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Branching ratio and CP asymmetry of Bs→K∗

0(1430)η
(′)

decays in the PQCD approach *
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Abstract: In the two-quark model supposition for K∗

0(1430), which can be viewed as either the first excited state

(Scenario .) or the lowest lying state (Scenario /), the branching ratios and the direct CP -violating asymmetries

for decays B̄0
s → K∗0

0 (1430)η(′) are studied by employing the perturbative QCD factorization approach. We find

the following results: (a) The CP averaged branching ratios of B̄0
s →K∗0

0 (1430)η and B̄0
s →K∗0

0 (1430)η′ are small

and both in the order of 10−7. If one views K∗

0(1430) as the lowest lying state, B(B̄0
s →K∗0

0 (1430)η) ≈ 3.9×10−7

and B(B̄0
s →K∗0

0 (1430)η′)≈7.8×10−7. (b) While the direct CP -violating asymmetries of these two decays are not

small: if we still take the parameters of K∗

0(1430) in scenario /, Adir
CP (B̄0

s →K∗0
0 (1430)η)≈ 56.2% and A

dir
CP (B̄0

s →

K∗0
0 (1430)η′)≈42.4%. (c) The annihilation contributions will play an important role in accounting for future data,

because both the branching ratios and the direct CP asymmetries of these two decays are sensitive to the annihilation

type contributions.
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1 Introduction

Together with the many scalar mesons found in ex-
periments, more and more effort has been made to the-
oretically study the scalar meson spectrum [1–7]. To-
day, it is still a difficult but interesting topic. Our most
important task is to uncover the mysterious structures
of the scalar mesons. There are two typical schemes
for their classification [1, 2]. Scenario I(SI): the nonet
mesons below 1 GeV, including f0(600), f0(980), K∗

0(800),
and a0(980), are usually viewed as the lowest lying qq̄
states, while the nonet ones near 1.5 GeV, including
f0(1370), f0(1500)/f0(1700), K∗

0(1430), and a0(1450), are
suggested as the first excited states. In Scenario / (S/),
the nonet mesons near 1.5 GeV are treated as qq̄ ground
states, while the nonet mesons below 1 GeV are exotic
states beyond the quark model, such as the four-quark
bound states.

As for the structure of the pseudo-scalar meson η(′),
the uncertainty is less than that of the scalar meson, it
is generally considered as a linear combination of light
quark pairs uū, dd̄ and ss̄. Furthermore, many studies
[8, 9] show that the gluon component in the meson η(′) is
small and can be neglected. In the quark-flavor mixing
scheme, the physical states η and η′ are related to the

flavor states ηq=(uū+dd̄)/
√

2 and ηs=ss̄ through a single
mixing angle φ,

(

η

η′

)

=

(

cosφ −sinφ

sinφ cosφ

)(

ηq

ηs

)

=

(

F1(φ)(uū+dd̄)+F2(φ)ss̄

F ′

1(φ)(uū+dd̄)+F ′

2(φ)ss̄

)

, (1)

with

F1(φ) =
cosφ√

2
, F2(φ)=−sinφ,

F ′

1(φ) =
sinφ√

2
, F ′

2(φ)=cosφ, (2)

where φ=39.3◦±1.0◦.
In order to uncover the inner structures of the scalar

mesons, many factorization approaches are used to re-
search the B meson decay modes with a final state scalar
meson, such as the generalized factorization approach
[10], QCD factorization (QCDF) approach [11–13], and
perturbative QCD (PQCD) approach [14–16]. The de-
cays B→K∗0

0 (1430)η(′) have been studied using QCDF
by Cheng and Chua [17]. They conclude that Scenario /

is more preferable than Scenario ., because the predic-
tions in Scenario / account for the present experimental
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results better. For example, the branching ratios of de-
cays B̄0→K̄∗0

