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One-loop on-shell renormalization of MSSM vertexes *
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Abstract: The on-shell renormalization scheme for electroweak theory is well studied in the standard model (SM),

but a consistent on-shell renormalization scheme for the minimal supersymmetric standard model (MSSM) is still

unknown. In the MSSM, we study the on-shell scheme for three vertexes: ZlIlI, W+νIlI and L̃∗
i χ

0
αlI, with virtual

SUSY particles (chargino, sneutrino, neutralino and slepton) at one-loop order. Instead of the amplitude of a single

triangle diagram, the sum of the amplitude of triangle diagrams belonging to one suit can be renormalized in the

on-shell scheme. One suit points out that the internal virtual particles are consistent. The zero-momentum scheme is

also used for the renormalization. The two schemes can make the renormalized results decoupled, and in the MSSM

some of the special characters of the on-shell scheme are shown. This work is propitious in completing the on-shell

renormalization scheme in the MSSM.
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1 Introduction

As we all know, quantum field theory is perturbative
theory. That is to say, it cannot be solved exactly. To
obtain finite results, renormalization is necessary, and
there are some typical renormalization schemes such as
MS, MS, MOM, zero-momentum and on-shell schemes
[1–5]. In the MS scheme, the counter term is only the
pole term (1/ε, ε→0). The counter term is proportional
to 1/ε+ln4π−γE in the MS scheme. The two foregoing
schemes have nothing to do with mass. For the on-shell
scheme, the renormalization constants are all obtained
under the on-shell condition. This is the only physical
scheme. For electroweak theory, the on-shell scheme is
the most appropriate.

If we can resolve the theory accurately, different
renormalization schemes can give the same finite result of
any physical process, though the functions of the renor-
malized parameters are different. However, different
physical predictions are produced from different renor-
malization schemes and different renormalized parame-
ters because of the curtate perturbation theory.

To obtain the counter term for the UV-divergent di-
agram, one can take all the external momenta of the
diagram as zero, which is called a zero-momentum renor-

malization scheme. The advantage is that in an arbitrary
model, each divergent diagram can easily be renormal-
ized, and the renormalized results are decoupled [6, 7].

We focus on the on-shell renormalization scheme that
is popular in electroweak theory. In the on-shell scheme,
the fine structure constant α is an expansion parameter
and defined in the Thomson limit. At any order of per-
turbation theory, the physical parameters are the same
as the finite renormalized parameters. They represent
clear physical meaning and can be measured directly in
experiments. The renormalization procedure is summa-
rized in the counter term approach [4].

Extending the SM, physicists have developed many
new models [8, 9] to explain the experimental phenom-
ena. The MSSM [10] is the most attractive one. Many
experimentalists of high energy physics are focusing on
searching for Higgs bosons in the MSSM. The colliders
(the LHC, e+e− linear collider, etc) will provide abun-
dant information of new physics beyond the SM. In the
MSSM, the decays h0(H0, A0) → χ̃0

m
χ̃0

n
, χ̃0

m → h0(H0,
A0)+χ̃0

n
(m, n = 1, 2, 3, 4) and b̌a → χ−

i t (a, i = 1, 2)
are studied at one-loop order with the on-shell renor-
malization scheme [11, 12], but they do not give ana-
lytic results to show the apparent elimination of UV-
divergence. Considering the one-loop contributions, the
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authors [13] completed a systematic on-shell renormal-
ization programme for the gauge boson and Higgs parts.
Radiative one-loop corrections to the process e+e−→l+l−

(hadrons) are calculated with the same scheme [14].
For supersymmetric gauge theories, a consistent reg-

ularization scheme preserving supersymmetry and gauge
invariance is still not known. Two equivalent ways to
solve the problem are shown here. One is to use an in-
variant scheme to maintain manifest symmetries, where
only those counterterms are necessary for renormaliza-
tion, so they themselves preserve the symmetries. The
other is to use a non-invariant scheme, through using
appropriate non-invariant counterterms to compensate
the corresponding symmetry breaking. With appropri-
ate non-invariant counterterms, W. Hollik et al. [15]
showed that supersymmetric QED can keep supersym-
metry. Their study can be generalized to supersymmet-
ric models with soft breaking and eventually to the su-
persymmetric extensions of the SM. Although the cor-
responding Slavnov Taylor identities are more involved
since they have to express not only the symmetries but
also the spontaneous or soft breaking, their structure is
the same as in SQED. Therefore, this method can also
extend to the full EW theory of the MSSM.

