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Revisiting the Kπ puzzle in the pQCD factorization approach *
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Abstract: In this paper, we calculated the branching ratios and direct CP violation of the four B→Kπ decays with

the inclusion of all currently known next-to-leading order (NLO) contributions by employing the perturbative QCD

(pQCD) factorization approach. We found that (a) Besides the 10% enhancement from the NLO vertex corrections,

the quark-loops and magnetic penguins, the NLO contributions to the form factors can provide an additional ∼15%

enhancement to the branching ratios, and lead to a very good agreement with the data; (b) The NLO pQCD

predictions are A
dir
CP (B0

→K+
π
−)=(−6.5±3.1)% and A

dir
CP (B+

→K+
π

0)=(2.2±2.0)%, become well consistent with

the data due to the inclusion of the NLO contributions.
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1 Introduction

The four B→Kπ decays play an important role in
the precision test of the standard model (SM) and the
searching for the new physics beyond the SM [1]. The
branching ratios of these four decays have been mea-
sured with high precision [1, 2], but it is still very dif-
ficult to interpret the so-called “Kπ”-puzzle: why are
the measured direct CP violation Adir

CP (B0 → K±
π

∓)
and Adir

CP (B± → K±
π

0) so different? At the quark
level, B0 → K+

π
− and B+ → K+

π
0 decay differ only

by the sub-leading color-suppressed tree and the elec-
troweak penguin. Their CP asymmetry are expected
to be similar, but the measured values differ by 5σ [1–
3]: Aexp

CP (B0 →K+
π

−)=−0.087±0.008 while Aexp
CP (B+→

K+
π

0)=0.037±0.021.
In Ref. [4], the authors studied the “Kπ” puzzle in

the pQCD factorization approach, took the NLO con-
tributions known at 2005 into account, and provided
a pQCD interpretation for the large difference between
Adir

CP (B0 → K±
π

∓) and Adir
CP (B± → K±

π
0). In this pa-

per, we re-calculate these four B→Kπ decays with the
inclusion of all currently known NLO contributions in
the pQCD approach, especially the newly known NLO
corrections to the form factors of B→ (K,π) transitions
[5].

The paper is organized as follows. In Section 2 we

calculate the decay amplitudes for the considered decay
modes. The numerical results, some discussions and a
short summary, are presented in Section 3.

2 Decay amplitudes in the pQCD ap-

proach

In the pQCD approach, we treat the B meson as a
heavy-light system, and consider the B meson at rest for
simplicity. By using the light-cone coordinates, the B
meson momentum PB and the two final state mesons’
momenta P2 and P3 (for M2 and M3, respectively) can
be written as

PB =
MB√

2
(1,1,0T), P2=

MB√
2

(1−r2
3 ,r

2
2 ,0T),

P3 =
MB√

2
(r2

3 ,1−r2
2,0T), (1)

where r2
i =m2

i /M
2
B are very small for mi=(mπ,mK) and

will be neglected safely. Putting the light quark mo-
menta in B, M2 and M3 meson as k1, k2, and k3, respec-
tively, we can choose

k1 = (x1P
+
B ,0,k1T), k2=(x2P

+
2 ,0,k2T),

k3 = (0,x3P
−
3 ,k3T). (2)
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The decay amplitude after the integration over k−
1,2 and

k+
3 can then be written as

A(Bd→M2M3)∼
∫
dx1dx2dx3b1db1b2db2b3db3

×Tr[C(t)ΦB(x1,b1)ΦM2
(x2,b2)ΦM3

(x3,b3)

×H(xi,bi,t)St(xi)e
−S(t)

]

, (3)

where bi is the conjugate space coordinate of kiT . C(t)
is the Wilson coefficient evaluated at scale t, the hard
function H(k1,k2,k3,t) describes the four quark oper-
ators and the spectator quark connected by a hard
gluon. The wave functions ΦB(k1) and ΦMi

describe
the hadronization of the quark and anti-quark in the B
meson and Mi mesons. The Sudakov factor St(xi) and
e−S(t) = e−SB(t)−SM2