0 (1430)η and B̄0→K̄∗0
0 (1430)η′ in Scenario

/ predicted by the QCDF approach are 12.6×10−6 and
8.7×10−6 respectively, which are consistent with the ex-
perimental values (9.6±1.9)×10−6 and (6.3±1.6)×10−6.
While the predictions in Scenario . are 0.4×10−6 and
26.6×10−6 respectively, neither of them is consistent with
the data. Furthermore, the authors argue that the rate of
B→K∗0

0 (1430)η is slightly larger than that of K∗0
0 (1430)η′

owing to the fact that the η-η′ mixing angle φ between ηq

and ηs is less than 45◦. We want to investigate if the same
condition also occurs in the decays B̄s→K∗0

0 (1430)η(′).
Certainly, K∗

0(1430) can be treated as a qq̄ state in
both Scenario . and Scenario /, it is easy to make a
quantitative prediction in the two-quark model supposi-
tion, so we can use the PQCD approach to calculate the
branching ratios and the CP -violating asymmetries for
decays B̄0

s→K∗0
0 (1430)η(′) in the two scenarios.

In the following, K∗

0(1430) is denoted as K∗

0 in some
places for convenience. The layout of this paper is as
follows. In Section 2, the decay constants and light-cone
distribution amplitudes of the relevant mesons are intro-
duced. In Section 3, we then analyze these decay chan-
nels using the PQCD approach. The numerical results
and the discussion are given in Section 4. The conclu-
sions are presented in the final part.

2 The decay constants and distribution
amplitudes

In general, the Bs meson is treated as a heavy-light
system, and its Lorentz structure can be written as
[18, 19]

ΦBs =
1√
2Nc

(P/Bs+MBs)γ5φBs(k1). (3)

For the distribution amplitude φBs(x,b) in Eq. (3), we
adopt the following model:

φBs(x,b)=NBsx
2(1−x)2exp

[

−M 2
Bs

x2

2ω2
b

− (ωbb)
2

2

]

, (4)

where ωbs is a free parameter, we take ωbs =0.5±0.05 GeV
in numerical calculations, and NBs =63.67 is the normal-
ization factor for ωb =0.5. Certainly, the other Lorentz
structure φ̄Bs should be considered, which is given as

φ̄Bs =
fBs(2x−Λ0)√

6Λ2
0

θ(Λ0−x)J0

[

mBsb
√

x(Λ0−x)
]

, (5)

where Λ0=2Λ̄/mBs , and Λ̄ is a free parameter and in the
order of mBs−mb. It is easy to see that φBs is numerically
small [20] and so it can be neglected.

In the two-quark picture, the vector decay constant
fK∗

0
and the scalar decay constant f̄K∗

0
for the scalar me-

son K∗

0 can be defined as

〈K∗

0 (p)|q̄2γµq1|0〉 = fK∗

0
pµ, (6)

〈K∗

0 (p)|q̄2q1|0〉 = mK∗

0
f̄K∗

0
, (7)

where mK∗

0
(p) is the mass (momentum) of the scalar me-

son K∗

0. The relationship between fK∗

0
and f̄K∗

0
is

mK∗

0

m2(µ)−m1(µ)
fK∗

0
=f̄K∗

0
, (8)

where m1,2 are the running current quark masses. For
the scalar meson K∗

0(1430), fK∗

0
will get a very small value

after the SU(3) symmetry breaking is considered. The
light-cone distribution amplitudes for the scalar meson
K∗

0(1430) can be written as

〈K∗

0 (p)|q̄1(z)lq2(0)j |0〉

=
1√
2Nc

∫1

0

dxeixp·z
{

6pΦK∗

0
(x)+mK∗

0
ΦS

K∗

0
(x)

+mK∗

0
(6n+ 6n−−1)ΦT

K∗

0
(x)
}

jl
. (9)

Here the number of colors Nc=3, n+ and n− are lightlike
vectors: n+ = (1,0,0T), n− = (0,1,0T), and n+ is paral-
lel with the moving direction of the scalar meson. The
normalization can be related to the decay constants:∫1

