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Implications of the Daya Bay observation of θ13 on the

leptonic flavor mixing structure and CP violation *

XING Zhi-Zhong(0�§)1)

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Abstract: The Daya Bay collaboration has recently reported its first νe → νe oscillation result which points

to θ13 ' 8.8◦ ± 0.8◦ (best-fit ±1σ range) or θ13 6= 0◦ at the 5.2σ level. The fact that this smallest neutrino

mixing angle is not strongly suppressed motivates us to look into the underlying structure of lepton flavor

mixing and CP violation. Two phenomenological strategies are outlined: (1) the lepton flavor mixing matrix

U consists of a constant leading term U0 and a small perturbation term ∆U ; and (2) the mixing angles of

U are associated with the lepton mass ratios. Some typical patterns of U0 are reexamined by constraining

their respective perturbations with current experimental data. We illustrate a few possible ways to minimally

correct U0 in order to fit the observed values of three mixing angles. We point out that the structure of U may

exhibit an approximate µ-τ permutation symmetry in modulus, and reiterate the geometrical description of

CP violation in terms of the leptonic unitarity triangles. The salient features of nine distinct parametrizations

of U are summarized, and its Wolfenstein-like expansion is presented by taking U0 to be the democratic mixing

pattern.
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1 Introduction

Thanks to a number of well-done solar, atmo-

spheric, reactor and accelerator neutrino oscillation

experiments, we are now convinced that three known

neutrinos have finite masses and one lepton flavor can

convert to another [1]. The phenomenon of lepton

flavor mixing at low energies is effectively described

by a 3× 3 matrix U , the so-called Maki-Nakagawa-

Sakata-Pontecorvo (MNSP) matrix [2], in the weak

charged-current interactions:

−Lcc =
g√
2

(
e µ τ

)
L

γµ




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3







ν1

ν2

ν3




L

W−
µ +h.c. . (1)

Given the unitarity of U , it can be parametrized in terms of three angles and three phases:

U =




c12c13 s12c13 s13e
−iδ

−s12c23−c12s13s23e
iδ c12c23−s12s13s23e

iδ c13s23

s12s23−c12s13c23e
iδ −c12s23−s12s13c23e

iδ c13c23


Pν , (2)

where cij ≡ cosθij , sij ≡ sinθij (for ij = 12,13,23),

and Pν = Diag{eiρ,eiσ,1} which is physically relevant

if massive neutrinos are the Majorana particles. A

global analysis of the available neutrino oscillation

data [3] points to θ12 ' 34◦ and θ23 ' 45◦, much larger

than the Cabibbo angle ϑC ' 13◦ in the Cabibbo-

Kobayashi-Maskawa (CKM) quark flavor mixing ma-

trix V [4]. The third mixing angle θ13 is expected to
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be smaller than ϑC, and its central value might be

around 8◦ [5] as hinted by the preliminary T2K [6],

MINOS [7] and Double Chooz [8] data. Three CP -

violating phases of U remain unknown at this stage,

but one of them (i.e., the Dirac phase δ) will be mea-

sured in the forthcoming long-baseline neutrino oscil-

lation experiments.

The Daya Bay collaboration has recently made

a breakthrough in the measurement of θ13 from the

reactor νe → νe oscillations [9]. The best-fit (±1σ

range) result is

sin2 2θ13 = 0.092±0.016(stat)±0.005(syst) , (3)

which is equivalent to θ13 ' 8.8◦ ± 0.8◦ or θ13 6= 0◦

at the 5.2σ level. This very encouraging observation

convinces us that the smallest neutrino mixing angle

is not really small and the MNSP matrix U is not

strongly hierarchical. We are therefore motivated to

study the underlying structure of lepton flavor mixing

and CP violation. In fact, U has been conjectured to

have the following structure for a quite long time [10]:

U = (U0 +∆U)Pν , (4)

in which the leading term U0 is a constant matrix re-

sponsible for two larger mixing angles θ12 and θ23, and

the next-to-leading term ∆U is a perturbation matrix

responsible for both the smallest mixing angle θ13 and

the Dirac CP -violating phase δ. So far a lot of fla-

vor symmetries have been brought into exercise to

derive U0, while ∆U might originate from either an

explicit flavor symmetry breaking scenario or some

finite quantum corrections at a given energy scale

or from a superhigh-energy scale to the electroweak

scale. In view of the new and robust Daya Bay re-

sult for θ13, we are immediately concerned about two

burning issues of the day in the phenomenology of

neutrino physics:

1) If the essential structure of lepton flavor mix-

ing is really revealed by Eq. (4), can there be a

natural pattern of U0 accompanied by a natural

perturbation matrix ∆U?

2) If the main part of the MNSP matrix U is not

a constant mixing matrix, what is the most

straightforward way to understand the salient

features of lepton flavor mixing?

In addition, we are curious about whether the struc-

ture of U has an approximate µ-τ permutation sym-

metry in modulus, whether leptonic CP violation is

significant in neutrino oscillations, whether the other

parametrizations of U besides the one in Eq. (2) are

useful for describing the properties of lepton flavor

mixing and CP violation, and whether there is an in-

teresting and suggestive expansion of U as compared

with the popular Wolfenstein parametrization of the

CKM matrix V [11], and so on.

The purpose of this paper is to answer those easy

questions and outline some possible ways to deal with

those difficult ones as mentioned above. In section 2

we describe two phenomenological strategies towards

understanding the textures of lepton mass matrices

and thus the structure of lepton flavor mixing: one

of them can result in Eq. (4), and the other is ex-

pected to relate the mixing angles to the lepton mass

ratios. In section 3 we reexamine five typical pat-

terns of U0 (the democratic [10], bimaximal [12], tri-

bimaximal [13], golden-ratio [14] and hexagonal [15]

mixing patterns) by estimating their respective per-

turbation matrices with the help of the latest Daya

Bay result for θ13. Except the democratic mixing pat-

tern, we find that the other four patterns of U0 suffer

from a common problem: the viable perturbation ma-

trix ∆U has to be adjusted in a more or less unnatural

way to make one or two of the large mixing angles of

U0 slightly modified but its smallest (vanishing) angle

significantly corrected. Section 4 is devoted to a brief

discussion about the possible minimal perturbations

to U0. We take three interesting examples to illus-

trate three simple approaches for this goal. In section

5 we point out the conditions under which the MNSP

matrix U may have an exact or approximate µ-τ per-

mutation symmetry in modulus. The strength of lep-

tonic CP violation is calculated, and the language of

leptonic unitarity triangles is reiterated to geometri-

cally describe CP violation. Section 6 is devoted to a

summary of nine topologically distinct parametriza-

tions of U and their respective features or merits, and

section 7 is devoted to a Wolfenstein-like expansion of

U by taking U0 to be the democratic mixing pattern.

In section 8 we first summarize the main points and

results of this paper and then make some concluding

remarks.

2 Two phenomenological strategies

The MNSP matrix U actually describes a funda-

mental mismatch between the weak-interaction (fla-

vor) and mass eigenstates of six leptons, or equiv-

alently a mismatch between the diagonalizations of

the charged-lepton mass matrix Ml and the effective

neutrino mass matrix Mν in a given model, no matter

whether the origin of neutrino masses is attributed to

the seesaw mechanisms or not [16]. Assuming mas-

sive neutrinos to be the Majorana particles, we may
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simply write out the leptonic mass terms as

−Lmass =
(
e′ µ′ τ ′

)
L

Ml




e′

µ′

τ ′




R

+
1

2

(
νe νµ ντ

)
L

Mν




νc
e

νc
µ

νc
τ




R

+h.c. , (5)

in which “′” stands for the flavor eigenstates of

charged leptons, “c” denotes the charge-conjugated

neutrino fields, and Mν is symmetric. By means

of the unitary matrices Ol, O′
l and Oν , one can di-

agonalize Ml and Mν through the transformations

O†
l MlO

′
l = M̂l ≡ Diag{me,mµ,mτ} and O†

νMνO
∗
ν =

M̂ν ≡ Diag{m1,m2,m3}, respectively. Then one ar-

rives at the lepton mass terms in terms of the mass

eigenstates:

−L′
mass =

(
e µ τ

)
L

M̂l




e

µ

τ




R

+
1

2

(
ν1 ν2 ν3

)
L

M̂ν




νc
1

νc
2

νc
3




R

+h.c. . (6)

Extending this basis transformation to the standard

weak charged-current interactions, we immediately

obtain Eq. (1) in which the MNSP matrix U is given

by U = O†
l Oν .