With the extension of the on-shell scheme of the SM,
the vertexes (ZlIlI, W+νIlI) and L̃∗

i χ
0
αlI are studied at

one-loop order in this work. We find some special char-
acters for the on-shell scheme in the MSSM. Compared
with the zero-momentum scheme, it is easy to find that
the renormalized results in the on-shell scheme are de-
coupled. These selected vertexes are ordinary, and can
represent the general vertexes in the MSSM. The study
of the on-shell scheme for these vertexes is propitious to
completing the on-shell renormalization programme of
the MSSM. If one studies the on-shell renormalization
scheme in other models, it is also helpful.

After the introduction, in Section 2 we study both the
zero-momentum scheme and the on-shell scheme of two
SM vertexes in the MSSM. The corresponding results of
the SUSY vertex are shown in Section 3. In Section 4,
the decoupling behaviors for the counter terms in both
renormalization schemes are researched. Section 5 is de-
voted to the discussion and conclusion.

2 Renormalization of the SM vertex
(ZlIlI, W+

νIlI) in the MSSM

The authors [4, 5] studied the on-shell renormaliza-
tion scheme of electroweak theory in the SM successfully
and completely. Extending the model from the SM to

the MSSM, the condition becomes complex and faint, so
it needs more research. In the Feynman gauge, apply-
ing both the on-shell and zero-momentum schemes, we
study the two SM vertexes (ZlIlI, and W+νIlI) with vir-
tual particles (L̃, χ̃0, ν̃, χ̃±) in this section. The studied
one loop diagrams are shown in Fig. 1. In order to ob-
tain the counter terms, we adopt the naive dimensional
regularization with the anticommuting γ

5
scheme, where

there is no distinction between the first four dimensions
and the remaining D-4 dimensions [16, 17].

Fig. 1. The studied one-loop diagrams.

2.1 ZlIlI vertex with virtual SUSY particles
(L̃, χ̃

0)

There are two triangle diagrams for the ZlIlI vertex
with virtual SUSY particles (L̃,χ̃0), and they are shown
as diagrams 1(a) and 1(b). The two diagrams are not
complete and the results do not satisfy the gauge in-
variant rule, but they belong to one suit and can be
renormalized with some renormalization constants. In
the zero-momentum scheme, each diagram has its own
counter term, and the corresponding renormalized result
is decoupled. Here we show the sum of the counter terms
for the two triangle diagrams in the zero-momentum
scheme.

δV (ZM),µ

ZlIlI
=

e3

64π2sWcW

{

1−2s2
W

2s2
W

[(

mlI

cβmW

)2

+
1

c2
W

]

γµω−−
[

4s2
W

c2
W

+

(

mlI

cβmW

)2]

γµω+

}

∆UV
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+

{

e3

256π2s3
WcW

(

1−2s2
W

c2
W

−(1+2s2
W)

(

mlI

cβmW

)2
)

+

6
∑

i,β=1

4
∑

j=1

e3

4s3
WcW

(G)iβ(DI)ij(DI)∗βjF1

(

xL̃i
,xL̃β

,xχ̃0
j

)

− e3

8s3
WcW

6
∑

s=1

4
∑

i,j=1

(DI)∗si(R∗)ji(DI)sjF1

(

xχ̃0
i
,xL̃s

,xχ̃0
j

)