0

dxΦK∗

0
(x) =

∫1

0

dxΦT
K∗

0
(x)=0, (10)

∫1

0

dxΦS
K∗

0
(x) =

f̄K∗

0

2
√

2Nc

. (11)

The twist-2 light-cone distribution amplitude ΦK∗

0
can be

expanded in the Gegenbauer polynomials:

ΦK∗

0
(x,µ) =

f̄K∗

0
(µ)

2
√

2Nc

6x(1−x)
[

B0(µ)

+
∞
∑

m=1

Bm(µ)C3/2
m (2x−1)

]

, (12)

where the decay constant f̄K∗

0
=−300±30(445±50) MeV

and the Gegenbauer moments B1 = 0.58±0.07(−0.57±
0.13), B3 = −1.2±0.08(−0.42±0.22) [12] in S. (S/).
They are taken by fixing the scale at 1 GeV.

The twist-3 distribution amplitudes are ΦS
K∗

0
and ΦT

K∗

0
,

we adopt the asymptotic form:

ΦS
K∗

0
=

1

2
√

2Nc

f̄K∗

0
, ΦT

K∗

0
=

1

2
√

2Nc

f̄K∗

0
(1−2x). (13)

As for the distribution amplitudes of the meson η(′),
we take the same functions and parameters as those in
Ref. [21].
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3 The perturbative QCD calculation

Under the two-quark model for the scalar meson
K∗

0(1430) supposition, the amplitudes for the decays
B̄0

s → K∗

0η
(′) can be conceptually written as the convo-

lution,

A(B̄0
s →K∗

0η
(′))∼

∫
dx1dx2dx3b1db1b2db2b3db3

×Tr
[

C(t)ΦBs (x1,b1)·ΦK∗

0
(x2,b2)Φη(′) (x3,b3)

×H(xi,bi,t)St(xi)e
−S(t)

]

, (14)

where bi(i = 1,2,3) is the conjugate space coordinate
of kiT, xi is the momenta fraction of the antiquark in
each meson, and t is the largest energy scale in function
H(xi,bi,t). Here Tr denotes the trace over the Dirac and
the color indices, C(t) is the Wilson coefficient evalu-
ated at scale t, which includes the hard dynamics from
mW which scale down to t∼O(

√

Λ̄MBs). The function
H(xi,bi,t) describes the six-quark hard scattering kernel,
which consists of the effective four quark operators and
a hard gluon to connect the spectator quark in the de-
cay. The hard part H can be perturbatively calculated.
ΦBs(K

∗

0 ,η(′)) is the wave function of the meson Bs(K
∗

0,η
(′)).

In order to smear the end-point singularity on xi, the jet
function St(x) [22], which comes from the resummation
of the double logarithms ln2xi, is used. The last term
e−S(t) is the Sudakov form factor which suppresses the
soft dynamics effectively [23]. Here we use the light-cone
coordinate to describe the meson’s momenta. There are
the same conventions with Refs. [24, 25] in our calcula-
tions.

In the standard model, the related weak effective
Hamiltonian Heff mediating the b → d type transitions
can be written as [26]

Heff =
GF√

2

[

∑

p=u,c

VpbV
∗

pd(C1(µ)Op
1 (µ)

+C2(µ)Op
2 (µ))−VtbV

∗

td

10
∑

i=3

Ci(µ)Oi(µ)

]

. (15)

Here the function Qi(i=1,··· ,10) is the local four-quark
operator and Ci is the corresponding Wilson coefficient.
Vp(t)b, Vp(t)d are the CKM matrix elements. The stan-
dard four-quark operators are defined as:

Ou
1 = d̄αγµLuβ·ūβγµLbα,

Ou
2 = d̄αγµLuα·ūβγµLbβ,

O3= d̄αγµLbα·
∑

q′

q̄′

βγµLq′

β,

O4= d̄αγµLbβ·
∑

q′

q̄′

βγµLq′

α,

O5= d̄αγµLbα·
∑

q′

q̄′

βγµRq′

β,

O6= d̄αγµLbβ·
∑

q′

q̄′

βγµRq′

α,

O7=
3

2
d̄αγµLbα·

∑

q′

eq′ q̄′

βγµRq′

β,

O8=
3

2
d̄αγµLbβ·

∑

q′

eq′ q̄′

βγµRq′

α,

O9=
3

2
d̄αγµLbα·

∑

q′

eq′ q̄′

βγµLq′

β,

O10=
3

2
d̄αγµLbβ·

∑

q′

eq′ q̄′

βγµLq′

α,

(16)

where α and β are the SU(3) color indices; L and R
are the left- and right-handed projection operators with
L = (1−γ5), R = (1+γ5). The sum over q′ runs over
the quark fields that are active at the scale µ=O(mb),
i.e., (q′ε{u,d,s,c,b}). It is well known that there are
eight leading order Feynman diagrams for the channel
B̄0

s →K∗0
0 (1430)η(′). Certainly, there also exist the con-

tributions from the diagrams by exchanging the position
of K∗

0 and η(′) in each Feynman diagram for our con-
sidered two decays. Here we don’t give these Feynman
diagrams. Combining the contributions from different di-
agrams, the total decay amplitude for B̄0

s →K∗0
0 (1430)η

can be written as

√
2M(K∗0

0 η) = ξu

[

MeK∗

0
C2F1(φ)+fq

ηFeK∗

0
a2

]

−ξt

[

fq
ηFeK∗

0

(

7C3

3
+

5C4

3
−2a5−

a7

2
+

C9

3
−C10

3

)

+f s
ηFeK∗

0

(

a3−a5+
a7

2
−a9

2

)

+
(

fq
ηFP2

eK∗

0
+fK∗

0
FP2

eη F2(φ)
)(

a6−
a8

2

)

+Meη

(

C3−
C9

2

)

F2(φ)

+(MaK∗

0
F1(φ)+MaηF2(φ))

(

C3−
C9

2

)

+(MP1
aK∗

0
F1(φ)+MP1

aη F2(φ))

(

C5−
C7

2

)

+MP2
eK∗

0

(

C6−
C8

2

)

F2(φ)

+fBs(FaK∗

0
F1(φ)+FaηF2(φ))

(

a4−
a10

2

)

+fBs(F
P2
aK∗

0
F1(φ)+F P2

aη F2(φ))
(

a6−
a8

2

)
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+MeK∗

0

(

C3+2C4−
C9

2
+

1

2
C10

)

F1(φ)+MeK∗

0

(

C4−
1

2
C10

)

F2(φ)

+
(

MP1
eK∗

0
F1(φ)+MP1

eη F2(φ)
)

(

C5−
1

2
C7

)

+MP2
eK∗

0

(

2C6+
1

2
C8

)

F1(φ)

]

, (17)

where ξu = V ∗

ubVud, ξt = V ∗

tbVtd, while Fe(a)K∗

0
and

Me(a)K∗

0
are the η(′) meson emission (annihilation) fac-

torizable contributions and nonfactorizable contributions
from penguin operators, respectively. The upper label
T denotes the contributions from tree operators. Simi-
larly, Fe(a)η(′) and Me(a)η(′) are the K∗

0(1430) meson emis-
sion (annihilation) factorizable contributions and nonfac-
torizable contributions from penguin operators, respec-
tively. F1(φ) and F2(φ) are the mixing factors as given
in Eq. (2). fq

η and f s
η are the decay constants of the fla-

vor states ηq and ηs, respectively. The complete decay
amplitude for B̄0

s → K∗0
0 (1430)η′ can be obtained from

the upper equation by the following replacements:

fq
η →fq

η′ ,f
s
η→f s

η′ ,F1(φ)→F ′

1(φ),F2(φ)→F ′

2(φ). (18)

