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Abstract: The polarized distribution functions of mesons, including pion, kaon and eta, using the proton structure

function, are calculated. We are looking for a relationship between the polarized distribution of mesons and the

polarized structure of nucleons. We show that the meson polarized parton distributions leads to zero total spin

for the concerned mesons, considering the orbital angular momentum of quarks and gluons inside the meson. Two

separate Monte Carlo algorithms are applied to compute the polarized parton distributions of the kaon. Via the mass

dependence of quark distributions, the distribution function of the eta meson is obtained. A new method by which

the polarized sea quark distributions of protons are evolved separately – which cannot be performed easily using

the standard solution of DGLAP equations – is introduced. The mass dependence of these distributions is obtained,

using the renormalization group equation which makes their evolutions more precise. Comparison between the evolved

distributions and the available experimental data validates the suggested solutions for separated evolutions.
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1 Introduction

The effective Lagrangian has been written by
Manohar [1] to justify the chiral symmetry of quarks.
This model can be extended to polarized parton distribu-
tions and many studies have used it to find the distribu-
tions of quarks inside nucleons [2]. There are also many
studies which calculate the polarized parton distribution
function (PPDF) of mesons, based on lattice QCD com-
putations [3] or other approaches [4, 5]. We know that
due to the orbital angular momentum of quarks and glu-
ons inside hadrons, the + and − helicity distributions
do not compensate each other exactly [6]. If we extend
our theoretical framework to the case where the meson
mass corrections and higher twist effects are considered,
then it is possible to consider the longitudinal polariza-
tion for pion parton distribution. It turns out that the
transverse polarization, which is denoted by g2 [7], is
connected with the longitudinal polarization structure
g1 via the Wandzura-Wilczek relation [8]. In a similar
fashion, we can also consider some extra effects due to
meson-mass correction which will lead us to additional
longitudinal polarization for the partons of pseudo-scalar
mesons. The structure of meson-mass corrections in in-

clusive processes is in general more complicated than
that of target-mass corrections in deep inelastic scat-
tering, which can be re-summed using the Nachtmann
variable. The twist approximation which is used for the
amplitude distribution of pions can also be employed in
deep inelastic scattering processes [9]. In addition to this
theoretical justification for assigning longitudinal polar-
ization to the partons of pseudo-scalar mesons, we can
also consider the diffraction effect, using the factoriza-
tion theorem for the hard exclusive electro-production of
mesons in QCD. The full theorem applies to all kinds of
meson and not just to vector mesons. The parton densi-
ties used include not only the ordinary parton densities,
but also the helicity densities.

In this article we try to calculate the PPDF of mesons
using the (definite) PPDF of nucleons. This work con-
tains two separate parts:

1) Computing the polarization densities and orbital
angular momentum of quarks and gluon inside the me-
son.

2) Evolving the sea quark distributions of nucleons
(in which their symmetry is broken) separately, using the
renormalization group equation for the running mass of
quarks.
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In Part 1, we calculate the bare quark distributions
using the proton polarized structure function gp

1 (x), us-
ing data from Ref. [10]. Then we compute the ratio of
the polarized valence data of kaons to that of pions,
δqK

val/δq
π

val, using the data for their unpolarized ratio,
qK
val/q

π

val [11], based on two separate Monte Carlo algo-
rithms. We also calculate the polarized valence ratio of
eta mesons to pions, δqη

val/δq
π

val, using the mass depen-
dence of the valence quark distribution inside the me-
son. Substituting these ratios into the chiral quark model
(χQM) equations and fitting with experimental data (or
any reasonable phenomenological model), the polarized
distribution functions in pion, kaon and eta mesons at
low energy scales will be obtained. Following that, the
evolution of the parton distribution functions (PDFs),
employing the DGLAP equations, can be done straight-
forwardly [12–15]. Using these evolved PDFs, we can
extract the values of the orbital angular momentum of
quarks and gluons inside mesons [6].