+
e3

4s3
WcW

6
∑

s=1

4
∑

i,j=1

(DI)∗si(R)ji(DI)sj

√

xχ̃0
i
xχ̃0

j

×F2

(

xχ̃0
i
,xL̃s

,xχ̃0
j

)

}

γµω−+

{

e3

128π2sWcW

(

c2
W

s2
W

(

mlI

cβmW

)2

−4s2
W

c2
W

)

+
e3

2sWcW

6
∑

i,β=1

4
∑

j=1

(G)iβ(CI)ij(CI)∗βjF1

(

xL̃i
,xL̃β

,xχ̃0
j

)

+
e3

4sWcW

6
∑

s=1

4
∑

i,j=1

(CI)∗si(R)ji(CI)sjF1

(

xχ̃0
i
,xL̃s

,xχ̃0
j

)

− e3

2sWcW

6
∑

s=1

4
∑

i,j=1

(CI)∗si(R)∗ji(CI)sj

√

xχ̃0
i
xχ̃0

j
F2

(

xχ̃0
i
,xL̃s

,xχ̃0
j

)

}

γµω+. (1)

To get Eq. (1), we use the unitary character of
the mixing matrixes ZL̃,ZN for sleptons and neutrali-
noes. Additionally, we adopt the abbreviation notations
cW=cosθW, sW=sinθW, cβ=cosβ, sβ=sinβ, where θW is
the Weinberg angle and tanβ=v2/v1 represents the ratio
between the vacuum expectation values of the two Higgs
doublets. xi =m2

i /Λ2
NP with i denoting the virtual par-

ticles in these one-loop diagrams, and ΛNP denotes the
new physic energy scale. Here, ∆UV=1/ε+ln(4πxµ)−γE,
2ε=4−D, ω−=(1−γ5)/2, ω+=(1+γ5)/2 and the functions
F1, F2 are shown as

F1(x,y,z) =
1

16π2

(

1− x2 lnx

(y−x)(z−x)
− y2 lny

(x−y)(z−y)

− z2 lnz

(x−z)(y−z)

)

, (2)

F2(x,y,z) =
1

16π2

(

xlnx

(y−x)(z−x)
+

y lny

(x−y)(z−y)

+
z lnz

(x−z)(y−z)

)

. (3)

The concrete forms of the vertex couplings used in
Eq. (1) read as

(CI)tj =
−
√

2

cW

Z(I+3)t

L̃
Z1j∗

N − mlIZIt

L̃
Z3j∗

N√
2sWcβmW

,

(DI)tj =
ZIt

L̃

cW

(Z1j
N sW+Z2j

N cW)−
mlIZ(I+3)t

L̃
Z3j

N

cβmW

,

(G)ts=
1

2
ZIt

L̃
ZIs∗

L̃
−s2

Wδst,

(R)kα= (Z4k
N Z4α∗

N −Z3k
N Z3α∗

N ).

(4)

In the on-shell scheme, the counter term for the
radiative correction to the SM vertex ZlIlI is shown

here [4].

δV (OS),µ

ZlIlI
= −e

2

[

δZAZ−
1

2s3
WcW

(

δm2
Z

m2
Z

−δm2
W

m2
W

)

− (2s2
W−1)

sWcW

(

δe

e
+

1

2
δZZZ+δZ l

L

)]

γµω−

−e

2

[

δZAZ−
sW

cW

(

2
δe

e
+

1

s2
W

(

δm2
Z

m2
Z

−δm2
W

m2
W

)

+δZZZ+2δZ l
R

)]

γµω+. (5)

δZAZ and δe are the renormalization constants for γZ
mixing and charge, respectively. Only the sum of the
amplitude of the two triangle diagrams can be renormal-
ized in the on-shell scheme. That is to say, the diver-
gent term of each diagram can not be canceled by the
counter term. Another character is that only the lepton
wave function renormalization constants δZ l

L and δZ l
R

are necessary to counteract the ultra-divergent terms.
The renormalization constants for the left- and right-

handed lepton wave functions are deduced from the lep-
ton self-energy with virtual SUSY particles (L̃, χ̃0).