The above treatment is most general at a given

energy scale (e.g., the electroweak scale), but it can

still provide us with the following lessons:

1) The structure of lepton flavor mixing is di-

rectly determined by the structures of Ol and

Oν . Since these two unitary matrices are used

to diagonalize Ml and Mν , respectively, their

structures are governed by those of Ml and

Mν , whose eigenvalues are the physical lepton

masses. Therefore, we anticipate that the di-

mensionless flavor mixing angles of U should

be certain kinds of functions whose variables

include four independent mass ratios of three

charged leptons and three neutrinos. Namely,

θij = f

(
mα

mβ

,
mk

ml

, · · ·
)

, (7)

where the Greek subscripts denote the charged

leptons, the Latin subscripts stand for the neu-

trinos, and “· · ·” implies other possible dimen-

sionless parameters originating from the lep-

ton mass matrices. Such an expectation has

proved valid in the quark sector to explain why

the relation sinϑC '
√

md/ms works quite well

and how the hierarchical structure of the CKM

matrix V is related to the strong hierarchies

of quark masses (i.e., mu � mc � mt and

md � ms � mb) [16]. As for the phenomenon

of lepton flavor mixing, it is apparently difficult

to link two large mixing angles θ12 and θ23 to

two small mass ratios me/mµ ' 4.7×10−3 and

mµ/mτ ' 5.9×10−2 [17]. Hence one may con-

sider to ascribe the largeness of θ12 and θ23 to

a very weak hierarchy of three neutrino masses,

such as the conjecture tanθ12 '
√

m1/m2 [18]

or sinθ13 ' sinθ12

√
m2/m3 [19].

2) To establish a direct relation between θij and

lepton mass ratios, one has to specify the tex-

tures of Ml and Mν by allowing some of their

elements to vanish or to be vanishingly small.

The most instructive example of this kind is the

Fritzsch ansatz [20],

Ml,ν =




0 × 0

× 0 ×
0 × ×


 , (8)

which is able to account for current neutrino os-

cillation data to an acceptable degree of accu-

racy (e.g., sinθ23 '
√

mµ/mτ+
√

m2/m3 ' 0.65)

[21]. Another well-known and phenomenologi-

cally viable example is the two-zero textures of

Mν in the basis where Ml is diagonal [22]. Note

that the texture zeros of a fermion mass matrix

dynamically mean that the corresponding ma-

trix elements are sufficiently suppressed as com-

pared with their neighboring counterparts, and

they can be derived from a certain flavor sym-

metry in a given theoretical framework (e.g.,

with the help of the Froggatt-Nielson mecha-

nism [23] or discrete flavor symmetries [24]).

3) We realize that the expectation in Eq. (7) is

actually in conflict with the conjecture made

in Eq. (4). In other words, the leading term of

the MNSP matrix U might be a constant matrix

whose mixing angles are independent of the lep-

ton mass ratios. The reason for this “conflict” is

rather simple: the assumed structures of lepton

flavor mixing in Eqs. (4) and (7) correspond to

two different structures of lepton mass matri-

ces. As we have pointed out above, the direct

dependence of θij on mα/mβ and mk/ml is usu-
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ally a direct consequence of the texture zeros of

Ml and (or) Mν . In contrast, a constant flavor

mixing pattern U0 may arise from some special

textures of Ml and (or) Mν whose entries have

certain kinds of linear correlations or equalities.

For instance, the texture [25]

Mν =




b+c −b −c

−b a+b −a

−c −a a+c


 (9)

assures Oν to be of the tri-bimaximal mixing

pattern. This neutrino mass matrix has no

zero entries, but its nine elements satisfy the

sum rules (Mν)i1 + (Mν)i2 + (Mν)i3 = 0 and

(Mν)1j +(Mν)2j +(Mν)3j = 0 (for i, j = 1,2,3).

Such correlative relations are similar to those

texture zeros in the sense that both of them

may reduce the number of free parameters asso-

ciated with lepton mass matrices, making some

predictions for the lepton flavor mixing angles

technically possible.

4) It is well known that the special textures of

Ml and Mν like that in Eq. (9) can easily be

derived from certain discrete flavor symmetries

(e.g., A4 or S4) [26]. That is why Eq. (4) for-

mally summarizes a large class of lepton flavor

mixing patterns in which the leading terms are

constant matrices originating from some under-

lying flavor symmetries. The fact that θ13 is

not very small poses a meaningful question to

us today: can this mixing angle naturally be

generated from the perturbation matrix ∆U?

The answer to this question is certainly depen-

dent upon the form of U0 in the flavor symmetry

limit. We shall reexamine five typical patterns

of U0 in the subsequent section to get a feeling

of the respective structures of ∆U which can

be constrained by current experimental data on

neutrino oscillations.

In short, one may try to understand the structure

of the MNSP matrix U by following two phenomeno-

logical strategies: one is to explore possible relations

between the flavor mixing angles and the lepton mass

ratios, and the other is to investigate possible con-

stant patterns of lepton flavor mixing as the leading-

order effects. We have seen that the former possibility

essentially points to some vanishing (or vanishingly

small) entries of Ml and Mν , while the latter possi-

bility apparently indicates some equalities or linear

correlations among the entries of Ml or Mν . In both

cases the underlying flavor symmetries play a crucial

role in deriving the structures of lepton mass matrices

which finally determine the structure of lepton flavor

mixing. Of course, how to pin down the correct flavor

symmetries remains an open question.

3 Five patterns of the MNSP matrix

For the sake of simplicity, we typically take θ12 '
34◦, θ13 ' 9◦ and θ23 ' 45◦ as our inputs to fix the

primary structure of the MNSP matrix U . Then we

arrive at

U =




0.819 0.552 0.156e−iδ

−0.395−0.092eiδ 0.586−0.062eiδ 0.698

0.395−0.092eiδ −0.586−0.062eiδ 0.698


Pν . (10)

It makes sense to compare a constant mixing pattern U0 with the observed pattern of U in Eq. (10), such that

one may estimate the structure of the corresponding perturbation matrix ∆U . Let us consider five well-known

patterns of U0 for illustration.

(1) The democratic mixing pattern of lepton flavors [10]:

U0 =




1√
2

1√
2

0

− 1√
6

1√
6

√
2√
3

1√
3

− 1√
3

1√
3




, (11)

whose three mixing angles are θ
(0)
12 = 45◦, θ

(0)
13 = 0◦ and θ

(0)
23 = arctan(

√
2)' 54.7◦ in the standard parametrization

as given in Eq. (2). With the help of Eq. (10), we immediately obtain the form of ∆U = UP †
ν −U0 as follows:
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∆U =




0.112 −0.155 0.156e−iδ

0.013−0.092eiδ 0.178−0.062eiδ −0.118

−0.182−0.092eiδ −0.009−0.062eiδ 0.121


 . (12)

One can see that the magnitude of each matrix element of ∆U is of O(0.1), implying that the realistic pattern

of U might result from a democratic perturbation to U0 (i.e., the nine entries of ∆U are all proportional to a

common small parameter). We shall elaborate on this point in detail in section 7.

(2) The bimaximal mixing pattern of lepton flavors [12]:

U0 =




1√
2

1√
2

0

−1

2

1

2

1√
2

1

2
− 1

2

1√
2




, (13)

which has θ(0)
12 = 45◦, θ(0)

13 = 0◦ and θ(0)
23 = 45◦ in the standard parametrization. Comparing Eq. (13) with Eq.

(10), we obtain the perturbation matrix

∆U =




0.112 −0.155 0.156e−iδ

0.105−0.092eiδ 0.086−0.062eiδ −0.009

−0.105−0.092eiδ −0.086−0.062eiδ −0.009


 . (14)

We see that the matrix elements (∆U)µ3 and (∆U)τ3 are highly suppressed. In other words, the initially

maximal angle θ(0)
23 receives the minimal correction, which is much smaller than the one received by the initially

minimal angle θ(0)
13 . Such a situation seems to be more or less unnatural, at least from a point of view of model

building.