In Part 2, the PPDFs of the proton, using the dis-
tributions extracted for mesons, are calculated. The va-
lence PPDF of the proton can be evolved easily using
the non-singlet moment δMNS. Since the DGLAP equa-
tions can thoroughly evolve only the sea quark distribu-
tion, however, the evolution of the separated sea quarks
is more complicated. There are reasonable methods to
separate the evolution of sea quarks [16] but in this work
we use the running mass and renormalization equation
to make the sea quark distribution functions depend on
the quark masses. Thereby, the eigenvalues of the evolu-
tion operator become non-degenerate. The sea quark
distributions at low scale Q2

0, arising from χQM, are
unsymmetrized. The different eigenvalues of the evo-
lution operator, which are obtained as a result of the
new method introduced in this paper, makes the evo-
lution of sea quark densities more distinctive than the
result obtained in Ref. [17]. Two boundary conditions at
low- and high-energy scales are applied to the equations
to test the sea quark spectrum. Finally, a comparison
to experimental data is carried out for sea and valence
distributions [18–20].

This paper is organised as follows. In Section 2 we
review the basic concepts of χQM in the unpolarized
case. The extension of this model to the polarized case
is done in Section 3. In Section 4 we deal with a method
to extract the polarized bare quark distributions inside
the proton. In Section 4.1, two Monte Carlo algorithms
are introduced which give us the polarized valence dis-
tributions of the kaon and in Section 4.2 we calculate the
distribution function of the eta meson, using the fact that
the masses of the quarks gives different distributions for
the various quark flavours. The parton orbital angular
momentum inside the meson and the spin of the meson is
discussed in Section 5. In Section 6 we use the renormal-

ization group equation for the running mass of quarks
to get the separated evolution operators for nucleon sea
quark densities. We give our conclusions in Section 7.

2 Unpolarized chiral quark model

Our calculations are based on the constituent quark
Fock state using the chiral quark model, χQM [1]. Ac-
cording to this model, spontaneous chiral symmetry
breaking creates Goldstone (GS) bosons which couple
to the constituent quarks. The low-energy dynamics
(µ6 4πfπ ∼ 1 GeV where fπ ≈ 93 MeV is the pion de-
cay constant) is governed by the GS bosons, in particu-
lar the pion, which is the approximate zero mode of the
QCD vacuum [1, 2, 21]. The diagrams responsible for
this process are as shown in Fig. 1.

Fig. 1. At low energy, the bare quarks are dressed
as indicated by diagram (a). At higher energies,
probing reveals the structure of GS bosons (pion,
kaon and eta) as is shown in diagram (b). This
figure has been adapted from Ref. [17].

The interaction Lagrangian of the effective chiral
quark theory in the leading order of an expansion in Π/f
is given by [1]:

L=−gA

f
ψ̄(∂µΠ)γµγ5ψ, (1)

while the GS boson matrix field is written as:

Π=
1√
2















π0

√
2
+

η√
6

π+ K+

π− − π0

√
2
+
η√
6

K0

K− K̄0 − 2η√
6















. (2)

Using the notation of Ref. [2], we can write the con-
stituent U and D quark Fock-state as:

|q〉=
√
Z |q0〉+

∑

M

αM |qM〉, (3)

where Z is the renormalization constant for a “bare”,
|q0〉, constituent quark and we have absorbed all co-
efficients in αM . The |qM〉 indicates the quark states
dressed by GS bosons. Eq. (3) will yield the one-point
Fock state contribution and ignores higher order approx-
imations (see Fig. 1).

In the unpolarized case, the splitting function which
gives the probability to convert a parent constituent
quark q into a constituent quark q′ carrying the light-
cone momentum fraction (1−xM), and a spectator GS
boson (pion, koan, eta) carrying the momentum fraction
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xM, is given by [2]:

fq/q′M =
(gq/q′M

4π

)2 1

xM(1−xM)2

×
∫
∞

0

dk2
⊥
|Gq/q′M|2 [(1−xM)mq−mq′ ]2+k2

⊥

(m2
q−M 2

q′M)2
, (4)

where

gq/q′M=
gA

f
m̄, m̄=

mq+mq′

2
, (5)

and the vertex function can be written as:

Gq/q′M=exp

(

m2
q−M 2

q′M

2Λ2

)

. (6)

In Eq. (5), f is the pseudo-scalar decay constant and is
taken to be equal to the pion decay constant, so f≈93
MeV. The quark axial-vector coupling is represented by
gA and it can be taken to be 1, as suggested in Ref. [22],
or 0.75, as suggested in Ref. [1]. In our calculations be-
low we choose the former value. The cut-off parame-
ter is Λ and is usually determined phenomenologically
[1, 2, 21, 23]. We use its previously determined value,
Λ=1.4 GeV [2].