δZ l
L = − e2

64π2s2
W

(

1

c2
W

+

(

mlI

cβmW

)2
)

∆UV

−
6
∑

i=1

4
∑

j=1

{

1

2s2
W

|
(

DI
)

ij
|2F4(xL̃i

,xχ̃0
j
)

+xlI

[

1

2s2
W

|(DI)ij |2+|(CI)ij |2

+

√
2

sW

Re
[

(CI)†ij(DI)ij

]

F3

(

xL̃i
,xχ̃0

j

)

]}

,
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δZ l
R = − e2

32π2

(

2

c2
W

+

(

mlI√
2sWcβmW

)2
)

∆UV

−
6
∑

i=1

4
∑

j=1

{

|(CI)ij |2F4

(

xL̃i
,xχ̃0

j

)

+xlI

[

1

2s2
W

|(DI)ij |2+|(CI)ij |2

+

√
2

sW

Re
[

(CI)†ij(DI)ij

]

]

F3

(

xL̃i
,xχ̃0

j

)

}

, (6)

where the functions F3, F4 are shown as follows

F3(x,y)=
x2+2xy(lny−lnx)−y2

32π2(x−y)3
,

F4(x,y)=
(2y−x)(y−x+xlnx)−y2 lny

32π2(x−y)2
.

(7)

Considering Eqs. (5)–(7), the required counter terms
for diagram 1(a) and 1(b) are obtained in the on-shell
scheme.

2.2 W+
νIlI vertex with virtual SUSY particles

(L̃, ν̃, χ̃
0, χ̃

±)

The condition of the W+νIlI vertex is more complex
than that of the ZlIlI vertex. The three triangle diagrams
(2(a), 2(b) and 2(c)) are all necessary and belong to one
suit, where the virtual SUSY particles are L̃, ν̃, χ̃0, χ̃±.
We collect the counter terms of these three diagrams in
the zero-momentum scheme.

δV
(ZM),µ

W+νIlI

=
e3

√
2s3

W

{

1

64π2

[

1

c2
W

+

(

mlI

cβmW

)2]

∆UV

+
1

128π2

[

4− 1

c2
W

+

(

mlI

cβmW

)2]

− 1

2cW

2
∑

i=1

3
∑

J=1

4
∑

j=1

(

(ζI)∗Jj(T )ji(Bi)
IJF1

+2(ζI)∗Jj(Q)ji(Bi)
IJ√xχ̃

−

i
xχ̃0

j
F2

)

(xχ̃
−

i
,xν̃J

,xχ̃0
j
)

+
1

4cW

6
∑

i=1

3
∑

J=1

4
∑

j=1

(η)∗iJ(ζI)∗Jj(DI)ijF1(xL̃i
,xν̃J

,xχ̃0
j
)

+
1

2

2
∑

i=1

6
∑

s=1

4
∑

j=1

(

2(PI)si(Q)∗ji(DI)sj

√

x
χ̃
−

i
xχ̃0

j
F2

+(PI)si(T )∗ji(DI)sjF1

)

(x
χ̃
−

i
,xL̃s

,xχ̃0
j
)

}

γµω−, (8)

with the vertex couplings

(Ai)
IJ =

−mlIZ−∗
2i ZIJ∗

ν̃√
2cβmW

, (Bi)
IJ =Z+

1iZIJ∗
ν̃ ,

(η)sJ
=ZIJ

ν̃ ZIs

L̃
, (Q)ji=Z2j∗

N Z+
1i−

Z4j∗
N Z+

2i√
2

,

(T )ji=Z2j
N Z−

1i+
1√
2
Z3j

N Z−∗
2i ,

(PI)si=
mlI√

2cβMW

Z(I+3)s∗

L̃
Z−∗

2i −ZIs∗

L̃
Z−∗

1i ,

(ζI)Jj =ZIJ∗
ν̃ (Z1j

N sW−Z2j
N cW).