The combinations of the Wilson coefficients are defined
as usual [21]:

a1(µ) = C2(µ)+
C1(µ)

3
, a2(µ)=C1(µ)+

C2(µ)

3
,

ai(µ) = Ci(µ)+
Ci+1(µ)

3
, i=3,5,7,9,

ai(µ) = Ci(µ)+
Ci−1(µ)

3
, i=4,6,8,10. (19)

4 Numerical results and discussions

We use the following input parameters in the numer-
ical calculations:

fBs = 230 MeV, MBs =5.37 GeV, (20)

α = 100◦±20◦, τBs =1.470×10−12 s, (21)

|Vub| = 3.89×10−3, Vud=0.974, (22)

|Vtd| = 8.4×10−3, Vtb=1.0. (23)

In the Bs-rest frame, the decay rates of B̄0
s→K∗

0(1430)η(′)

can be written as

Γ =
G2

F

32πmBs

|M|2(1−r2
K∗

0
), (24)

where the mass ratio rK∗

0
=mK∗

0
/MB0

s
and M is the total

decay amplitude of each considered decay, which can be
found in Sec. 3. The M can be rewritten as

M=VubV
∗

udT−VtbV
∗

tdP =VubV
∗

ud

[

1+zei(α+δ)
]

, (25)

where α is the Cabibbo-Kobayashi-Maskawa weak phase
angle, and δ is the relative strong phase between the tree
and the penguin amplitudes, which are denoted as “T”
and “P”, respectively. The term z describes the ratio of

penguin to tree contributions and is defined as

z=

∣

∣

∣

∣

VtbV
∗

td

VubV ∗

ud

∣

∣

∣

∣

∣

∣

∣

∣

P

T

∣

∣

∣

∣

. (26)

From Eq. (25), it is easy to write decay amplitude
M for the corresponding conjugated decay mode. So the
CP -averaged branching ratio for each considered decay
is defined as

B = (|M|2+|M|2)/2

= |VubV
∗

udT |2 [1+2zcosαcosδ+z2]. (27)

The direct CP -violating asymmetry can be defined as

Adir
CP =

|M|2−|M|2
|M|2+|M|2

=
2zsinαsinδ

1+2zcosαcosδ+z2
. (28)

Using the input parameters and the wave functions
as specified in this and previous sections, it is easy to get
the values of the factorizable and nonfactorizable ampli-
tudes from the emission and annihilation topology dia-
grams of the considered decays in both scenarios, which
are listed in Table 1. For the decay B̄0

s →K∗0
0 (1430)η′,

the tree contribution from the emission factorizable di-
agrams is color suppressed, so the corresponding ampli-
tude is not very large. The amplitudes FeK∗

0
for each

decay are very small from the uū and dd̄ quark compo-
nents in the meson η(′), while they are large from the
ss̄ component, which have contrary signs between decay
modes K∗0

0 (1430)η and K∗0
0 (1430)η′: the amplitudes F SP

eK∗

0

and F VA
eK∗

0
weaken each other for the former, and reinforce

each other for the latter. Here F SP
eK∗

0
and F VA

eK∗

0
represent

the amplitudes corresponding to the (S−P )(S+P ) cur-
rents and (V −A)(V ±A) currents, respectively. So the
amplitude FeK∗

0
is small for the decay B̄0

s →K∗0
0 (1430)η,

while it is large for the decay B̄0
s→K∗0

0 (1430)η′, especially
in Scenario /. The ratio of penguin to tree amplitudes
P/T for the decay B̄0

s →K∗0
0 (1430)η is about 38.5% for

Scenario ., 57.0% for Scenario /. It is about half of
the ratio P/T for the decay B̄0

s →K∗0
0 (1430)η′, which is

about 77.8% for Scenario ., 125% for Scenario /. For
the decay mode K∗0

0 (1430)η′ in Scenario /, its penguin
contributions are larger than its tree contributions. It is
noticed that the amplitude Feη(′) is proportional to the
vector decay constant fK∗