(t)−SM3
(t) can together suppress the

soft dynamics effectively [6].
For the B meson, we adopt the widely used distribu-

tion amplitude φB as in Refs. [7–9]

φB(x,b) = NBx2(1−x)2exp

[

−1

2

(

xmB

ωb

)2

−ω2
bb

2

2

]

, (4)

where the normalization factor NB depends on the values
of the shape parameter ωB and the decay constant fB and

defined through the normalization relation

∫1

0

dxφB(x,b=

0)=fB/(2
√

6). The shape parameter ωb=0.40±0.04 has
been fixed [6] from the fit to the B → π form factors
derived from the lattice QCD and from the Light-cone
sum rule. For the light π and K mesons, we adopt the
same set of distribution amplitudes φA,P,T

π,K (xi) as those
defined in Ref. [10] and being used widely for example in
Refs. [9, 11, 12].

2.1 Leading-order contributions

In the pQCD factorization approach, the leading or-
der contributions to B → Kπ decays come from the
eight Feynman diagrams as shown in Fig. 1. Following
Ref. [12], we here also use the terms (F LL

e , F LR
e , F SP

e ) and
(MLL

e , MLR
e , MSP

e ) to describe the contributions from the
factorizable emission diagrams (Fig. 1(a) and 1(b)) and
non-factorizable emission diagrams (Fig. 1(c) and 1(d))
through the (V−A)(V−A), (V−A)(V+A) and (S−P )(S+P )
operators, respectively. In a similar way, we also adopt
(F LL

a , F LR
a , F SP

a ) and (MLL
a , MLR

a , MSP
a ) to stand for

the contributions from the factorizable annihilation dia-
grams (Fig. 1(e) and 1(f)) and non-factorizable annihi-
lation diagrams (Fig. 1(g) and 1(h)). From the analytic
calculations we obtain all relevant decay amplitudes for
the four B→Kπ decays:

Fig. 1. The Feynman diagrams for the LO contri-
butions in the pQCD approach: (a, b) factoriz-
able emission diagrams; (c, d) hard-spectator di-
agrams; (e–h) annihilation diagrams.

By evaluating the emission diagrams Fig. 1(a)–1(d),
for example, we find the following decay amplitudes

F LL
e = −F LR

e =16πCFM 2
B

∫1

0

dx1dx3

∫∞
0

b1db1b3db3φB(x1)

×
{[

(x3+1)φA
3 (x3)+r3(1−2x3)

(

φP
3 (x3)+φT

3 (x3)
)]

·ha(x1,x3,b1,b3)Ee(ta)

+2r3φ
P
3 (x3)·hb(x1,x3,b1,b3)Ee(tb)

}

, (5)

F SP
e = 32πCFM 2

B

∫1

0

dx1dx3

∫∞
0

b1db1b3db3φB(x1)r2

×
{[

r3(2+x3)φ
P
3 (x3)−r3x3φ

T
3 (x3)+φA

3 (x3)
]

·ha(x1,x3,b1,b3)·Ee(ta)

+2r3φ
P
3 (x3)·hb(x1,x3,b1,b3)·Ee(tb)

}

, (6)

MLL
e =

64√
6
πCFM 2

B

∫1

0

dx1dx2dx3

∫∞
0

b1db1b2db2φB(x1)φ
A
2 (x2)

×
{

[

x̄2φ
A
3 (x3)−x3r3

(

φP
3 (x3)−φT

3 (x3)
)]

·hc(xi,b1,b2)E
′

e(tc)

+
[

(−x2−x3)φ
A
3 (x3)+x3r2

(

φP
3 (x3)+φT

3 (x3)
)]

·hd(xi,b1,b2)E
′

e(td)
}

, (7)
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MLR
e =

64√
6
πCFM 2

B

∫1

0

dx1dx2dx3

∫∞
0

b1db1b2db2φB(x1)

