2)2 − 4m2
Bm2

A,

and L, +, − denote the helicities of the axial-vector

mesons.

We plot the differential decays widths of the

B → a1(1260)lν̄l, b1(1235)lν̄l in the effective regions

m2
l 6 q2 6 (mB −mA)2 in Figs. 4–5, where we take

me = mµ = 0. We can integrate the differential de-

cay widths over the variable q2, and obtain the decay

widths, which satisfy the relation Γ− > ΓL �Γ+, and

are consistent with the results of Ref. [8].
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Fig. 3. The B→ a1(1260), b1(1235) form-factors A1(q
2), A2(q

2) and A0(q
2) with the momentum transfer q2,

where we have taken the values M2 = 12 GeV2, s0 = 32 GeV2 and A2 = A.

Fig. 4. Differential decay widths of the B→ a1(1260)lν̄l as functions of q2. Here l = e, µ in the left diagram.

Fig. 5. Differential decay widths of the B→ b1(1235)lν̄l as functions of q2. Here l = e, µ in the left diagram.
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4 Summary and discussion

In this article, we calculate the B → a1(1260),

b1(1235) form-factors in the accessible region 0 6 q2 <

12 GeV2 with the light-cone QCD sum rules at the

leading order approximation, then study the differ-

ential decay widths and decay widths of the semi-

leptonic decays B→ a1(1260)lν̄l, b1(1235)lν̄l.

(1) In this paper, we choose the chiral current

to interpolate the B-meson, and observe that only

the leading-twist LCDAs of the axial-vector mesons

contribute to the form-factors after taking account

of the transversely polarization of the axial-vector

mesons. We avoid contributions from the twist-3

LCDAs, which have the most uncertainty in the form-

factors, by using the chiral current. The uncertainties

originating from the LCDAs are reduced remarkably.

(2) Owing to the G-parity of the axial-vector

mesons 3P1 and 1P1, the form-factors of the B →
a1(1260), b1(1235) transitions have opposite signs.

There exist relations among the B → A transition

form-factors which are in accordance with the predic-

tion of the soft collinear effective theory [23].

(3) The present predictions of the differential de-

cay widths and decay widths of the semi-leptonic

decays B→ a1(1260)lν̄l, b1(1235)lν̄l can be compared

with the experimental data at the KEK-B and LHCb

in the future. If the perturbative O(αs) corrections

are taken into account, the predictions may be im-

proved, however, the improvements are not expected

to be large considering the corresponding calculations

of the B→V form-factors.

The authors would like to thank Dr.Fen Zuo for

helpful discussions.
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