(3) The tri-bimaximal mixing pattern of lepton flavors [13]:

U0 =




√
2√
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2




, (15)

whose three mixing angles are θ(0)
12 = arctan(1/

√
2)' 35.3◦, θ(0)

13 = 0◦ and θ(0)
23 = 45◦ in the standard parametriza-

tion. In a similar way we get the corresponding perturbation matrix

∆U =




0.003 −0.025 0.156e−iδ

0.013−0.092eiδ 0.009−0.062eiδ −0.009

−0.013−0.092eiδ −0.009−0.062eiδ −0.009


 . (16)

It is quite obvious that (∆U)e1, (∆U)e2, (∆U)µ3 and (∆U)τ3 are highly suppressed. So two initially large

angles θ(0)
12 and θ(0)

23 are only slightly modified by the perturbation effects, but the initially minimal angle θ(0)
13

receives the maximal correction.

(4) The golden-ratio mixing pattern of lepton flavors [14]:

U0 =




√
2√

5−
√

5

√
2√

5+
√

5
0

− 1√
5+

√
5

1√
5−

√
5

1√
2

1√
5+

√
5

− 1√
5−

√
5

1√
2




, (17)

which has θ(0)
12 = arctan[2/(1+

√
5)] ' 31.7◦, θ(0)

13 = 0◦ and θ(0)
23 = 45◦ in the standard parametrization. In this
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case the perturbation matrix ∆U turns out to be

∆U =




−0.032 0.026 0.156e−iδ

−0.023−0.092eiδ −0.016−0.062eiδ −0.009

0.023−0.092eiδ 0.016−0.062eiδ −0.009


 . (18)

Similar to the tri-bimaximal mixing pattern, two initially large angles of the golden-ratio mixing pattern are

only slightly corrected, but the initially minimal angle θ(0)
13 is significantly modified by the same perturbation.

(5) The hexagonal mixing pattern of lepton flavors [15]:

U0 =




√
3

2

1

2
0

−
√

2

4

√
6

4

1√
2√

2

4
−

√
6

4

1√
2




, (19)

whose mixing angles are θ(0)
12 = 30◦, θ(0)

13 = 0◦ and θ(0)
23 = 45◦ in the standard parametrization. In this case we

obtain the perturbation matrix

∆U =




−0.047 0.052 0.156e−iδ

−0.041−0.092eiδ −0.026−0.062eiδ −0.009

0.041−0.092eiδ 0.026−0.062eiδ −0.009


 . (20)

This result is quite analogous to the one obtained in Eq. (16) or Eq. (18), simply because the patterns of U0

in these three cases are quite similar.

Now let us summarize some useful lessons that we can directly learn from the above five typical examples

of U .

1) To accommodate the unsuppressed value of θ13 in a generic flavor mixing structure U = (U0 +∆U)Pν ,

one has to choose a proper constant mixing pattern U0 and adjust its perturbation matrix ∆U . The

phenomenological criterion to do so is two-fold: on the one hand, U0 should easily be derived from a

certain flavor symmetry; on the other hand, ∆U should have a natural structure which can easily be

accounted for by either the flavor symmetry breaking or quantum corrections (or both of them).

2) The common feature of the above five patterns of U0 is apparently (U0)e3 = 0 (or equivalently, θ(0)
13 = 0◦),

implying that a relatively large perturbation is required for generating θ13 ∼ 9◦. In this case, the closer

θ(0)
12 and θ(0)

23 are to the observed values of θ12 and θ23, the more unnatural the structure of ∆U seems to

be. The tri-bimaximal mixing pattern given in Eq. (15), which is currently the most popular ansatz for

model building based on certain flavor symmetries, suffers from this unnaturalness in particular [27]. In

this sense we argue that the democratic mixing pattern in Eq. (11) might be more natural and deserve

some more attention.

3) One may certainly consider some possible patterns of U0 which can predict a finite value of θ(0)
13 in the

vicinity of the experimental value of θ13. In this case the three mixing angles of U0 may receive comparably

small corrections from the perturbation matrix ∆U , and thus the naturalness criterion can be satisfied.

For example, the following two patterns of U0 belong to this category and have been discussed in the

literature1): one of them is the so-called correlative mixing pattern [27]2)

U0 =




√
2√
3
c∗

1√
3
c∗ s∗e

−iδ

− 1√
6
− 1√

3
s∗e

iδ
1√
3
− 1√

6
s∗e

iδ
1√
2
c∗

1√
6
− 1√

3
s∗e

iδ − 1√
3
− 1√

6
s∗e

iδ
1√
2
c∗




(21)

1) A more detailed analysis of possible forms of U0 has been done in Ref. [28].

2) The reason for this name is simply that the three flavor mixing angles in this constant pattern exactly satisfy the interesting

correlative relation θ
(0)
12 +θ

(0)
13 = θ

(0)
23 .
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with c∗ ≡ cosθ∗ = (
√

2+1)/
√

6 and s∗ ≡ sinθ∗ = (
√

2−1)/
√

6, which predicts θ(0)
12 = arctan(1/

√
2)' 35.3◦,

θ(0)
23 = 45◦ and θ(0)

13 = θ(0)
23 −θ(0)

12 ' 9.7◦; and the other is the tetra-maximal mixing pattern [29]

U0 =




2+
√

2

4

1

2

2−
√

2

4

−
√

2

4
+

i
(√

2−1
)

4

1

2
− i

√
2

4

√
2

4
+

i
(√

2+1
)

4

−
√

2

4
− i

(√
2−1

)

4

1

2
+

i
√

2

4

√
2

4
− i

(√
2+1

)

4




, (22)

which predicts θ(0)
12 = arctan(2−

√
2) ' 30.4◦, θ(0)

23 = 45◦ and θ(0)
13 = arcsin[(2−

√
2)/4] ' 8.4◦. Of course,

whether such constant mixing patterns can easily be derived from some underlying flavor symmetries

remains an open question.

In short, today’s model building has to take the chal-

lenge caused by the reasonably large value of θ13 as

observed in the Daya Bay experiment [9].

Furthermore, it is worth mentioning that the

renormalization-group running effects or finite quan-

tum corrections are almost impossible to generate

θ13 ' 9◦ from θ(0)
13 = 0◦, unless the seesaw thresh-

old effects or other extreme conditions are taken into

account [30]. One may therefore consider a pattern of

U0 with nonzero θ(0)
13 , such as the tetra-maximal mix-

ing pattern [31] or the correlative mixing pattern [31],

as a starting point of view to calculate the radiative

corrections before confronting it with current experi-

mental data. We shall elaborate on this idea and ex-

amine its impact on leptonic CP violation elsewhere

[31].

4 The minimal perturbation to U0

Note that the perturbation matrix ∆U in Eq. (4)

is in general a sum of all possible perturbations to the

constant flavor mixing matrix U0. From the point of

view of model building, it is helpful to single out a

viable ∆U whose form is as simple as possible. To do

so, let us reexpress Eq. (4) in the following manner:

U = (U0 +∆U)Pν = U0 (1+∆U ′)Pν

= (1+∆U ′
L)U0 (1+∆U ′

R)Pν , (23)

where ∆U = U0∆U ′ = ∆U ′
LU0+U0∆U ′

R+∆U ′
LU0∆U ′

R

holds, and it satisfies the condition U0∆U †+∆UU †
0 +

∆U∆U † = 0 as a result of the unitarity of U itself.

Therefore, one may achieve a viable but minimal per-

turbation to U0 by switching off ∆U ′
L (or ∆U ′

R) and

adjusting ∆U ′
R (or ∆U ′

L) to its simplest form which is

allowed by current experimental data. Such a treat-

ment is actually equivalent to multiply U0 by a uni-

tary perturbation matrix, which may more or less de-

viate from the identity matrix 1, from either its left-

hand side or its right-hand side. The first example

of this kind was given in Ref. [10] for the democratic

mixing pattern, and its ∆U was mainly responsible

for the generation of nonzero θ13 and δ.

Here we concentrate on the typical patterns of U0

discussed above and outline the main ideas of choos-

ing the minimal perturbations to them.