×
{[

x̄2

(

φP
2 (x2)+φT

2 (x2)
)

φA
3 (x3)+x3r3(φ

P
3 (x3)

+φT
3 (x3))

(

φP
2 (x2)−φT

2 (x2)
)

+x̄2r3(φ
P
3 (x3)

−φT
3 (x3))

(

φP
2 (x2)+φT

2 (x2)
)]

·hc(xi,b1,b2)E
′

e(tc)

−
[

x2

(

φP
2 (x2)−φT

2 (x2)
)

φA
3 (x3)+x2r3(φ

P
3 (x3)

+φT
3 (x3))

(

φP
2 (x2)−φT

2 (x2)
)

+x3r3

(

φP
3 (x3)+φT

3 (x3)
)

(φP
2 (x2)

+φT
2 (x2))

]

·hd(xi,b1,b2)E
′

e(td)
}

, (8)

MSP
e =

64√
6
πCFM 2

B

∫1

0

dx1dx2dx3

∫∞
0

b1db1b2db2φB(x1)

×φA
2 (x2)

{[

(x2−x3−1)φA
3 (x3)+x3r3

(

φP
3 (x3)

+φT
3 (x3)

)]

·hc(xi,b1,b2)E
′

e(tc)

+
[

x2φ
A
3 (x3)−x3r3

(

φP
3 (x3)

−φT
3 (x3)

)]

·hd(xi,b1,b2)E
′

e(td)
}

, (9)

where r2 =m2/mB, r3 =m3/mB and CF =4/3 is a color
factor. The explicit expressions for the convolution func-
tions Ee(ta,) and E

′

a(tc,d), the hard scales ta,b,c,d, and the
hard functions ha,b,c,d(xi,bi) can be found in Ref. [9]. By
evaluating the annihilation diagrams Fig. 1(e)–1(h) we
can find the corresponding decay amplitudes F LL,LR,SP

a

and MLL,LR,SP
a , similar with those as given in Eqs. (34)–

(38) in Ref. [13].
Taking into account the contributions from differ-

ent Feynman diagrams, the total decay amplitudes for
B0 →K+

π
− and B+ →K+

π
0 decays can be written ex-

plicitly as:

A(B0→K+
π

−) = V ∗
ubVud

[

fKa1F
LL
e +C1M

LL
e

]

−V ∗
tbVtd

{

fK(a4+a10)F
LL
e +fK(a6+a8)F

SP
e +(C3+C9)M

LL
e

+(C5+C7)M
LR
e +fB

[(

a4−
a10

2

)

F LL
a +

(

a6−
a8

2

)

F SP
a

]

+

(

C3−
C9

2

)

MLL
a +

(

C5−
C7

2

)

MLR
a

}

, (10)

√
2A(B+→K+

π
0) = V ∗

ubVud·
{

[a1fK+a2fπ]F LL
e +(C1+C2)M

LL
e +a2fBF LL

a +C1M
LL
a

}

−V ∗
tbVtd·

{

(a4+a10)
(

fKF LL
e +fBF LL

a

)

+(a6+a8)
(

fKF SP
e +fBF SP

a

)

+(C3+C9)
(

MLL
e +MLL

a

)

+(C5+C7)
(

MLR
e +MLR

a

)

+
3

2
(−a8+a10)fπF LL

e +
3

2
C8MSP

e +
3

2
C10MLL

e

}

, (11)

where ai is the combination of the Wilson coefficients Ci

with the definitions: a1,2 = C2,1+
C1,2

3
, ai = Ci +

Ci+1

3
(

ai=Ci+
Ci−1

3

)

for i =3, 5, 7, 9 (i=4, 6, 8, 10) re-

spectively. The explicit expressions for B0 →K0
π

0 and
B+ → K0

π
+ decays are similar with those as shown in

Eqs. (10), (11).