In Eq. (6), Gq/q′M is the vertex function and accounts
for the extended structure of the GS bosons and the con-
stituent quark. M 2

q′M is the invariant mass squared of the
“meson + constituent quark” system [2, 21]:

M 2
q′M=

M 2
M+k2

⊥

xM

+
m2

q′+k2
⊥

1−xM

. (7)

In Eq. (7), mq′ denotes the mass of constituent quark
q′. In our calculations we use mu =md =360 MeV and
ms=570 MeV as typical values guided by the NJL model
calculations [24].

3 Chiral quark model in the polarized

case

Although the parton picture only applies to high en-
ergy processes, it is possible to obtain the parton densi-
ties at low energy scales using the effective Lagrangian.
In the following, we need to employ the chiral quark
model in which the bare quarks are surrounded by me-
son clouds. The result of this approach is that we can
access the constituent U and D quarks, which lead us to
achieve the parton densities of the nucleon at low energy
scales. To calculate the nucleon PPDFs in the chiral
quark model, the polarized splitting function is needed
[1, 2, 21, 23]:

δfq/q′M =
(gq/q′M

4π

)2 1

xM(1−xM)2

×
∫
∞

0

dk2
⊥
|Gq/q′M|2 [(1−xM)mq−mq′ ]2−k2

⊥

(m2
q−M 2

q′M)2
, (8)

which is analogous to Eq. (4) with the exception of
the minus sign before k2

⊥
. The expression fq/q′M =

fq/q′M↑+fq/q′M↓ is the sum of probabilities to find +1/2
and −1/2 helicities for quarks; while δfq/q′M = fq/q′M ↑
−fq/q′M ↓ is the difference of probabilities to find +1/2
minus −1/2 helicity for quarks; the quarks being emitted
from a parent quark with a specific helicity. For compar-
ison, δfq/q′π(xπ), δfq/q′K(xK) and δfq/q′η(xη) are plotted
in Fig. 2. The polarized quark densities inside the proton
can then be obtained using the following relations [2]:

δu(x) = Zδu0(x)+δfd/uπ⊗δd0+δuπ

val⊗δfu/dπ⊗δu0

+
1

2
δfu/uπ⊗δu0+

1

4
δuπ

val⊗δfπ⊗(δu0+δd0)

+δuK
val⊗δfK⊗δu0+

1

6
δfη⊗δu0

+
1

36
δuη

val⊗δfη⊗(δu0+δd0),

δd(x) = Zδd0(x)+δfπ⊗δu0+δdπ

val⊗δfπ⊗δd0+
1

2
δfπ⊗δd0

+
1

4
δdπ

val⊗δfπ⊗(δu0+δd0)+δdK
val⊗δfK⊗δd0

+
1

6
δfη⊗δd0+

1

36
δdη

val⊗δfη⊗(δu0+δd0), (9)

where δfd/uπ = δfu/dπ = ··· = δfπ (and so on) and are
defined by Eq. (8) as polarized splitting functions. In
Eq. (9), δu0 and δd0 denote the bare quark distributions
inside the proton, and δuπ

val, δdπ

val and so on are the polar-
ized quark distributions of mesons, relating to the cloud
which surrounds the bare quarks. The ‘⊗’ symbol corre-
sponds to the convolution integral, which is defined as:

p⊗q =

∫1

x

dy

y
p(y)q

(

x

y

)

,

p⊗q⊗r =

∫1

x

dy

y

∫1

y

dy′

y′
p(y′)q

(

y

y′

)

r

(

x

y

)