1) If U0 predicts θ(0)
23 = 45◦ and θ(0)

13 = 0◦ together with θ(0)
12 > 34◦ (the best-fit value based on current

neutrino oscillation data [3]), then the simplest way to generate a relatively large θ13, keep θ23 = θ(0)
23 = 45◦

unchanged and correct θ(0)
12 to a slightly smaller value is to choose a complex (2,3) rotation matrix as the

perturbation matrix:

1+∆U ′ =




1 0 0

0 cosθ i sinθ

0 i sinθ cosθ


 or ∆U ′ '




0 0 0

0 − 1

2
sin2 θ i sinθ

0 i sinθ − 1

2
sin2 θ


 , (24)

where θ is a small angle to trigger the perturbation effect. The most striking example in this category is

to take U0 to be the tri-bimaximal mixing pattern given in Eq. (15). The result is [33]:

U =




√
2√
3

1√
3

cosθ
i√
3

sinθ

− 1√
6

1√
3

cosθ+
i√
2

sinθ
1√
2

cosθ+
i√
3

sinθ

1√
6

− 1√
3

cosθ+
i√
2

sinθ
1√
2

cosθ− i√
3

sinθ




Pν , (25)
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which predicts

sin2 θ12 =
1

3
(1−2tan2 θ13) , sin2 θ13 =

1

3
sin2 θ , θ23 = 45◦ , δ = 90◦ (26)

in the standard parametrization. Note that the obtained correlation between θ12 and θ13 is especially

interesting because it leads us to θ12 → 34◦ when θ13 → 9◦, consistent with the present experimental data.

If θ23 is allowed to slightly deviate from θ(0)
23 = 45◦, then one may simply make the replacement i→ eiδ in

Eq. (25).

2) If U0 predicts θ(0)
23 = 45◦ and θ(0)

13 = 0◦ together with θ(0)
12 < 34◦, then the most economical way to generate

a relatively large θ13, keep θ23 = θ(0)
23 = 45◦ unchanged and correct θ(0)

12 to a slightly larger value is to

choose a complex (1,3) rotation matrix as the perturbation matrix:

1+∆U ′ =




cosθ 0 i sinθ

0 1 0

i sinθ 0 cosθ


 or ∆U ′ '




−1

2
sin2 θ 0 i sinθ

0 0 0

i sinθ 0 − 1

2
sin2 θ


 . (27)

Taking U0 to be the golden-ratio mixing pattern given in Eq. (17) for example1), we immediately arrive

at

U =




√
2√

5−
√

5
cosθ

√
2√

5+
√

5

i
√

2√
5−

√
5

sinθ

− 1√
5+

√
5

cosθ+
i√
2

sinθ
1√

5−
√

5

1√
2

cosθ− i√
5+

√
5

sinθ

1√
5+

√
5

cosθ+
i√
2

sinθ − 1√
5−

√
5

1√
2

cosθ+
i√

5+
√

5
sinθ




Pν , (28)

whose predictions include θ23 = 45◦, δ = 90◦, and

sin2 θ12 =
2

5+
√

5
(1+tan2 θ13) , sin2 θ13 =

2

5−
√

5
sin2 θ (29)

in the standard parametrization of U . In this case the correlation between θ12 and θ13 leads us to θ12 → 32◦

when θ13 → 9◦, compatible with current experimental data. Again, the replacement i → eiδ in Eq. (28)

allows one to obtain a somewhat more flexible value of θ23 which may slightly deviate from θ
(0)
23 = 45◦.

3) If U0 is quite far away from the realistic MNSP

matrix U , one has to consider a somewhat com-

plicated perturbation matrix including two ro-

tation angles. In the neglect of CP violation,

for instance, we may consider

1+∆U ′ =




c′12 −s′
12 0

s′
12c

′
23 c′12c

′
23 s′

23

s′
12s

′
23 c′12s

′
23 −c′23


 , (30)

where c′ij ≡ cosθ′
ij and s′

ij ≡ sinθ′
ij (for ij =

12,23). However, we hope that the resulting

structure of U still allows us to obtain one or

two predictions, in particular for the mixing an-

gle θ13. An example of this kind has been given

in Ref. [35] by taking U0 to be the democratic

mixing pattern, and it predicts an interesting

relationship between θ13 and θ23 in the standard

parametrization:

sinθ13 =

√
2−tanθ23√

5−2
√

2tanθ23 +4tan2 θ23

. (31)

Typically taking θ23 ' 45◦, we arrive at θ13 '
9.6◦ [35], which is in agreement with the Daya

Bay result [9]. It is easy to accommodate a CP -

violating phase in ∆U ′ [35], although its form

might not be really minimal anymore.

For those constant flavor mixing patterns with θ(0)
13 6=

0◦ from the very beginning, such as the correlative

[27] and tetra-maximal [29] mixing scenarios given

in Eqs. (21) and (22), the similar minimal perturba-

tions can be introduced in order to make the resulting

MNSP matrix U fit the experimental data to a much

better degree of accuracy.

1) An interesting example with U0 being the tri-bimaximal mixing pattern has been discussed in Ref. [34], but this ansatz

predicts θ12 to be slightly larger than θ
(0)
12 ' 35.3◦.
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It should be noted that the above discussions

about possible patterns of ∆U (or ∆U ′) with respect

to those of U0 are purely phenomenological. From the

point of view of model building, it is more meaningful

to consider the textures of lepton mass matrices

Ml = M (0)
l +∆Ml , Mν = M (0)

ν +∆Mν , (32)

where M (0)
l and M (0)

ν can be obtained in the limit of

certain flavor symmetries, and their special structures

allow us to achieve a constant flavor mixing pattern

U0. The perturbation matrices ∆Ml and ∆Mν play

an important role in transforming U0 into the realistic

MNSP matrix U , and thus their textures should be

determined in a simple way and with a good reason.

The connection between ∆Ml,ν and ∆U (or ∆U ′) de-

pends on the details of a lepton flavor model and may

not be very transparent in most cases. In the basis

where Ml is real and positive, however, ∆Mν can be

formally expressed as

∆Mν = (U0 +∆U)Mν (U0 +∆U)
T −U0M

(0)

ν UT
0 ,

(33)

in which Mν = PνM̂νP
T
ν and M

(0)

ν = P ′
νM̂ ′

νP
′T
ν

together with M̂ ′
ν ≡ Diag{m′

1,m
′
2,m

′
3} and P ′

ν ≡
Diag{eiρ′

,eiσ′

,1}. Here m′
i (for i = 1,2,3) denote the

eigenvalues of M (0)
ν in the symmetry limit, while ρ′

and σ′ stand for the Majorana phases in the same

limit. It is therefore possible, at least in principle, to

fix the structure of ∆Mν with the help of a certain

flavor symmetry and current experimental data.

5 On µ-τ symmetry and CP violation

Let us proceed to discuss two other flavor issues

in the lepton sector after the successful measurement

of the smallest mixing angle θ13 [9]. One of them is

about a possible departure of the largest mixing an-

gle θ23 from 45◦, and the other is about the strength

of leptonic CP violation. The former is an important

issue in neutrino phenomenology, because it crucially

determines the structure of the MNSP matrix U ; and

the latter is certainly more important because the ob-

served matter-antimatter asymmetry of the Universe

might be associated with leptonic CP violation at low

energies via the seesaw and leptogenesis mechanisms

[36].

It is well known that θ23 ' 45◦ is favored by cur-

rent atmospheric and accelerator neutrino oscillation

data [1]. If θ23 is exactly equal to 45◦, then one may

arrive at a partial µ-τ permutation symmetry in the

MNSP matrix U (i.e., the equality |Uµ3| = |Uτ3|).
This point can easily be seen from Eq. (10), where

θ23 ' 45◦ has typically been input. The full µ-τ sym-

metry of U in modulus is described by the equalities

|Uµ1|= |Uτ1| , |Uµ2|= |Uτ2| , |Uµ3|= |Uτ3| , (34)

equivalent to two independent sets of conditions in

the standard parametrization [37]:

θ23 = 45◦ , θ13 = 0◦ , (35)

or

θ23 = 45◦ , δ =±90◦ . (36)

One can see that the constant mixing patterns in Eqs.

(13), (15), (17) and (19) satisfy the conditions in Eq.