2.2 NLO contributions

Based on the power counting rule in the pQCD fac-
torization approach [4], the following NLO contributions
should be included [4]:

1) The Wilson coefficients Ci(MW) at NLO level [14],
the renormalization group evolution matrix U(t,m,α) at
NLO level and the strong coupling constant αs(t) at the
two-loop level [1].

2) The currently known NLO contributions to hard
kernel H (1)(α2

s ) include [4, 5, 15]:
(a) The vertex correction (VC) from the Feynman

diagrams Fig. 2(a)–2(d);
(b) The NLO contributions from the quark-loops

(QL) as shown in Fig. 2(e)–2(f);
(c) The NLO contributions from the operator O8g as

shown in Fig. 2(g)–2(h) [15];
(d) The NLO contributions to the form factors as

shown in Fig. 2(i)–2(l) [5].

Fig. 2. The typical Feynman diagrams for cur-
rently known NLO contributions: the vertex cor-
rections (a–d); the quark-loop (e–f); the chromo-
magnetic penguins (g–h); and the NLO contribu-
tions to form factors (i–l).
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The still missing NLO parts in the pQCD approach
are the O(α2

s ) contributions from hard spectator dia-
grams and annihilation diagrams, as illustrated by Fig. 5
in Ref. [13]. According to the general arguments as pre-
sented in Ref. [4] and explicit numerical comparisons of
the contributions from different sources for B→Kπ de-
cays as made in Ref. [13], one generally believes that
these still missing NLO parts should be very small and
can be neglected safely. The major reasons are the fol-
lowing:

1) For the non-factorizable spectator diagrams in
Fig. 1(c)–1(d), their LO contributions are strongly sup-
pressed by the isospin symmetry and color-suppression
with respect to the factorizable emission diagrams
Fig. 1(a)–1(b). The NLO contributions from Figs. 5(a)–
5(d) in Ref. [13] are higher order corrections to small LO
quantities.

2) For the annihilation spectator diagrams at leading
order, i.e. Figs. 1(e)–1(h), they are power suppressed and
generally much smaller with respect to the contributions
from the emission diagrams Fig. 1(a)–1(b). The NLO
contributions from Figs. 5(e)–5(h) in Ref. [13] are also in
the higher order corrections to the small LO quantities.

3) Taking B+→K+
η decay as an example, as shown

in Eq. (87) of Ref. [13], the relative strength of the in-
dividual LO contribution Ma+b from the emission dia-
grams, Mc+d and Manni from the spectator and the an-
nihilation diagram respectively can be evaluated through
the following ratio:

|Ma+b|2 :|Mc+d|2 :|Manni|2=3.23:0.02:0.33. (12)

One can see directly from the above ratio that the con-
tribution from the emission diagram is indeed dominant,
while the contribution from Mc+d ( Manni ) is less than
1% (10%) of the dominant one.

Based on about reasonable arguments and explicit
numerical examinations, one can see that the still miss-
ing NLO parts in the pQCD approach are higher or-
der corrections to those small LO quantities, and there-
fore should be very small and can be neglected safely.
For more details of numerical comparisons, one can see
Ref. [13].

The vertex corrections from the Feynman diagrams

as shown in Figs. 2(a)–2(d), have been calculated years
ago in the QCD factorization approach [16, 17]. Since
there is no end-point singularity in the evaluations of
Figs. 2(a)–2(d), it is unnecessary to employ the kT fac-
torization theorem here [4]. The NLO vertex correc-
tions will be included by adding a same vertex function
Vi(M) to the corresponding Wilson coefficients ai(µ) as
in Refs. [9, 16, 17].

For the b→ s transition, the contributions from the
various quark loops are given by [4]

Heff = −
∑

q=u,c,t

∑

q′

GF√
2
VqbV

∗
qs

αs(µ)

2π
C(q)(µ,l2)

×[s̄γρ(1−γ5)T
ab](q̄′γρT aq′), (13)

where l2 is the invariant mass of the gluon, which at-
taches the quark loops in Fig. 2(e) and 2(f). The ex-
pressions of the functions Cq(µ,l2) for q=(u,c,t) can be
found easily in Refs. [4, 9].