(9)

In the on-shell scheme, the counter term formula for ver-
tex W+νIlI can be found in Ref. [4].

δV (OS),µ

W+νIlI
=

e

2
√

2sW

(

δm2
Z

m2
Z

−δm2
Z−δm2

W

m2
Z−m2

W

+2δe+δZ l
L+δZν

L+δZWW

)

γµω−, (10)

where δe is calculated from the virtual slepton contri-
bution. The virtual slepton and sneutrino produce the
mass renormalization constants δm2

Z, δm2
W and the W

wavefunction renormalization constant δZWW. The wave
function renormalization constants δZν

L and δZ l
L are de-

duced, respectively, from the self-energies of the neutrino
and lepton with virtual SUSY particles [(ν̃, χ̃0), (L̃, χ̃±)]
and [(ν̃, χ̃±), (L̃, χ̃0)].

To cancel the UV-divergent terms for these diagrams
in the on-shell scheme, all the renormalization constants
in Eq. (10) must be taken into account. Following the
method in Refs. [4, 5], we obtain the required renormal-
ization constants.

δm2
Z

m2
Z

=
e2

32π2s2
Wc2

W

(1−2s2
W)2∆UV

− e2

s2
Wc2

W

{

1

4

3
∑

j=1

F5(xν̃j
,xν̃j

)

+

6
∑

α,β=1

|(G)αβ |2F5(xL̃α
,xL̃β

)

}

,

δm2
W

m2
Z

=
e2c2

W

32π2s2
W

∆UV

−e2c2
W

2s2
W

6
∑

i=1

3
∑

α=1

|(η)iα|2F5(xν̃α
,xL̃i

),

δZWW = − e2

32π2s2
W

∆UV

+
e2

2s2
W

6
∑

i=1

3
∑

α=1

|(η)iα|2F5(xν̃α
,xL̃i

),

δe =
e2

8π2
∆UV−e2

6
∑

i=1

F5(xL̃i
,xL̃i

),
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δZν
L =

−e2

32π2s2
W

(

1

2c2
W

+1+

(

mlI√
2cβmW

)2
)

∆UV

− e2

2s2
Wc2

W

4
∑

i=1

3
∑

α=1

|(ζI)αi|2F4(xν̃α
,xχ0

i
)

− e2

s2
W

4
∑

i=1

6
∑

α=1

|(PI)αi|2F4(xL̃α
,xχ0

i
),

δZ l
L = − e2

32π2s2
W

(

1

2c2
W

+1+

(

mlI√
2cβmW

)2
)

∆UV

− e2

s2
W

3
∑

α=1

2
∑

i=1

{

|(Bi)
Iα|2F4+xlI

[

|(Bi)
Iα|2

+|(Ai)
Iα|2+2Re[(A†

i )
Iα(Bi)

Iα]
]

F3

}

(xν̃α
,xχ̃

−

i
)

−e2

4
∑

j=1

6
∑

i=1

{

xlI

[

|(DI)ij |2
2s2

W

+

√
2

sW

Re[(CI)†ij(DI)ij ]

+|(CI)ij |2
]

F3+
1

2s2
W

|(DI)ij |2F4

}

(xL̃i
,xχ̃0

j
). (11)

The function F5 is

F5(x,y) =
1

288π2(x−y)3
[6(x−3y)x2 lnx+6(3x

−y)y2 lny−(x−y)(5x2−22xy+5y2)]. (12)

From Eqs. (10)–(12), we get the counter terms for the
three diagrams (2(a), 2(b) and 2(c)). The renormaliza-
tion constants in Eq. (10) are all necessary at this place,
which is different from the condition of the ZlIlI vertex.