(35), while those in Eqs. (22), (25) and (28) satisfy

the conditions in Eq. (36)1). Hence these seven sce-

narios of the MNSP matrix U all have the complete

µ-τ symmetry in modulus, or equivalently the equal-

ities |Uµi| = |Uτi| (for i = 1,2,3). Now that θ13 6= 0◦

has firmly been established by the Daya Bay experi-

ment [9], we are therefore concerned about a possible

deviation of θ23 from 45◦ and (or) a possible depar-

ture of δ from ±90◦. We speculate that U might have

an approximate µ-τ symmetry with |Uµi| ' |Uτi|, in

contrast with the approximate off-diagonal symmetry

of the CKM matrix V in modulus (i.e., |Vus| ' |Vcd|,
|Vcb| ' |Vts| and |Vub| ' |Vtd| [1]).

In the basis where the flavor eigenstates of three

charged leptons are identified with their mass eigen-

states (i.e., Ml = M̂l), the Majorana neutrino mass

matrix of the form

Mν =




a b −b

b c d

−b d c


 (37)

predicts the µ-τ permutation symmetry of the MNSP

matrix U with θ13 = 0◦ and θ23 = 45◦; while the mass

matrix of the form

Mν =




a b −b∗

b c d

−b∗ d c∗


 (38)

leads us to the the µ-τ symmetry of U with δ =±90◦

and θ23 = 45◦. In either of the above textures of

Mν , its entries have certain kinds of linear correla-

tions or equalities and thus can be generated from

some underlying flavor symmetries. In view of the

experimental evidence for θ13 6= 0◦ [9], the pattern of

Mν in Eq. (37) has to be modified. For a similar

1) The correlative mixing pattern in Eq. (21) may also satisfy the conditions in Eq. (36) if its CP -violating phase δ is taken

to be ±90◦.
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reason, the more reliable and accurate experimental

knowledge on θ23 and δ will be extremely useful for us

to identify the effect of µ-τ symmetry breaking and

build more realistic models for lepton mass genera-

tion, flavor mixing and CP violation.

The fact that θ13 is not strongly suppressed is cer-

tainly a good news to the experimental attempts to-

wards a measurement of CP violation in the lepton

sector. The strength of CP violation in neutrino os-

cillations is described by the Jarlskog rephasing in-

variant [38]

Jl = Im
(
Ue1Uµ2U

∗
e2U

∗
µ1

)
= Im

(
Ue2Uµ3U

∗
e3U

∗
µ2

)
= · · ·

= c12s12c
2
13s13c23s23 sinδ , (39)

which is proportional to the sine of the smallest

flavor mixing angle θ13. In the quark sector one

has determined the corresponding Jarlskog invariant

Jq ' 3×10−5 [1] and attributed its smallness to the

strongly suppressed values of quark flavor mixing an-

gles (i.e., ϑC ≡ ϑ12 ' 13◦, ϑ13 ' 0.2◦ and ϑ23 ' 2.4◦).

In the lepton sector both θ12 and θ23 are large, and

thus it is possible to achieve a relatively large value

of Jl if the CP -violating phase δ is not suppressed

either. Note that the maximal value of Jl or Jq can

be obtained only when the MNSP (or CKM) matrix

takes the special Cabibbo texture VC [39] or its equiv-

alent form V ′
C in the standard-parametrization phase

convention:

VC =




1√
3

1√
3

1√
3

1√
3

ω√
3

ω2

√
3

1√
3

ω2

√
3

ω√
3




=⇒ V ′
C =




1√
3

1√
3

−i√
3

−1

2

(
1+

i√
3

)
1

2

(
1− i√

3

)
1√
3

1

2

(
1− i√

3

)
− 1

2

(
1+

i√
3

)
1√
3




, (40)

where ω = ei2π/3 is the complex cube-root of unity

(i.e., ω3 = 1). Therefore, VC or V ′
C predicts θ12 = θ23 =

45◦, θ13 = arctan(1/
√

2) ' 35.3◦ and δ = 90◦, leading

to the maximal CP violation Jmax = 1/(6
√

3)' 9.6×
10−2. Unfortunately, both the CKM matrix V and

the MNSP matrix U are remarkably different from the

Cabibbo matrix VC. We see Jq/Jmax ' 3×10−4, and

hence CP violation is rather weak in the quark sector.

Taking θ12 ' 34◦, θ13 ∼ 9◦ and θ23 ' 45◦ as a realistic

example of U , we arrive at Jl/Jmax ' 0.37sinδ, im-

plying that the magnitude of leptonic CP violation

can actually reach the percent level in neutrino os-

cillations if the CP -violating phase δ is not strongly

suppressed (e.g., δ & 16◦ for the values of three mixing

angles taken above). Whether CP violation is signif-

icant or not turns out to be an important question in

lepton physics, especially in neutrino phenomenology.

Note that Jl 6= 0 is a necessary and sufficient con-

dition for leptonic CP violation. In particular, the

determinant of the commutator of lepton mass ma-

trices [40]

Det
(
i
[
MνM

†
ν ,MlM

†

l

])

= 2Jl

(
m2

e −m2
µ

)(
m2

µ−m2
τ

)
(m2

τ −m2
e)

(m2
1−m2

2) (m2
2−m2

3) (m2
3−m2

1) (41)

is unable to provide us with any more information

about CP violation. The reason is simply that

Jl would automatically vanish if the masses of two

charged leptons or two neutrinos became degenerate

[41]. In other words, one may consider the conditions

for CP violation either at the level of lepton flavor

mixing (i.e., Jl or δ) or at the level of lepton mass

matrices, but a confusion or double-counting problem

may occur if the conditions obtained at two different

levels are mixed like Eq. (41). The same observation

is true in the quark sector, as already pointed out in

Ref. [42].

A geometrical description of CP violation in

terms of the unitarity triangles has proved very useful

in the quark sector [1]. This language was first ap-

plied to the lepton sector in Ref. [16], in which six lep-

tonic unitarity triangles have been named as 4e, 4µ,

4τ and 41, 42, 43 (see Fig. 1 for illustration). They

totally have nine independent inner angles and eigh-

teen independent sides, but their areas are all equal

to Jl/2 as dictated by the unitarity of U itself 1).

If U = VC is taken, then the six unitarity triangles

are congruent with one another and converge to an

equilateral triangle whose sides are all equal to 1/3

and whose area is equal to Jmax/2. The fact that U

is rather different from VC means somewhat smaller

CP -violating effects in the leptonic charged-current

interactions. Given δ ' 90◦ together with θ12 ' 34◦,

θ13 ∼ 9◦ and θ23 ' 45◦, for instance, the nine inner

angles of the six unitarity triangles in Fig. 1 turn out

1) If the unitarity of U is directly violated in the presence of light sterile neutrinos or indirectly broken due to the existence

of heavy sterile neutrinos, such unitarity triangles will change to the quadrangles [43] or polygons [44] in which new CP -violating

effects must be included.
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to be

Φ≡




Φe1 Φe2 Φe3

Φµ1 Φµ2 Φµ3

Φτ1 Φτ2 Φτ3


'




12.05◦ 26.11◦ 141.8◦

83.98◦ 76.94◦ 19.08◦

83.98◦ 76.94◦ 19.08◦


 .

(42)

We see that this unitarity-triangle angle matrix ex-

hibits an interesting µ-τ symmetry as guaranteed by

the inputs δ' 90◦ and θ23 ' 45◦. In addition, its nine

matrix elements are rephasing-invariant and satisfy

the sum rules [45]
∑

α

Φαi =
∑

i

Φαi = 180◦ , (43)

where the subscript α runs over e, µ and τ , and i

runs over 1, 2 and 3. We expect that the future long-

baseline neutrino oscillation experiments can hope-

fully determine or constrain some of the above angles

and thus pin down the CP -violating phase δ of U

even in the presence of terrestrial matter effects on

the unitarity triangles [46].

Fig. 1. Six unitarity triangles of the MNSP matrix U in the complex plane. Each triangle is named by

the index that does not appear in its three sides [16], and the relative scale of the six triangles is roughly

consistent with the assumption of δ ' 90◦ and current experimental data on the three flavor mixing angles

of U [45].

6 Nine distinct parametrizations

The 3×3 unitary flavor mixing matrix can always be parametrized in terms of three rotation angles and a

few phase angles. A classification of all the possible parametrizations of this kind has been done in Ref. [47].