The magnetic penguin is another kind penguin cor-
rection induced by the insertion of the operator O8g , as
illustrated by Fig. 2(g) and 2(h). The corresponding
weak effective Hamiltonian which contains the b → sg
transition can be written as

Hmp
eff =−GF√

2

gs

8π2
mbVtbV

∗
tsC

eff
8g

[

s̄iσ
µν (1+γ5)T

a
ij G

a
µνbj

]

,

(14)

where i, j are the color indices of quarks, Ceff
8g =C8g+C5

[4] is the effective Wilson coefficient.
For the sake of convenience we denote all current

known NLO contributions except for those to the form
factors by the term Set-A. For the four B→Kπ decays,
the Set-A NLO contributions will be included in a simple
way:

AπK→AπK+
∑

q=u,c,t

ξqM(q)
πK+ξtM(g)

πK,

AKπ→AKπ+
∑

q=u,c,t

ξ′
qM(q)

Kπ
+ξ′

tM(g)
Kπ

,
(15)

where ξq = VqbV
∗
qd, ξ′

q = VqbV
∗
qs with q = u,c,t, while the

decay amplitudes M(q)
Mi,Mj

and M(g)
Mi,Mj

are of the form:

M(q)

π−K+ = −8m4
B

CF
2

√
2Nc

∫1

0

dx1dx2dx3

∫∞
0

b1db1b3db3φB(x1)
{[

(1+x3)φ
A
π
(x3)φ

A
K(x2)+2rπφP

K(x2)φ
A
π
(x3)

+rπ(1−2x3)φ
A
K(x2)(φ

P
π
(x3)+φT

π
(x3))+2rπrKφP

K(x2)((2+x3)φ
P
π
(x3)−x3φ

T
π
(x3))

]

×α2
s (ta)he(x1,x3,b1,b3)exp[−Sab(ta)]C

(q)(ta,l
2) +

[

2rπφA
K(x2)φ

P
π
(x3)+4rπrKφP

K(x2)φ
P
π
(x3)

]

×α2
s (tb)he(x3,x1,b3,b1)exp[−Sab(tb)]C

(q)(tb,l
′2)

}

, (16)

M(g)

π−K+ = −16m6
B

CF
2

√
2Nc

∫1

0

dx1dx2dx3

∫∞
0

b1db1b2db2b3db3φB(x1)·
{[

(1−x3)
[

2φA
π
(x3)+rπ(3φP

π
(x3)+φT

π
(x3))

+rπx3(φ
P
π
(x3)−φT

π
(x3))

]

φA
K(x2)−rKx2(1+x3)(3φP

K(x2)−φT
K(x2))φ

A
π
(x3)−rπrK(1−x3)(3φP

K(x2)
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+φT
K(x2))(φ

P
π
(x3)−φT

π
(x3))−rπrKx2(1−2x3)(3φP

K(x2)−φT
K(x2))(φ

P
π
(x3)+φT

π
(x3))

]

×α2
s (ta)hg(xi,bi)exp[−Scd(ta)]C

eff
8g (ta)+

[

4rπφA
K(x2)φ

P
π
(x3)+2rKrπx2(3φP

K(x2)

−φT
K(x2))φ

P
π
(x3)

]

α2
s (tb)h

′
g(xi,bi)exp[−Scd(tb)]C

eff
8g (tb)

}

, (17)

√
2M(q)

K0π0 = M(q)

π−K+ =M(q)

K0π+ =M(q)

K+π0 , (18)

√
2M(g)

K0π0 = M(g)

π−K+ =M(g)

K0π+ =M(g)

K+π0 , (19)

where the expressions of the Sudakov factors Sab(ti) and
Scd(ti), the functions C(q)(ta,l

2) and C(q)(tb,l
′2), can be

found easily in Refs. [4, 9].
In Ref. [5], the authors derived the kT-dependent

NLO hard kernel H (1) for the B → π transition form
factor. Here we quote their results directly, and extend
the expressions to the B→K transitions under the as-
sumption of SU(3) flavor symmetry. At the NLO level,
the hard kernel function H can then be written as

H = H(0)(αs)+H(1)(α2
s )

= [1+F (x1,x3,µ,µf ,η,ζ1)]H
(0)(αs), (20)

where the expression of the NLO factor F (x1, x3, µ, µf ,
η, ζ1) can be found in Eq. (56) of Ref. [5].