3 Renormalization of the L̃∗
i
χ0

α
lI vertex

with virtual photon

In order to further research the on-shell renormaliza-
tion scheme in the MSSM, we study the vertex L̃∗

i χ
0
αlI at

one-loop order in this section. The studied triangle dia-
gram is diagram 3 with the virtual photon, which is the
simplest instance. Diagram 3 belongs to electromagnetic
interaction, and can be treated separately without con-
sidering the diagrams with virtual W and Z. The counter
term for this diagram in the zero-momentum scheme is

δV (ZM)

L̃∗

i
χ0

α
lI
(γ) =

e3

16π2

{

(DI
iα)√

2sW

ω−+(CI
iα)ω+

}

∆UV

+e3F1(xL̃i
,0,xlI)

(

(DI
iα)√

2sW

ω−+(CI
iα)ω+

)

.

(13)

In the on-shell scheme, the counter term formula of the
vertex L̃∗

i χ
0
αlI is complicated. Following the idea of the

SM on-shell scheme, we show the formula here [17], where
the counter term is determined by the on-shell condition.

δV (OS)

L̃∗

i
χ0

α
lI

=
e√

2sWcW

{[(

δe

e
δIJ+

(δZ l
L)JI

2

)

δijδαβ+
(δZ†

L̃
)ij

2
δIJδαβ+

(δZχ0)βα

2
δIJδij

]

(Z†

L̃
)jJ

(

Z1β
N sW

+Z2β
N cW

)

−sW

cW

δcW(Z†

L̃
)jJZ1β

N δijδIJδαβ−
cW

sW

δsW(Z†

L̃
)jJZ2β

N δijδIJδαβ−
mlJcW

mWcβ

[(

δe

e
+

δmlJ

mlJ

+
δmW

mW

−δsW

sW

−δcβ

cβ

)

δIJδijδαβ+
1

2
(δZ†

L̃
)ijδIJδαβ+

1

2
(δZχ̃0)βαδIJδij

+
1

2
(δZ l

L)JIδαβδij

]

(Z†

L̃
)j(3+J)Z

3β
N

}

ω−+

√
2e

cW

{

−
[(

δe

e
−δcW

cW

)

δIJδijδαβ

+
1

2
(δZ†

L̃
)ijδIJδαβ+

1

2
(δZ∗

χ̃0)βαδIJδij+
1

2
(δZ l

R)JIδαβδij

]

(Z†

L̃
)j(3+J)Z

1β∗
N

+
mlJcW

2mWsWcβ

[

(δZ†

L̃
)ij

2
δIJδαβ+

(δZ∗
χ̃0)βα

2
δIJδij+

(

δe

e
+

δmlJ

mlJ
+

δmW

mW

−δsW

sW

−δcβ

cβ

)

δIJδijδαβ

+
1

2
(δZ l

R)JIδαβδij

]

(Z†

L̃
)jJZ3β∗

N

}

ω+. (14)
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δZ l
L,R, δZν̃, δZL̃, δZχ̃− and δZχ̃0 are the renormalization

constants of the wave functions for leptons and SUSY
particles. The other renormalization constants come
from the vertex coupling renormalization.

After tedious calculations and various compound-
ing of the renormalization constants, we only find that
the wave function renormalization constant of slepton
(δZL̃)ij is essential. That is to say, only the renormaliza-
tion constant (δZL̃)ij can cancel the UV-divergent term.
The wave function renormalization constant (δZL̃)ij is
collected as follows.

F6(x,y) =
1

32π2(y−x)3
[(y−x)(6x2−7xy+3y2)

+2x(2x2−2xy+y2)lnx

−2y(4x2−5xy+2y2)lny],

(δZγ

L̃
)ij =

e2

8π2
∆UVδij+e2F6(xL̃i

,0)δij. (15)

(δZL̃)γ
ij in Eq. (15) is obtained from the self-energy of

the slepton with the virtual photon and slepton. In our
calculation, Eq. (14) is predigested as

δV (OS)

L̃∗

i
χ0

αlI
(γ)=

1

2
(δZγ

L̃
)†ij

[

(DI
jα)ω−+(CI

jα)ω+

]

. (16)

Combining the formulas (15) and (16), diagram 3 can be
renormalized successfully in the on-shell scheme. Until
now, we have obtained the counter terms for the vertexes
(ZlIlI, W+νIlI) and L̃∗

sχ
0
j l

I in both the zero-momentum
and on-shell schemes.