. (10)

Note that the Mellin transform of these equations causes
all ⊗ products to convert to ordinary products. Z is
the renormalization constant and in the polarized case it

Fig. 2. The polarized splitting functions δfq/q′M

for pion, kaon and eta.
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should be defined by (see Eq. (8) of Ref. [2]):

Z=H−3

2
∆fπ−∆fK−

1

6
∆fη, (11)

where ∆ is defined as the first Mellin moment of the split-
ting functions δfq/q′M. In the unpolarized formulation,
H can be determined using the momentum and number
sum rules and equals 1. In the polarized case, it can be
determined using the Jaffe-Ellis sum rule [25]:

∫1

0

xgp
1 (x)dx=0.185±0.010, (12)

where the polarized proton structure function, gp
1 (x), in

the leading order (LO) approximation is given by:

gp
1 (x)=

1

2

(

4

9
δuval(x)+

1

9
δdval(x)

)

. (13)

We can substitute δuval(x) and δdval(x) with the values
given by Eqs. (11, 15) from Ref. [17], which involve H ,
into Eq. (13) and the result into Eq. (12) to find the H
value. We get the numerical value H=0.909. Substitut-
ing this value into Eq. (11) yields Z=0.987.

In further steps of our calculations, we need to use
the sea quark distributions in the chiral quark model,
which are given by [2]:

δū(x) = δuπ

val⊗δfπ⊗δd0+
1

4
δuπ

val⊗δfπ⊗(δu0+δd0)

+
1

36
δuη

val⊗δfη⊗(δu0+δd0),

δd̄(x) = δdπ

val⊗δfπ⊗δu0+
1

4
δdπ

val⊗δfπ⊗(δu0+δd0)

+
1

36
δdη

val⊗δfη⊗(δu0+δd0),

δs(x) = δfK⊗(δu0+δd0)+
4

9
δsη

val⊗δfη⊗(δu0+δd0)

δs̄(x) = δsK
val⊗δfK⊗(δu0+δd0)

+
4

9
δsη

val⊗δfη⊗(δu0+δd0). (14)

4 Polarized distribution of the bare

quarks

In order to use Eqs. (9) and (14) in practice, we need
to determine the polarized distributions of bare quarks
inside the proton which, in these equations, are denoted
by δu0(x) and δd0(x). To extract these distributions, we
do the following.

We fit two simple functions with δqp
val data from

Refs. [18–20] and find their ratio, δuval/δdval, and also
suppose that this ratio is unchanged when Q2→Q2

0. This
assumption is valid because when we move from Q2

0 to
Q2, all valence quarks share an equal proportion of their
momentum with gluons and sea quarks. Then we can

rewrite Eq. (13) as:

gp
1 (x)=

1

2

(

4

9

δuval

δdval

δdval+
1

9
δdval

)

. (15)

The only unknown function is then δdval(x), which can
be determined by fitting the right hand side of Eq. (15)
with the available experimental data for gp

1 (x) at high
energy scales [10, 26]. We evolve it down to Q2

0 to find
δd0(x). We are also able to find δu0(x) from the known
ratio δuval/δdval. The final results are given by:

xδu0(x)=2.313x1.100(1−x)1.908,

xδd0(x)=−0.852x0.964(1−x)2.485.
(16)

The only functions that remain unknown in the rest
of our calculations are the PPDFs of the mesons, denoted
by δqM

val in Eqs. (9) and (14). We use the following strat-
egy to find the polarized valence densities in all mesons.
We first consider the following functions for the polarized
valence distribution in mesons:

δqM
val=ax

b(1−x)cPM(x), (17)

where the superscript M denotes meson and for the pion
we have Pπ(x)=1. To calculate the other functions PK(x)
and Pη(x) for the kaon and eta, we need to resort to a
method which will be explained in the following subsec-
tions.

4.1 Monte Carlo simulation – meson polarized

quark densities

Meson polarized distributions for kaon and eta will be
specified if we determine PK(x) and Pη(x) in Eq. (17).
The quantity PK(x) can be determined using Monte
Carlo (MC) simulation and Pη(x) can be obtained by
expanding the meson PDFs as a function of quark mass.