3 Numerical results and discussions

In numerical calculations, the following input param-
eters will be used [1] ( all the masses, QCD scale and
decay constants are in units of GeV):

ΛQCD = 0.25, mW=80.40, mB=5.28, mπ=0.14,

mK = 0.494; fπ=0.13, fK=0.16, (21)

τB0 = 1.528 ps, τB+ =1.643 ps.

For the CKM matrix elements in the Wolfenstein
parametrization, we use λ = 0.2254, A = 0.817, ρ̄ =
0.136+0.019

−0.018 and η̄ = 0.348±0.013 [1]. For the Gegen-
bauer moments and other relevant input parameters, we
use [10]

aπ

1 = 0, aK
1 =0.06, aπ

2 =aK
2 =0.25±0.15,

aπ

4 = −0.015, aK
4 =0, ρπ=mπ/mπ

0 , (22)

ρK = mK/mK
0 , η3=0.015, ω3=−3.0,

with the chiral mass mπ

0 = (1.4±0.1) GeV, and mK
0 =

(1.6±0.1) GeV.
From the decay amplitudes and the input parameters,

it is straightforward to calculate the branching ratios and
CP violating asymmetries for the four considered B→Kπ

decays [4, 9].
In Tables 1 and 2, we show the LO and NLO pQCD

predictions for the branching ratios and the direct CP
violating asymmetries of the considered four B→Kπ de-

cays. In Tables 1 and 2, we list only the central values
of the LO pQCD predictions in column two, and the
central values and the major theoretical errors simulta-
neously in column four. The first error arises from the
uncertainty of ωB=(0.40±0.04) GeV, the second one from
the uncertainty of aπ,K

2 =0.25±0.15, and the third one is
induced by the variations of both mK

0 =(1.6±0.1) GeV
and mπ

0 =(1.4±0.1) GeV. The errors induced by the un-
certainties of other input parameters are very small and
have been neglected. As a comparison, we also show the
partial pQCD predictions obtained in this work (labeled
by Set-A in column three) and those as given in Ref. [4]
in the column five, where the same Set-A NLO contri-
butions are included. One can see from those numerical
results that:

1) For branching ratios, the central values of pQCD
predictions as given in column three in Table 1 are
smaller than those as shown in column five by about
thirty percent, such differences are largely induced by
the change of the lower cutoff of the hard scale t from
µ0 = 0.5 GeV in Ref. [4] to µ0 = 1 GeV here, because
it may be conceptually incorrect to evaluate the Wilson
coefficients at scales down to 0.5 GeV [9, 18]. For direct
CP violating asymmetries, as shown in the third and
fifth column of Table 2, the changes of the pQCD pre-
dictions due to the variation of µ0 are rather small, this
is consistent with the general expectation.

2) Analogous to the case for B → Kη
(′) decays as

shown explicitly in Table 5 and 6 in Ref. [13], the NLO
contributions to the decay amplitudes from the vertex,
the quark-loop and the magnetic penguins are largely
canceled from each other, and in turn leaving only a
roughly 10% enhancement to the LO pQCD predictions
of the branching ratios.