4 The decoupling behavior

In this section, we discuss the decoupling behavior
of the renormalized results in the two schemes. It is
easy to prove that the renormalized results in the zero-
momentum scheme are decoupled. Adopting the on-shell
scheme, we must get decoupled renormalized results if
the renormalized results can not go to infinity with the
incessantly enlarging SUSY particle masses. To obtain
the decoupling behavior of renormalized results in the on-
shell scheme, we suppose that all SUSY particle masses
are the same and much heavier than the masses of the
SM particles. Compared with the decoupling charac-
ter of the zero-momentum counter terms, the decoupling
behavior of the counter terms in the on-shell scheme is
obvious.

4.1 The SM vertex (ZlIlI, W+
νIlI)

To obtain the decoupling behavior of the counter
terms for the vertex ZlIlI in the zero-momentum scheme,
we show the decoupling approximation of the functions
F1 and F2. The variables x, y, z in F1(x, y, z) are all

symmetrical, and three conditions are considered here.

F1(x,y,z)=



































− lnx

16π2
− 1

32π2
, (x=y=z)

− lnx

16π2
+··· (x=y�z)

1−lnx

16π2
+··· (x�y,z)

,

F2(x,y,z)=
1

32π2x
, (x=y=z). (17)

With Eqs. (1) and (17), the decoupling behavior of
Eq. (1) reads

δV (ZM),µ

ZlIlI
∼ e3

64π2sWcW

{

1−2s2
W

2s2
W

[

1

c2
W

+

(

mlI

cβMW

)2]

γµω−

−
[

4s2
W

c2
W

+

(

mI
e

cβMW

)2]

γµω+

}

(∆UV−lnxM)+..., (18)

where the dots denote the terms that are finite, even
when the SUSY particle masses turn to infinity. xM =
M 2/Λ2

NP with M representing the SUSY particle mass.
In the same way, we deduce the decoupling behavior
of the counter terms for the vertex ZlIlI in the on-shell
scheme.

δV (OS),µ

ZlIlI
∼ e3

64π2sWcW

{

1−2s2
W

2s2
W

[

1

c2
W

+

(

mlI

cβMW

)2]

γµω−

−
[

4s2
W

c2
W

+

(

mlI

cβmW

)2]

γµω+

}

(∆UV−lnxM)+··· (19)

F3(x,y)=
1

96π2x
, (x=y);

F4(x,y)=− lnx

32π2
+

1

64π2
, (x=y). (20)

It is satisfactory that the infinite terms and unde-
coupled large logarithm terms in Eqs. (18) and (19) are
the same. Though the finite terms represented by the
dots in Eqs. (18) and (19) are different, the renormalized
results in both schemes are decoupled, because the zero-
momentum scheme can guarantee the decoupled renor-
malized results.

Using the unitary character of the mixing matrixes,
we obtain the expectant results for the counter terms of
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the vertex W+νIlI in both schemes.

δV (ZM),µ

W+νIlI
∼
{

e3

√
2s3

W

1

64π2

[(

mlI

cβMW

)2

+
1

c2
W

]

(∆UV−lnxM)

}

γµω−+··· , (21)

δV (OS),µ

W+νIlI
∼
{

e3

√
2s3

W

1

64π2

[(

mlI

cβMW

)2

+
1

c2
W

]

(∆UV−lnxM)

}

γµω−+··· , (22)

F5(x,y)=
lnx

48π2
, (x=y).

The two counter terms in Eqs. (21) and (22) can both
completely eliminate the ∆UV and lnxM terms produced
from the three triangle diagrams (2(a), 2(b) and 2(c)).