Here we list nine topologically distinct parametrizations of the MNSP matrix U in Table 1, in which three
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rotation matrices are defined as

R12(θ12, δ) =




c12 s12 0

−s12 c12 0

0 0 e−iδ


 , R23(θ23, δ) =




e−iδ 0 0

0 c23 s23

0 −s23 c23


 , R13(θ13, δ) =




c13 0 s13

0 e−iδ 0

−s13 0 c13


 , (44)

with cij ≡ cosθij and sij ≡ sinθij (for ij = 12,13,23). Although all the parametrizations of U (or the CKM matrix

V ) are mathematically equivalent, we argue that some of them might be phenomenologically more interesting

in the sense that they might either make the underlying dynamics of flavor mixing more transparent or lead to

more straightforward and simpler relations between fundamental parameters and observable quantities [47].

Table 1. A classification of nine topologically distinct parametrizations of the MNSP matrix U in terms of

three rotation angles and three phase angles [47], where Pν = Diag{eiρ,eiσ,1} denotes the Majorana phase

matrix. The phase (or sign) convention of each parametrization is adjustable.

different parametrizations useful relations

pattern (1): U = R12(θ12)⊗R23(θ23, δ)⊗RT
12(θ′12)⊗Pν Jl = s12c12s′12c′12s2

23c23 sinδ


s12s′12c23 +c12c′12e−iδ s12c′12c23−c12s′12e−iδ s12s23

c12s′12c23−s12c′12e−iδ c12c′12c23 +s12s′12e−iδ c12s23

−s′12s23 −c′12s23 c23


Pν

tanθ12 = |Ue3/Uµ3|

tanθ′12 = |Uτ1/Uτ2|

cosθ23 = |Uτ3|

pattern (2): U = R23(θ23)⊗R12(θ12, δ)⊗RT
23(θ′23)⊗Pν Jl = s2

12c12s23c23s′23c′23 sinδ


c12 s12c′23 −s12s′23

−s12c23 c12c23c′23 +s23s′23e−iδ −c12c23s′23 +s23c′23e−iδ

s12s23 −c12s23c′23 +c23s′23e−iδ c12s23s′23 +c23c′23e−iδ


Pν

cosθ12 = |Ue1|

tanθ23 = |Uτ1/Uµ1|

tanθ′23 = |Ue3/Ue2|

pattern (3): U = R23(θ23)⊗R13(θ13, δ)⊗R12(θ12)⊗Pν Jl = s12c12s23c23s13c213 sinδ


c12c13 s12c13 s13

−c12s23s13−s12c23e−iδ −s12s23s13 +c12c23e−iδ s23c13

−c12c23s13 +s12s23e−iδ −s12c23s13−c12s23e−iδ c23c13


Pν

tanθ12 = |Ue2/Ue1|

tanθ23 = |Uµ3/Uτ3|

sinθ13 = |Ue3|

pattern (4): U = R12(θ12)⊗R13(θ13, δ)⊗RT
23(θ23)⊗Pν Jl = s12c12s23c23s13c213 sinδ



c12c13 c12s23s13 +s12c23e−iδ c12c23s13−s12s23e−iδ

−s12c13 −s12s23s13 +c12c23e−iδ −s12c23s13−c12s23e−iδ

−s13 s23c13 c23c13


Pν

tanθ12 = |Uµ1/Ue1|

tanθ23 = |Uτ2/Uτ3|

sinθ13 = |Uτ1|

pattern (5): U = R31(θ13)⊗R12(θ12, δ)⊗RT
13(θ′13)⊗Pν Jl = s2

12c12s13c13s′13c′13 sinδ


c12c13c′13 +s13s′13e−iδ s12c13 −c12c13s′13 +s13c′13e−iδ

−s12c′13 c12 s12s′13

−c12s13c′13 +c13s′13e−iδ −s12s13 c12s13s′13 +c13c′13e−iδ


Pν

cosθ12 = |Uµ2|

tanθ13 = |Uτ2/Ue2|

tanθ′13 = |Uµ3/Uµ1|

pattern (6): U = R12(θ12)⊗R23(θ23, δ)⊗R13(θ13)⊗Pν Jl = s12c12s23c223s13c13 sinδ


−s12s23s13 +c12c13e−iδ s12c23 s12s23c13 +c12s13e−iδ

−c12s23s13−s12c13e−iδ c12c23 c12s23c13−s12s13e−iδ

−c23s13 −s23 c23c13


Pν

tanθ12 = |Ue2/Uµ2|

sinθ23 = |Uτ2|

tanθ13 = |Uτ1/Uτ3|

pattern (7): U = R23(θ23)⊗R12(θ12, δ)⊗RT
13(θ13)⊗Pν Jl = s12c212s23c23s13c13 sinδ



c12c13 s12 −c12s13

−s12c12c13 +s12s13e−iδ c12c23 s12c23s13 +s23c13e−iδ

s12s23c13 +c23s13e−iδ −c12s23 −s12s23s13 +c23c13e−iδ


Pν

sinθ12 = |Ue2|

tanθ23 = |Uτ2/Uµ2|

tanθ13 = |Ue3/Ue1|

pattern (8): U = R13(θ13)⊗R12(θ12, δ)⊗R23(θ23)⊗Pν Jl = s12c212s23c23s13c13 sinδ


c12c13 s12c23c13−s23s13e−iδ s12s23c13 +c23s13e−iδ

−s12 c12c23 c12s23

−c12s13 −s12c23s13−s23c13e−iδ −s12s23s13 +c23c13e−iδ


Pν

sinθ12 = |Uµ1|

tanθ23 = |Uµ3/Uµ2|

tanθ13 = |Uτ1/Ue1|

pattern (9): U = R13(θ13)⊗R23(θ23, δ)⊗RT
12(θ12)⊗Pν Jl = s12c12s23c223s13c13 sinδ



−s12s23s13 +c12c13e−iδ −c12s23s13−s12c13e−iδ c23s13

s12c23 c12c23 s23

−s12s23c13−c12s13e−iδ −c12s23c13 +s12s13e−iδ c23c13


Pν

tanθ12 = |Uµ1/Uµ2|

sinθ23 = |Uµ3|

tanθ13 = |Ue3/Uτ3|
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In other words, they are possible to provide us with

some novel points of view on the structure of lepton

or quark flavor mixing. As stressed by Feynman, “dif-

ferent views suggest different kinds of modifications

which might be made” and “a good theoretical physi-

cist today might find it useful to have a wide range

of physical viewpoints and mathematical expressions

of the same theory available to him” [48].

Let us focus on the MNSP matrix U and make

some comments on its nine different parametrizations

listed in Table 1.

1) Pattern (1) was first proposed in Ref. [49] , and

it is usually expressed in terms of the following

notations:

U =




slsνc+clcνe−iϕ slcνc−clsνe
−iϕ sls

clsνc−slcνe−iϕ clcνc+slsνe
−iϕ cls

−sνs −cνs c


Pν ,

(45)

where cl,ν ≡ cosθl,ν , sl,ν ≡ sinθl,ν , c ≡ cosθ and

s≡ sinθ. In the leading-order approximation we

have sν ' s12, s ' s23 and sl ' s13/s23. There

are two remarkable merits of this parametriza-

tion: 1) it is quite useful for model building if

the neutrino mass spectrum has a normal hi-

erarchy as the charged-lepton or quark mass

spectrum (e.g., tanθl '
√

me/mµ and tanθν '
√

m1/m2 have been conjectured in Ref. [18]);

and 2) it allows us to obtain impressively sim-

ple expressions of the one-loop renormalization-

group equations for three flavor mixing an-

gles and three CP -violating phases, much sim-

pler than those obtained by using the standard

parametrization in Eq. (2) [50].

2) Pattern (2) is equivalent to the original

Kobayashi-Maskawa parametrization [4]. The

structure of this pattern and those of patterns

(3) and (7) have a common feature: the rotation

matrix on the left-hand side of U is R23(θ23),

which is commutable with a diagonal matrix

of the form Diag{A,0,0}. When a neutrino

beam travels through a normal medium, the co-

herent forward scattering effect induced by the

charged-current interactions of electron neutri-

nos (or antineutrinos) with matter can just

generate such an effective potential term [51].