0
which is very small, so Feη(′)

is much smaller compared with FeK∗

0
. From Table 1,

we also find that the contributions from the factorizable
annihilation diagrams are large owing to the chiral en-
hancements, usually receiving a large imaginary part.
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Table 1. Decay amplitudes for decays B̄0
s →K∗0

0 (1430)η, K∗0
0 (1430)η′ (×10−2GeV3).

decay mode FT
eK∗

0
FeK∗

0
MT

eK∗

0
MeK∗

0
MaK∗

0
FaK∗

0

B̄0
s →K∗0

0 η (S.) −11.10 1.80 −5.41+3.76i −0.25−0.36i −0.02−0.06i 2.69+6.69i

B̄0
s →K∗0

0 η (S/) 13.66 −2.03 0.22+3.24i −0.02−0.11i −0.14−0.09i 0.53−8.97i

B̄0
s →K∗0

0 η′ (S.) −9.09 8.42 −4.43+3.08i −0.60−2.98i 0.08−0.04i 2.20+5.47i

B̄0
s →K∗0

0 η′ (S/) 11.18 −12.30 0.18+2.65i −0.20−1.34i −0.12−0.07i 0.43−7.35i

decay mode Feη(′) Meη(′) Maη(′) Faη(′)

B̄0
s →K∗0

0 η (S.) 0.09 0.52−1.31i 0.50−0.74i 0.83−2.24i — —

B̄0
s →K∗0

0 η (S/) −0.13 −0.94−0.58i −0.70+0.04i −1.37+3.16i — —

B̄0
s →K∗0

0 η′ (S.) −0.11 −0.63+1.60i −0.61+0.90i −1.08+2.74i — —

B̄0
s →K∗0

0 η′ (S/) 0.16 1.15+0.71i 0.86−0.05i 1.67−3.87i — —

The importance of the factorizable annihilation contri-
butions will be further discussed in the latter.

Using the input parameters and the wave functions
as specified in this section and Sec. 2, we can calculate
the branching ratios of the considered decay modes in
10−7 order

B(B̄0
s→K∗0

0 η) = 3.85+1.48+0.81+0.41+0.91
−1.01−0.77−0.37−0.96S.,

B(B̄0
s→K∗0

0 η′) = 5.17+1.60+1.09+0.60+0.76
−1.01−0.98−0.56−0.80S.,

B(B̄0
s→K∗0

0 η) = 3.87+1.22+0.89+2.22+0.84
−0.83−0.80−1.73−0.90S/,

B(B̄0
s→K∗0

0 η′) = 7.75+2.09+1.80+3.14+1.21
−1.30−1.61−2.65−1.28S/,

where the uncertainties are mainly from the Bs meson
shape parameter ωbs , the decay constant f̄K∗

0
, the Gegen-

bauer moments B1 and B3 of the scalar meson K∗

0, and
the CKM angle α = (100±20)◦. The branching ratios
in scenario / are more sensitive to the Gegenbauer mo-
ments of K∗

0 than those in Scenario .. For the decay
B̄0

s →K∗0
0 (1430)η, its branching ratios in these two sce-

narios are almost equal to each other. From the results,
one can find that the branching ratio of the decay channel
B̄0

s→K∗0
0 (1430)η′ is larger than that of B̄0

s→K∗0
0 (1430)η.