4.2 The MSSM vertex L̃∗

i
χ0

α
lI

For the MSSM vertex L̃∗
i χ

0
αlI, the decoupling behav-

ior of the counter term is discussed here. Assuming the
SUSY particles are very heavy, the approximate results
of Eq. (13) deduced from the virtual photon are shown
as

δV (ZM)

L̃∗

i
χ0

α
lI
(γ)∼ e3

16π2

{

1√
2sW

(DI
iα)ω−

+(CI
iα)ω+

}

(∆UV−lnxM)+···

F6(x,y)=− lnx

8π2
+

3

16π2
+··· , (x�y). (23)

The decoupling behavior of the counter term Eq. (16)
in the on-shell scheme is the same as that of Eq. (23) for
∆UV and lnxM. In this way, we find that the renormalized
results are decoupled, not only in the zero-momentum
scheme but also in the on-shell scheme.

5 Discussion and conclusion

Until now, there have been several renormalization
schemes for renormalizable theories. The on-shell renor-
malization scheme is approbated broadly for electroweak
theory in the SM, and has been well studied by theorists.
For the model including new physics beyond the SM, the
on-shell renormalization scheme still has mist to clear.
The MSSM is considered the most potent candidate out
of the new models, and has attracted much attention
from researchers for around 20 years. In the framework
of the MSSM, some processes are calculated with the

on-shell renormalization scheme. However, a consum-
mate on-shell renormalization scheme for the MSSM is
still absent.

To explore the perfect on-shell renormalization
scheme, at one-loop order we study two SM vertexes,
(ZlIlI, and W+νIlI), and one MSSM vertex, L̃∗

i χ
0
αlI, in

the zero-momentum scheme and the on-shell scheme. In
the zero-momentum scheme, each divergent diagram has
its own counter term, and has nothing to do with the
other diagrams. Another important peculiarity is that
the renormalized result is absolutely decoupled.

In the on-shell scheme, the counter term formulas
for the SM vertexes in the MSSM and SM are similar.
Almost all the renormalization constants are deduced
from the one-loop self-energies of the corresponding par-
ticles. In the SM, all the renormalization constants in
the counter term must be taken into account. At the
same time, in the MSSM we can not always renormalize
the one-triangle diagram by the counter term made up
of renormalization constants. After careful study, both
the characters of the on-shell scheme are discovered. One
character is that all the triangle diagrams belonging to
one type of a vertex are essential. Only the sum of the
amplitude can be renormalized completely. The other
character is that not all the renormalization constants
are always necessary. Which renormalization constant
must be considered lies on the idiographic condition.

This work shows that for the SM vertex ZlIlI, the
lepton wave function renormalization constants δZ l

L and
δZ l

R are requisite to obtaining the needed counter term.
However, the condition of the vertex W+νIlI is dissimilar.
To gain the final finite results, we have to calculate all the
renormalization constants in the counter term formula.
For the MSSM vertex, the foregoing experience is of ref-
erence value. The on-shell scheme for the MSSM vertex
L̃∗

i χ
0
αlI shows the property, i.e. only the wave function

renormalization constant for the relevant slepton (L̃) is
enough to complete the on-shell scheme.

In the two renormalization schemes, we study the
decoupling behavior for the counter terms of these ver-
texes. Obviously, the counter terms obtained in the two
renormalization schemes have the same characters for in-
finite and large logarithm terms when the SUSY particle
masses are equal and very heavy. Because the renormal-
ized results in the zero-momentum scheme are decoupled,
the on-shell renormalization scheme can also give decou-
pled renormalized results.

There are a great many vertexes in the MSSM, so it
is hard to make one-loop on-shell renormalization for all
of them. The studied vertexes in this work are repre-
sentative, which can be helpful in building a consistent
on-shell renormalization scheme in the MSSM. Though
there are a number of questions to deal with, one can be
convinced that a perfect on-shell renormalization scheme
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can be found in the future. This text is also propi-
tious in studying the on-shell renormalization scheme in

other models, even if the model is more complex than
the MSSM.
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