In the MC simulation which we introduce, PK(x) =
δqK

val/δq
π

val should be found. This ratio is related to the
unpolarized qK

val/q
π

val data [11]. Two distinct MC algo-
rithms are employed. In one of them we use the unpolar-
ized values and their errors directly and in the other al-
gorithm, these values are used as controlling conditional
parameters to generate random numbers to calculate and
estimate the polarized values. The first algorithm can be
expressed as follows. There are experimental data for the
ratio [11]:

qK
val

qπ

val

=
qK
val↑+qK

val↓
qπ

val↑+qπ

val↓
=r±δr. (18)

Experimental data for the unpolarized pion valence dis-
tributions are also available [27]:

qπ

val↑+qπ

val↓=d±δd. (19)

We can therefore find that qK
val↑+qK

val↓=r.d±δ(r.d) where
δ(r.d)=d.δr+r.δd (we ignore the product term δr.δd). On
the other hand, we know that the difference of two num-
bers between 0 and 1 should lie between −1 and their

083101-4



Chinese Physics C Vol. 38, No. 8 (2014) 083101

sum, hence:
−16δqπ

val6nq
π

val, (20)

where we have inserted n in Eq. (20) for some other
possible theoretical and/or experimental considerations.
Nevertheless we take n = 1 in our calculations. From
Eq. (20) we have:

−16qπ

val↑−qπ

val↓6n(qπ

val↑+qπ

val↓). (21)

From Eq. (19) and the upper limit of its right hand side
we get:

−16d±(δd)−2qπ

val↓6n(d+δd),

⇒ 1+d

2
>qπ

val↓∓
(

δd

2

)

>−nδd+(n−1)d

2
. (22)

We can generate random numbers between these two lim-
its and find qπ

val↓ while the uncertainty δd is known. The
same method can be used to find qK

val↓ and hence we can
calculate δqK

val/δq
π

val=(r.d−2qK
val↓)/(d−2qπ

val↓) where we
use Eqs. (18) and (19). As a result PK(x) is calculated.
One can determine the maximum value of n using the
theoretical and experimental values of δqM

val/q
M
val. This

could be a question for further research activity.
The second method is based on direct generation of

random values between 0 and 1 including all qM
val ↑ and

qM
val↓ for both pion and kaon, and eliminating the results

for qπ

val which lie outside the interval d±δd (Eq. (19)) and
those for qK

val which lie outside the interval r.d±δ(r.d).
The difference between the outputs of these two algo-
rithms, plus the uncertainty that we mentioned before,
can be used to calculate the error in the calculations.

Although the results of MC algorithms always de-
pend on the running duration of the program (because
of their probabilistic structure), we increase the num-
ber of random values in order that the results vary less
than 10 percent in two consecutive runs of the program.
The unpolarized data and polarized values produced by
MC simulation for the ratio concerned, together with the
functions which have been fitted to them, are depicted

Fig. 3. The unpolarized data [11] and the polar-
ized Monte Carlo results for the ratio δqK

val/δqπ

val.

in Fig. 3; consequently we get:

PK(x)=2.170x0.478 (1−x)0.591. (23)

By obtaining PK(x), we are able to determine Pη(x)
and finally to extract the valence quark distribution of
the eta meson, which we explain in the following subsec-
tion.

4.2 Valence quark distribution for eta meson

To find Pη(x) we need to have the quark distribution
functions depend on their masses. If we consider the
mass of the quarks as a factor that causes their densities
to be different, we can obtain:

δqπ

val = f(m,···)|m=ml
×f(m,···)|m=ml

,

δqK
val = f(m,···)|m=ml

×f(m,···)|m=ms
, (24)

δqη

val = f(m,···)|m=ms
×f(m,···)|m=ms

,

where f could be any function of quark mass, m, and
all other QCD parameters (x, Q0, ΛQCD, ···). The con-
cealed logic in Eq. (25) is that the pion contains two
light quarks, the kaon contains one light and one strange
quark, and so forth. The product of two f functions in
Eq. (25) is justifiable by the probabilistic nature of the
distributions. The mass of light quarks is denoted by
ml =mu≈md and ms is the mass of the strange quark.
The expansion of Eq. (24) yields:

δqπ

val =

(

f |m=0+ml

∂f
∂m
∣

∣

m=0
+O(m2)

)

×
(

f |m=0+ml

∂f
∂m

|m=0+O(m2)

)

,

= f 2
0 +2mlf0f

′

0+O(m2), (25)

where f0=f |m=0 and f ′

0=(∂f/∂m)|m=0. Doing the same
calculations for the kaon and eta meson we find:

δqK
val = (f0+msf

′

0+O(m2))(f0+mlf
′

0+O(m2))

= f 2
0 +(ms+ml)f0f

′

0+O(m2), (26)

δqη

val=f
2
0+2msf0f

′

0+O(m2). (27)

Defining D=f ′

0/f0 we have:

δqK
val

δqπ

val

= PK(x)=
f 2
0 +(ms+ml)f0f

′

0

f 2
0 +2mlf0f ′

0

=
1+(ms+ml)D

1+2mlD
,

(28)

δqη

val

δqπ

val

= Pη(x)=
f 2
0 +2msf0f

′

0

f 2
0 +2mlf0f ′

0

=
1+2msD

1+2mlD
. (29)
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Consequently, by writing D in terms of PK from Eq. (28)
and substituting it into Eq. (29) we find:

Pη(x)=2PK(x)−1. (30)

This equation allows us to determine the valence quark
distributions of the eta meson, principally. Now we
should determine the unknown parameters (a, b and c)
in Eq. (17).

Substituting Eqs. (30) and (23) into Eq. (17) and the
obtained result into Eqs. (9, 14) and then fitting the right
hand side of this equation with the experimental data
for proton parton distributions (in the polarized case,
their large errors have made them unusable for fitting
processes) or the results of phenomenological collabora-
tions, we can find parameters a, b and c from Eq. (17).
We choose the average of GRSV [16, 28, 29] and AAC
[30] for fitting. Due to the slightly imprecise results for
Q2<4 GeV2, we excluded the BB model from our calcu-
lations . The results are:

a = 1.100±0.235,

b = 0.686±0.118, (31)

c = 1.073±0.274.

Taking these parameters into account and using the re-
sults of Section 3.1 of Ref. [23], evolution of the PPDFs
based on the constituent valon model (for mesons) is
straightforward [23, 31]. The results for the polarized va-
lence distribution functions at Q2=3 GeV2 are depicted
in Fig. 4 and compared with unpolarized distribution.
Other meson densities, extracted from the valon model,
are listed in the Appendix A.

As an adjunct to this study and to complete the dis-
cussion, let us review how to get the numerical values
which are listed in the appendix. In analogue to Eq. (33)
from Ref. [23], but for the polarized case, we can write:

δMval(n,Q
2)=δV (n)×δMNS(n,Q

2), (32)

where δV (n) is the moment of the polarized valon dis-
tributions. Note that in the unpolarized case we had
two valons with corresponding distributions which were
generally different. In Appendix A of Ref. [23], we have
shown that their difference can be obtained using the
number and momentum sum rules. For the pion – which
consists of two light valence quarks – the calculations of
Ref. [23] showed us that we can take their valon distri-
butions to be equal to each other. But in the polarized
case, the lack of sufficient theoretical sum rules force us
to suppose that all valence distributions inside each me-
son are equal. Hence, instead of V1(n) and V2(n) from
Eq. (33) of Ref. [23] we have only δV (n), which is as-
sumed to have the following form:

δV (n)=
B(p+n,q+1)

B(p+1,q+1)
, (33)

where B is the Euler beta function and p and q are two
(valon) free parameters. There are also two (QCD) free
parameters, i.e. Q0 and ΛQCD, which exist in the def-
inition of δMNS(n,Q