Hence patterns (2), (3) and (7) are more con-

venient to describe matter effects on neutrino

oscillations. In particular, it has been shown in

Ref. [52] that these three parametrizations of

U can all lead us to the exact and interesting

Toshev relation [53]

sin δ̃ sin2θ̃23 = sinδ sin2θ23 , (46)

where θ̃23 and δ̃ denote the effective counter-

parts of θ23 and δ in matter.

3) Pattern (3) is equivalent to the standard

parametrization of U given in Eq. (2) [1], al-

though its phase convention is slightly differ-

ent. This representation becomes most popu-

lar today because its three mixing angles (θ12,

θ23, θ13) directly measure the effects of so-

lar, atmospheric and reactor neutrino oscilla-

tions (sin2 2θ12, sin2 2θ23, sin2 2θ13) in the two-

flavor approximation in vacuum. Furthermore,

the smallest mixing angle θ13 determines the

smallest matrix element Ue3 of the MNSP ma-

trix U in a way analogous to the standard

parametrization of the CKM matrix V , where

the smallest element Vub is controlled by the

smallest mixing angle ϑ13 [1]. Hence in this

parametrization the hierarchy of three mixing

angles can almost truly reflect the overall hier-

archy of the flavor mixing matrix, as we have

discussed in sections 3, 4 and 5.

4) Pattern (5) is structurally special in the sense

that only the 3×3 flavor mixing matrix U can

have this form around its “central element” Uµ2.

As a result, two off-diagonal asymmetries of U

in modulus can simply be expressed as

AL ≡ |Ue2|2−|Uµ1|2 = |Uµ3|2−|Uτ2|2

= |Uτ1|2−|Ue3|2 = s2
12 (c2

13−c′213) ,

AR ≡ |Ue2|2−|Uµ3|2 = |Uµ1|2−|Uτ2|2

= |Uτ3|2−|Ue1|2 = s2
12 (c2

13−s′2
13) .

(47)

Current neutrino oscillation data indicate that

both AL 6= 0 and AR 6= 0 hold at the 3σ level,

implying that the MNSP matrix U is appar-

ently asymmetric in modulus about either its

Ue1-Uµ2-Uτ3 axis or its Ue3-Uµ2-Uτ1 axis [54]. In

contrast, the CKM matrix V is roughly sym-

metric in modulus about its Vud-Vcs-Vtb axis.

Another unique feature of pattern (5) is that

it assures three mixing angles to be compara-

bly large and the (Dirac) CP -violating phase to

be nearly minimal (in particular, ϑ12 ' 13.2◦,

ϑ13 ' 10.1◦, ϑ′
13 ' 10.3◦ and δ ' 1.1◦ for the

quark sector; and all the three mixing angles

are around 45◦ for the lepton sector with a much

smaller Dirac CP -violating phase [55]). In this

sense the approximate flavor mixing democracy
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and minimal CP violation have been discussed

in Ref. [55] as an alternative point of view to

look at the flavor puzzles of leptons and quarks.

5) Some interest has also been paid to patterns (4),

(6) and (8) [56] for two simple reasons: 1) none

of the three flavor mixing angles is suppressed

in each of them; and 2) the CP -violating phase

δ is strongly correlated with the mixing angles.

This kind of strong parameter correlation might

allow one to determine δ with fewer uncertain-

ties from an experimental point of view, as com-

pared with the relatively weak parameter cor-

relation in patterns (3), (7) and (9), where the

value of θ13 is much smaller than those of θ12

and θ23. Generally speaking, however, patterns

(4), (6), (7), (8) and (9) seem to be somewhat

less interesting than patterns (1), (2), (3) and

(5) for the phenomenological studies of flavor

physics.

For each of the nine parametrizations of the MNSP

matrix U , the explicit expression of the Jarlskog in-

variant of leptonic CP violation Jl has been given in

Table 1.

7 The Wolfenstein-like expansion

Following the conjecture that the MNSP matrix U

is composed of a constant leading term U0 and a per-

turbation term ∆U as described in Eq. (4), we have

argued that the structure of ∆U is relatively natural

if U0 takes the democratic mixing pattern. In par-

ticular, the numerical result of ∆U obtained in Eq.

(12) indicates that its nine matrix elements are all of

O(0.1) and thus can easily be described by a com-

mon small parameter. This observation reminds us

of the well-known Wolfenstein parametrization of the

CKM matrix V , which was proposed soon after the

smallest element Vub was experimentally determined

[11]. Such a parametrization has proved to be very

useful because it clearly reveals the observed strong

hierarchy in the quark flavor structure. Although

a straightforward Wolfenstein-like parametrization of

the MNSP matrix U has been discussed [15], it is

not useful because the structure of U is not as hi-

erarchical as that of V . A different starting point

of view is to speculate that the realistic form of U

comes from the democratic mixing pattern U0 and a

Wolfenstein-like perturbation ∆U . Here we proceed

to explore this noteworthy possibility in some detail,

so as to illustrate an alternative way for describing

the phenomenon of lepton flavor mixing other than

those parametrizations discussed in section 6.

Comparing Eq. (11) with Eq. (2), we can de-

fine three Wolfenstein-like parameters in the following

way:

θ12 ≡ θ(0)
12 −θx with sinθx ≡λ ,

θ23 ≡ θ(0)
23 −θy with sinθy ≡Aλ , (48)

θ13 ≡ θ(0)
13 −θz with sinθz ≡−Bλ ,

where the magnitudes of A and B are expected to

be of O(1). In view of θ
(0)
12 = 45◦, θ

(0)
23 ' 54.7◦ and

θ(0)
13 = 0◦ given by U0 together with θ12 ' 34◦, θ23 ' 45◦

and θ13 ' 9◦ extracted from current neutrino oscilla-

tion data, for example, we typically obtain

λ' 0.19 , A' 0.88 , B ' 0.82 . (49)

Up to the accuracy of O(λ2), the sine and cosine of

each flavor mixing angle are found to be

s12 ' 1√
2

(
1−λ− 1

2
λ2

)
,

c12 ' 1√
2

(
1+λ− 1

2
λ2

)
,

s13 = Bλ ,

c13 ' 1− 1

2
B2λ2 ,

s23 '
√

2√
3

(
1− 1√

2
Aλ− 1

2
A2λ2

)
,

c23 ' 1√
3

(
1+

√
2Aλ− 1

2
A2λ2

)
.

(50)

Then the nine matrix elements of U can be expanded

in terms of the small parameter λ as

Ue1 ' 1√
2

[
1+λ− 1

2
(1+B2)λ2

]
eiρ ,

Ue2 ' 1√
2

[
1−λ− 1

2
(1+B2)λ2

]
eiσ ,

Ue3 = B̂∗λ ,

Uµ1 ' − 1√
6

{
1+

(√
2A−1+

√
2B̂

)
λ

−1

2

[
1+2

√
2A+A2−2

(√
2−A

)
B̂

]
λ2

}
eiρ ,

Uµ2 ' 1√
6

{
1+

(√
2A+1−

√
2B̂

)
λ

−1

2

[
1−2

√
2A+A2−2

(√
2+A

)
B̂

]
λ2

}
eiσ ,

Uµ3 '
√

2√
3

[
1− 1√

2
Aλ− 1

2
(A2 +B2)λ2

]
,

Uτ1 ' 1√
3

{
1− 1√

2

(√
2+A+B̂

)
λ

−1

2

[
1−

√
2A+A2 +

√
2
(
1+

√
2A

)
B̂

]
λ2

}
eiρ ,
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Uτ2 ' − 1√
3

{
1+

1√
2

(√
2−A+B̂

)
λ

−1

2

[
1−

√
2A+A2 +

√
2
(
1−

√
2A

)
B̂

]
λ2

}
eiσ ,

Uτ3 ' 1√
3

[
1+

√
2Aλ− 1

2
(A2 +B2)λ2

]
, (51)

where B̂ ≡ Beiδ is defined, and the Majorana CP -

violating phases ρ and σ are included. In this

parametrization of U , the Jarlskog invariant of CP

violation and two off-diagonal asymmetries defined

in Eq. (47) turn out to be

Jl '
1

3
√

2
Bλsinδ

[
1+

1√
2
Aλ−(2A2 +B2−2)λ2

]
,

(52)

and

AL ' 1

3

[
1−

√
2
(√

2+A+B cosδ
)

λ

−1

2

(
A2 +5B2−4

√
2A+2AB cosδ

)
λ2

]
,

AR ' −1

6

[
1−2

(
2
√

2A−3
)

λ−(2A2 +B2)λ2
]

.