It is possible that the mechanism which induces the so-
called Kη′-puzzle in the decays B→Kη(′) [21] also occurs
in the considered decays, but is merely not very sharp.
Similarly, it is also found in the decays B→K∗

2(1430)η(′),
Bs→Kη(′), while the situation is contrary to the decays
B→K∗

0(1430)η(′) and B→K∗η(′) (shown in Table 2): the
branching ratios of decays involving the η′ meson are
smaller than those of the decays involving the η meson.
In a word, these characters are induced by the construc-
tive or destructive interference between different types
of penguin contributions [17] for these decays. Accord-
ing to the QCDF approach [17], K∗

0(1430) is viewed as
the lowest-lying P -wave qq̄ meson (Scenario /), which
has been confirmed by the lattice calculations [30]. Cer-
tainly, it needs to be verified by future experiments. By
using the SU(3) symmetry, one can relate the decays
B → π0η(′) with our considered ones, So B(B → π0η(′))

are also listed in Table 2. For the branching ratio of
decay B → π0η, only the upper limit can be obtained.
The theoretical values for B(B→π0η) predicted by the
QCDF and PQCD approach are (0.28+0.48

−0.28)×10−6 [31] and
(0.23±0.08)×10−6 [32], respectively. The dependence of
the branching ratios for the decays B̄0

s→K∗0
0 (1430)η and

B̄0
s → K∗0

0 (1430)η′ on the Cabibbo-Kobayashi-Maskawa
angle α are displayed in Fig. 1.

Fig. 1. The dependence of the branching ratios
for B̄0

s → K∗0
0 (1430)η (solid curve) and B̄0

s →

K∗0
0 (1430)η′ (dashed curve) on the Cabibbo-

Kobayashi-Maskawa angle α. The up (down)
panel is plotted in Scenario .(/).
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Table 2. Branching ratios of decays B → Kη(′),
K∗

2(1430)η
(′), B→K∗η(′), K∗

0(1430)η
(′) and B̄0

s →

Kη(′). The data in the first column are for the
decays involving the η meson.

decay mode Exp. [27](×10−6) Exp. [27](×10−6)

B−→K−η(′) 2.36±0.27 71.1±2.6

B̄0→K̄0η(′) 1.12+0.30
−0.28 66.1±3.1

B−→K∗−

2 η(′) 9.1±3.0 28.0+5.3
−5.0

B̄0→K̄∗0
2 η(′) 9.6±2.1 13.7+3.2

−2.2

B−→K∗−η(′) 19.3±1.6 5.0+1.8
−1.6

B̄0→K̄∗0η(′) 15.9±1.0 3.1±0.9

B−→K∗−

0 η(′) 15.8±3.1 5.2±2.1

B̄0→K̄∗0
0 η(′) 9.6±1.9 6.3±1.6

PQCD[28](×10−7) PQCD[28](×10−7)

B̄0
s →K0η(′) 1.1+0.8

−0.4 7.2+3.6
−2.4

Exp. [29](×10−6) Exp. [29](×10−6)

B̄0→π0η(′) <1.5 0.9±0.4±0.1

Using the calculated ratio z and strong phase δ, it
is easy to find the numerical values of Adir

CP (in units
of 10−2) as follows by using the input parameters listed
previously for the considered decays in two scenarios:

Adir
CP (B̄0

s→K∗0
0 η) = 42.1+6.9+0.0+2.8+14.2

−5.9−0.0−3.3−12.1S.,

Adir
CP (B̄0

s →K∗0
0 η′) = 70.9+2.8+0.0+2.8+13.0

−6.0−0.0−2.9−16.5S.,

Adir
CP (B̄0

s→K∗0
0 η) = 56.2+1.2+0.0+7.6+17.0

−2.0−0.1−5.9−15.7S/,

Adir
CP (B̄0

s →K∗0
0 η′) = 42.4+1.1+0.1+7.0+8.5

−3.1−0.1−5.9−10.1S/,

where the uncertainties are mainly from the Bs meson
shape parameter ωb=0.5±0.05, the decay constant f̄K∗

0
,

the Gegenbauer moments B1 and B3 of the scalar meson
K∗

0, and the CKM angle α=(100±20)◦. These values of
the direct CP -violating asymmetries are sensitive to the
variations of the CKM angle α, their dependences on the
CKM angle α are shown in Fig. 2.

