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Abstract: The exact solution of Spinless-Salpeter equation (SSE) in the presence of Kink-Like potential is in-

vestigated. By using the basic concepts of the supersymmetric quantum mechanics (SUSYQM) formalism and the

functional analysis method, we have obtained the bound state solutions in the closed form and the eigenfunctions of

the system are reported in the term of hypergeometric function. We have also reported some numerical results.
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1 Introduction

The two-body SSE, which stems from the Bethe-
Salpeter equation (BTE) [1–3] by some simplifications
and ignoring the spin degrees of freedom, could be
considered as the generalization of the non-relativistic
Schrödinger equation to the relativistic regime and is
therefore of great importance due to its semi-relativistic
nature and two-body formulation which finds worthwhile
applications in particle and nuclear physics.

Contrary to the common wave equations of quantum
mechanics such as Dirac, Klein-Gordon and Schrödinger
equations, the semi-relativistic Salpeter equations have
been studied only by a few authors. This is definitely
because of the mathematical complexity we face due
to the nonlocal nature of the equation. Schoberl, Hall
and Lucha are amongst the theoretical physicists who
have investigated different approximate schemes to an-
alyze the equation [4–6]. Many analytical techniques of
quantum mechanics have been applied to the equation
to overcome the nonlocal nature of the equation such
as SUSYQM method, Nikiforov-Uvarov (NU) technique,
ansatz method, proper quantization rules and so on [7–
12].

In this work, we have tried to obtain the energy
spectra and the eigenfunctions of the SSE under the
Kink-Like potential [13]. The exact solutions of the
Klein–Gordon equation with position-dependent mass
for mixed vector and scalar Kink-Like potentials are
given in Ref. [14]. The PT-symmetric version of the
Kink-Like potential has also been investigated within the
framework of the Dirac equation with a vector potential
coupling [15]. We first review the two-body SSE. Then,

by considering SUSYQM we solve the SSE under Kink-
Like potential and also by introducing some transforma-
tions; we bring the problem into a form which can be
solved by functional analysis method to obtain the wave
function of the system.

2 The two-body-Hamiltonian

The SSE for two particles interacting in a spherically
symmetric potential in the center of mass system appears
as [16, 17]
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therefore,
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From Eqs. (1) to (5) in units where (~=c=1) we have
[
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]

Rn,l(r)=En,lRn,l(r). (6)

From the well-known relations
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Eq. (6) appears as
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Applying the well-known transformation

Rn,l(r)=
ψn,l(r)

r
, (9)

gives
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]

ψnl(r)=0, (10)

where

Wnl(r) = V (r)−Enl, (11)

m̃ = η3/µ2=(m1m2µ)/(m1m2−3µ2). (12)

Here, we consider the Kink-Like potential [14]

V (r)=αβtanh(αr), (13)

where the parameter, α and the coupling constants, β
are real numbers. Substitution of Kink-Like potential in
Eq. (10) for l=0 gives

[
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]
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where
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In order to obtain the solution of Eq. (14), we use
the powerful SUSY method [18, 19]. Writing the
ground state wave function ψ0(r) in the form of ψ0(r)=

exp

(

−

∫
W (r)dr

)

, substituting it into Eq. (14), we ar-

rive at the following non-linear Riccati equation forW (r)
as

W 2(r)−
dW (r)

dr
=−V1sech

2(αr)+V2 tanh(αr)−Ẽ0, (17)

where Ẽ0 is the effective ground state energy, and W (r)
is a superpotential. By choosing W (r) as follows

W (r)=A+Btanh(αr), (18)

and substituting it into ψ0(r) = exp

(
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)

, one

can find,

ψ0(r)=exp(−Ar)(cosh(αr))−
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α . (19)

Substitution of W (r) in Eq. (17) and comparing equal
powers we arrive at
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Therefore, our partner potentials are
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So, we have the following relationship between two su-
persymmetric partner potentials