3) As listed in Table 1 of Ref. [19], the NLO contribu-
tion to the form factor for B→π (B→K) transition can
provide a 18% (15%) enhancement to the corresponding
LO result:

F LO
0 (0)(B→π) = 0.22±0.04−→F NLO

0 (0)(B→π)

= 0.26±0.04,

F LO
0 (0)(B→K) = 0.27±0.05−→F NLO

0 (0)(B→K)

= 0.31±0.05. (23)

Such enhancement to form factors F B→π

0 (0) and
FB→K

0 (0) can in turn result in an additional 12% to 18%
enhancement to branching ratios relative to the results
in the third column with the label “Set-A”, as illustrated
clearly by the numerical results in column four of Table 1,
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Table 1. The LO and NLO pQCD predictions for branching ratios Br(B→Kπ) (in units of 10−6), the previous
pQCD predictions in Ref. [4] and the relevant data [1, 2] will also be listed in the last two columns.

decay modes LO Set-A NLO: this work pQCD [4] data

B0→K0
π
0 6.3 6.6 7.4+2.2+1.3+0.9

−1.5−1.2−0.9 9.1+5.6
−3.3 9.9±0.5

B0→K+
π
− 14.4 15.3 17.7+5.5+2.6+2.0

−3.8−2.4−2.0 20.9+15.6
−6.3 19.6±0.5

B+→K+
π
0 10.1 10.6 12.5+4.0+1.7+1.3

−2.8−1.6−1.2 13.9+10
−5.6 12.9±0.5

B+→K0
π
+ 17.5 18.4 21.5+6.7+3.4+2.8

−4.7−3.1−2.3 24.5+13.6
−8.1 23.8±0.7

Table 2. The same as in Table 1, but for the pQCD predictions for the direct CP violations A
dir
CP (B→Kπ) (in units

of 10−2).

decay modes LO Set-A NLO: this work pQCD [4] data

Adir
CP

(B0→K0
π
0) −2.2 −7.0 −7.9+0.3+0.8+0.4

−0.23−0.9−0.5 −7±3 0±13

Adir
CP

(B+→K0
π
+) −0.75 0.40 0.38+0.09+0.02+0.03

−0.11−0.07−0.05 0±0 −1.5±1.2

Adir
CP (B0→K+

π
−) −12.6 −6.4 −6.5+2.1

−2.0±2.3±0.3 −9+6
−8 −8.7±0.8

Adir
CP

(B+→K+
π
0) −8.6 2.0 2.2+1.7

−1.8±1.2±0.1 −1+3
−5 3.7±2.1

and consequently lead to a very good agreement between
the NLO pQCD predictions and the measured values
within errors.

4) For Adir
CP (B0 →K0

π
0) and Adir

CP (B+ →K0
π

+), the
pQCD predictions agree well with the data.

5) At the leading order, the pQCD predictions for
Adir

CP (B0 → K+
π

−) and Adir
CP (B+ → K+

π
0) are indeed

similar in both the sign and the magnitude, −12.6%
vs −8.6%, as generally expected. After the inclusion
of the NLO contributions, however, they become rather
different as can be seen from Table 2. The NLO pQCD
predictions, consequently, come to agree well with the
data. One can also see that the pQCD predictions for
Adir

CP (B0 → K+
π

−) and Adir
CP (B+ → K+

π
0) remain basi-

cally unchanged when the NLO corrections to the form
factors are taken into account.

In summary, we studied the B→Kπ decays by em-
ploying the pQCD factorization approach. We focus on
checking the effects of all currently known NLO con-

tributions to the branching ratios and direct CP viola-
tions of the considered decay modes, especially the rule
of the NLO corrections to the form factors F B→π

0 (q2)
and F B→K

0 (q2). Based on the numerical calculations and
the phenomenological analysis, the following points have
been observed:

1) Besides the 10% enhancement from the Set-A NLO
contributions, the NLO contributions to the form fac-
tors can provide an additional ∼ 15% enhancement to
the branching ratios, and lead to a very good agreement
with the data.

2) With the inclusion of all known NLO contribu-
tions, the NLO pQCD predictions are

Adir
CP (B0→K+

π
−)=(−6.5±3.1)%,

Adir
CP (B+→K+

π
0)=(2.2±2.0)%,

(24)

where the theoretical errors have been added in quadra-
ture, which agree well with the data.
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