From Table 3, we find that if one neglects the contri-
butions from the nonfactorizable annihilation diagrams,
their branching ratios and the direct CP -violating asym-
metries between these two decay modes tend to be near
each other, respectively. When we include these con-
tributions, the branching ratios of these two decays
both become small, and the change for the decay mode
B̄0

s →K∗0
0 (1430)η is larger. In Scenario ., the branch-

ing ratios for each decay are sensitive to the contributions
from the factorizable annihilation diagram contributions:
If we neglect them, the branching ratios increase by more
than 3 times. This is because the weak annihilation am-
plitudes receive a larger real part for S. compared with
those in S/. The direct CP -violating asymmetries also
have a great dependence on the annihilation contribu-
tions, especially for the decay B̄0

s → K∗0
0 (1430)η′. Ne-

glecting either of the annihilation type contributions, the
value of the direct CP -violating asymmetries will become

small. In the PQCD approach, annihilation diagrams are
an important source for CP asymmetries.

Fig. 2. The dependence of the direct CP -violating
asymmetries for B̄0

s → K∗0
0 (1430)η (solid curve)

and B̄0
s → K∗0

0 (1430)η′ (dashed curve) on the
Cabibbo-Kobayashi-Maskawa angle α. The up
(down) panel is plotted in Scenario .(/).

Table 3. Branching ratios (top; in units of ×10−7)
and direct CP -violating asymmetries (bottom; in
units of %) of decays B̄0

s →K∗

0(1430)η
(′). Column

(1) represents the full contribution, Columns (2)
and (3) are for the contributions after neglecting
the nonfactorizable and the factorizable annihila-
tion diagrams, respectively. Column (4) is for the
contributions after ignoring both of these annihi-
lation diagrams.

decay mode (1) (2) (3) (4)

B(B̄0
s →K∗0

0 η)(S.) 3.85 7.49 13.70 13.33

B(B̄0
s →K∗0

0 η′)(S.) 5.17 8.04 16.05 16.70

B(B̄0
s →K∗0

0 η)(S/) 3.87 7.29 4.23 3.82

B(B̄0
s →K∗0

0 η′)(S/) 7.75 8.08 4.77 5.27

Adir
CP (B̄0

s →K∗0
0 η)(S.) 42.1 40.0 32.7 31.4

Adir
CP (B̄0

s →K∗0
0 η′)(S.) 70.9 45.0 36.7 37.3

Adir
CP (B̄0

s →K∗0
0 η)(S/) 56.2 45.8 34.2 39.1

Adir
CP (B̄0

s →K∗0
0 η′)(S/) 42.4 39.5 −11.6 −12.4
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5 Conclusion

In this paper, we calculate the branching ratios
and the CP -violating asymmetries of decays B̄0

s →
K∗0

0 (1430)η(′) in the PQCD factorization approach and
find the following results:

1) The branching ratios of the decay of B̄0
s →

K∗0
0 (1430)η and B̄0

s → K∗0
0 (1430)η′ are both in the or-

der of 10−7, and B(B̄0
s → K∗0

0 (1430)η) is smaller than
B(B̄0

s→K∗0
0 (1430)η′) in each scenario.

2) For the direct CP -violating asymmetries, the the-
oretical predictions in the PQCD approach are large and

sensitive to the variation of the CKM angle α. As the
lattice calculations, if one can suppose that K∗

0(1430) is
the lowest-lying P -wave qq̄ scalar meson, then

Adir
CP (B̄0

s→K∗0
0 (1430)η) = 56.2+18.7

−16.9, (29)

Adir
CP (B̄0

s→K∗0
0 (1430)η′) = 42.4+11.1

−12.1. (30)

3) The contributions from the annihilation diagrams
are very important, they play an important role in ac-
counting for future data. The interference with other
type contributions can have a large effect on the branch-
ing ratio and the direct CP -violating asymmetry.
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