Veff+(r,a0)=Veff−(r,a1)+R(a1), (22)

which are shape invariant via a mapping of the a0 →
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By using the shape invariant approach, the exact en-
ergy spectra is given by
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The effective energy Ẽn in Eq. (14) can be written as
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where n=0, 1, 2··· and
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From equations (15b) and (20a) one can obtain
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Finally, the energy spectra can be found as
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To obtain the wave function of the system, we start
from Eq. (14). A change of variable of the form

z=−tanh(αr), (28)

gives
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Here, we consider ψn(s) as below
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Fig. 1. Energy of the system for different states
versus β for m1=m2=1/2,α=0.0001.

Fig. 2. Energy of the system for different states
versus m1 for m2=1/2, α=0.0001, β=0.1.

Equation (32) is just a hypergeometric equation, and its
solution is the hypergeometric function

fn(s)=2F1(a
′,b′,c′;s). (35)

So we have
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2
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2
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or equivalently
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2
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In Table 1, we have reported numerical results for differ-
ent states.

The behavior of the energy versus β, m1 and m2 is
plotted in Figs. 1–3.

Table 1. The energy of the system for different
states and m1=2, m2=1/2, α=0.01, β=0.01.

|n,l=0〉 En |n,l=0〉 En

|1,0〉 −1.53831651 |6,0〉 −1.53394766
|2,0〉 −1.53795634 |7,0〉 −1.53231145
|3,0〉 −1.53733345 |8,0〉 −1.53041908
|4,0〉 −1.53645762 |9,0〉 −1.52826864
|5,0〉 −1.53532929 |10,0〉 −1.52585795

Fig. 3. Energy of the system for different states
versus m2 for m1=2, α=0.0001, β=0.1.

3 Conclusion

In this work, we have investigated the SSE for the
Kink-Like potential in the case of l= 0. We have seen
that the s-wave SSE for the Kink-Like potential can be
solved exactly. The relativistic bound-state energy spec-
trum, by using SUSYQM method and the corresponding
eigenfunctions in terms of hypergeometric function are
obtained. Due to the semi-relativistic nature of the
equation, its two-body formulation and the choice of
Kink-Like potential, results do find applications in nu-
clear and particle physics.

It is a great pleasure for authors to thank the kind ref-

eree for his many useful comments on the manuscript.

References

1 Salpeter E E et al. Phys. Rev., 1951, 84; 1232
2 Wick G C. Phys. Rev., 1954, 96: 1124
3 Chang L et al. Rev. Lett., 2009, 103: 081601
4 Lucha W et al. Int. J. Mod. Phys. A, 2002, 17: 2233
5 Hall R et al. J. Phys. A: Math. Gen., 2005, 38: 7997
6 Lucha W et al. Phys. Rev. A, 1996, 54: 3790
7 WEI G F et al. Can. J. Phys., 2011, 89: 1225
8 Hassanabadi H et al. Commun. Theor. Phys., 2012, 57: 339
9 DONG S H et al. Phys. Lett. A, 2003, 314: 261

10 DONG S H et al. J. Math. Chem., 2012, 50: 881

11 LU L L et al. Few-Body Syst., 2012, 53: 573
12 Hassanabadi S et al. Advances in High Energy Physics, DOI:

10.1155/2012/804652
13 Castro A S De et al. Phys. Lett. A, 2006, 351: 379
14 JIA C S et al. Few-Body Syst., 2012, 52: 11
15 JIA C S et al. Int. J. Theor. Phys., 2008, 47: 664
16 Zarrinkamar S et al. Few-Body Syst., DOI: 10.1007/s00601-

011-0272-3
17 Zarrinkamar S et al. Phys. Scr., 2011, 84: 065008
18 QIANG W C et al. Phys. Scr., 2005, 72: 127
19 DONG S H. Wave Equations in Higher Dimensions, Springer,

2011

123101-4