(53)

Taking λ' 0.19 and B ' 0.82 for example, we obtain

Jl/Jmax '
√

6Bλsinδ∼ 0.38sinδ in the leading-order

approximation, consistent with our estimate made be-

low Eq. (40). So the leptonic Jarlskog invariant can

be as large as a few percent for an unsuppressed value

of δ.

8 Summary and concluding remarks

Motivated by the robust Daya Bay result for a

relatively large value of the smallest neutrino mixing

angle θ13, we have explored the leptonic flavor mix-

ing structure and CP violation in a quite systematic

way. Our main points and results are summarized as

follows.

(1) We have outlined two phenomenological

strategies for understanding the textures of lepton

mass matrices and thus the structure of lepton fla-

vor mixing:

1) The MNSP matrix U is expressed as the sum

of a constant leading term U0 and a small per-

turbation term ∆U . U0 is responsible for two

larger mixing angles and may result from a cer-

tain flavor symmetry, while ∆U is responsible

for the smallest mixing angle and CP -violating

phase(s) and can be generated from the sym-

metry breaking or quantum corrections. As a

consequence of the flavor symmetry at the level

of lepton mass matrices, their entries have cer-

tain kinds of linear correlations or equalities.

2) The mixing angles of U are associated with the

ratios of charged-lepton and neutrino masses.

In this case the lepton mass matrices may have

some texture zeros which can also be derived

from a certain flavor symmetry.

At present the first strategy is more popular for model

building, but one has to come up with some new ideas

in order to account for the observed value of θ13. We

stress that both approaches deserve further studies, in

particular when the neutrino oscillation data on three

flavor mixing angles become more and more precise.

(2) We have reexamined the democratic, bimaxi-

mal, tri-bimaximal, golden-ratio and hexagonal mix-

ing patterns as possible candidates for U0, and con-

strained their respective perturbations by using cur-

rent experimental data. To generate θ13 ' 9◦ together

with the allowed values of θ12 and θ23, we find that

the structure of ∆U with respect to the democratic

mixing pattern seems to be most natural because its

nine elements are all of O(0.1). So we have proposed

a Wolfenstein-like expansion of the MNSP matrix U

with the help of the democratic mixing pattern and

a small parameter λ ' 0.19, as compared with the

well-known Wolfenstein parametrization of the CKM

matrix V .

(3) Concentrating on the general conjecture U =

(U0 +∆U)Pν , we have discussed the possibly minimal

form of ∆U for a given pattern of U0 as mentioned

above. The possibility of (U0)e3 6= 0 has also been

taken into account. Let us emphasize two points in

the following:

1) Given (U0)e3 = 0 (e.g., the tri-bimaximal mixing

pattern), the ∆U part has to be taken more se-

riously than before in building a realistic model

of lepton mass matrices. The reason is sim-

ply that it is a highly nontrivial job to generate

θ13 ' 9◦ from θ(0)
13 = 0◦.

2) It is worth paying more attention to the pat-

terns of U0 with nonzero θ(0)
13 , such as the cor-

relative or tetra-maximal mixing pattern. In

this case one might be able to adjust the struc-

ture of ∆U to a simple form, but whether the

origin of U0 itself has a good reason (e.g., a sim-

ple or convincing flavor symmetry) remains an

open question.

For a detailed analysis of the renormalization-group

running effects on U with the value of θ13 as observed
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in the Daya Bay experiment, we refer the reader to

Ref. [32].

(4) We have pointed out a salient feature of the

MNSP matrix U : it may exhibit an approximate

µ-τ permutation symmetry in modulus thanks to

θ23 ' 45◦. It is therefore crucial for the future neu-

trino oscillation experiments to determine the depar-

ture of θ23 from 45◦. From the point of view of model

building, the sign of θ23−45◦ is a useful and sensitive

model discriminator as the size of θ13 is.

(5) We have stressed that δ ' ±90◦ is not only

important for enhancing the strength of leptonic CP

violation but also helpful for making the structure of

U closer to its µ-τ symmetry limit. A geometrical

description of CP violation has also been highlighted

by considering the language of the leptonic unitarity

triangles.

(6) We have summarized the main merits of nine

topologically distinct parametrizations of U . Some of

them turn out to be useful in revealing the features of

lepton flavor mixing and CP violation. We have also

introduced an alternative way to describe the MNSP

matrix U — it is a Wolfenstein-like expansion of U

based on the democratic mixing pattern.

Let us reiterate that the relative sizes of the nine

elements of the MNSP matrix U cannot be completely

fixed unless we have known θ23 > 45◦ or θ23 < 45◦ as

well as the range of δ. With the help of the available

experimental data and the unitarity of U , we find

|Ue1| > |Uµ3| ∼ |Uτ3|> |Uµ2| ∼ |Uτ2|

> |Ue2|> |Uµ1| ∼ |Uτ1|> |Ue3| , (54)

where “∼” implies that the relative magnitudes of

|Uµi| and |Uτi| (for i = 1,2,3) remain undetermined

at present. In comparison, the nine elements of the

CKM matrix V are known to have the following hi-

erarchy [57]:

|Vtb|> |Vud|> |Vcs|� |Vus|> |Vcd|

� |Vcb|> |Vts|� |Vtd|> |Vub| . (55)

We see that there is a striking similarity between the

quark and lepton flavor mixing matrices: the smallest

elements of both V and U appear in their respective

top-right corners.

It is certainly impossible to make an exhaustive

overview of all the problems associated with the lep-

tonic flavor mixing structure and CP violation at this

stage and in this paper1). But we hope that some of

our points or questions may trigger some new ideas

and further efforts towards deeper understanding of

the underlying dynamics responsible for lepton mass

generation, flavor mixing and CP violation. We em-

phasize that the lessons learnt from the quark sector

are especially beneficial to our attempts in the lep-

ton sector. Let us illustrate why this emphasis makes

sense from a historical point of view as below.

In the history of flavor physics it took quite a long

time to measure the four independent parameters of

the CKM matrix V , but the experimental develop-

ment had a clear roadmap:

ϑ12 (or |Vus|) =⇒ ϑ23 (or |Vcb|) =⇒ ϑ13 (or |Vub|)
=⇒ δ (quark) . (56)

Namely, the observation of the largest mixing angle

ϑ12 was the first step, the determination of the small-

est mixing angle ϑ13 (or equivalently, the smallest ma-

trix element |Vub|) was an important turning point,

and then the quark flavor physics entered an era of

precision measurements in which CP violation could

be explored and new physics could be searched for.

Interestingly and hopefully, the lepton flavor physics

is repeating the same story:

θ23 (or |Uµ3|) =⇒ θ12 (or |Ue2|) =⇒ θ13 (or |Ue3|)
=⇒ δ (lepton) , (57)

where θ23 is the largest and θ13 is the smallest. The

observation of θ13 (or equivalently, the smallest ma-

trix element |Ue3|) in the Daya Bay experiment is

paving the way for future experiments to study lep-

tonic CP violation and to look for possible new

physics (e.g., whether the 3 × 3 MNSP matrix U

is exactly unitary or not), in particular through the

measurements of neutrino oscillations for different

sources of neutrino beams. The Majorana nature

of three massive neutrinos and their other two CP -

violating phases (i.e., ρ and σ) can also be probed in

the new era of neutrino physics.

I would like to thank S. Luo for her technical helps,

and to Y.F. Li and S. Luo for some useful discus-

sions. I am also indebted to J. Cao and Y.F. Wang

for many interesting “weak” interactions.

1) In particular, the impact of θ13 ' 9◦ on the renormalization-group running behaviors of three flavor mixing angles and

three CP -violating phases is not covered, nor is the issue for going beyond the 3×3 lepton flavor mixing matrix in the presence

of three light or heavy sterile neutrinos. As for these two topics, we refer the reader to Ref. [32] and Ref. [44] respectively.
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