2). These four parameters can be
determined by fitting the right hand side of Eq. (32)
to Eq. (17), using Eqs. (23), (30) and (32) for mesons.
Having these four parameters, we can then calculate the
distributions of δMΣ(n,Q2) (the moment of singlet sec-
tor of the distributions) and δMg(n,Q

2) (the moment of
the gluon distribution):

δMΣ(n,Q2) = 2δV (n)×δMs(n,Q
2), (34)

δMg(n,Q
2) = 2δV (n)×δMqg(n,Q

2). (35)

To find the required distribution functions (δΣ(x,Q2)
and δg(x,Q2)), we can use the inverse Mellin transform
(Eq. (34) from Ref. [23]):

xq(x,Q2)=
1

2πi

∫c+i∞

c−i∞

dx

xn−1
M(n,Q2). (36)

A numerical method to cope with the integral in Eq.(36)
has been introduced in Ref. [31]. In all of the numerical
methods, we simply fit the moment of a definite func-
tion (which contains free parameters) to the experimen-
tal data or the results of a known function – for example,
Eqs. (32), (34) or (35) – to find the free parameters. In
our fitting procedure, we assume the unknown function
to be axb(1−x)c with free parameters a, b and c. Because
Eqs. (32), (34) and (35) depend on Q2, the free parame-
ters (a, b and c) take different values at each energy scale.
We compute them for a wide range of energies (Q2=0.7
to 100 GeV2) and categorize them in the appendix for
any possible practical usage.

Fig. 4. The polarized valence densities in mesons.
A corresponding unpolarized PDF [32, 33] is also
included for comparison.

5 Parton orbital angular momentum

Since we now have the polarized parton densities for
mesons, we can investigate the first Mellin moment of the
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singlet, non-singlet and gluon sectors of the meson and
finally determine its spin. To avoid spin crises, we need
to calculate the gluon and quark orbital momenta. Their
analytical calculations are fully discussed in Ref. [6]. The
leading-log evolution of the quark and gluon orbital an-
gular momenta are:

d

dt





Lq

Lg



 =
αs(t)

2π







−4

3
CF

nf

3
4

3
CF −nf

3











Lq

Lg





+
αs(t)

2π







−2

3
CF

nf

3

−5

6
CF −11

2











∆Σ

∆g



, (37)

where Lq and Lg are the orbital angular momentum
of quarks and gluons respectively; t = ln(Q2/Λ2

QCD);
CF=4/3 and ∆Σ and ∆g are the first Mellin moment of
the distributions δΣ and δg, i.e. :





∆Σ

∆g



=

∫1

0

(

δΣ(x)

δg(x)

)

dx . (38)

As Q2 increases, ∆Σ decreases very slightly. It is there-
fore considered constant in Ref. [6] and also in our cal-
culations. The dependence of ∆g on Q2 can be obtained
via:

∆g(t)=− 4

β0

∆Σ+
t

t0

(

∆g0+
4

β0

∆Σ

)

,

∆Σ=const,

(39)

where t0=t(Q2
0) and the first universal coefficient of the

QCD β-function is β0 =11−2nf/3. If we solve Eq. (37)
for a meson and use the following boundary condition:

0=
1

2
∆Σ+∆g(0)+L(0), (40)

we will get [17]:

Lq(t) = −1

2
∆Σ+(t/t0)

−2(16+3nf )/(9β0)(Lq(0)+
1

2
∆Σ),

Lg(t) = −∆g(t)+(t/t0)
−2(16+3nf )/(9β0)

(Lg(0)+∆g(0)).

(41)

By summing up the two equations in (41), the total or-
bital angular momentum is obtained:

L(t)=Lq(t)+Lg(t). (42)

The initial value of parton angular momentum for a
meson, i.e., L(0)=Lq(0)+Lg(0), can be obtained using
the first Mellin moment of the total quark and gluon he-
licity distributions and their orbital angular momentum
respectively, i.e. Eq. (40). Knowing L(0) and using
Eqs. (41) and (42) we can calculate L(t) at all energy
ranges. The results for mesons are shown in Fig. 5. They

are in good agreement with those in Ref. [17], in which
another aspect of χQM was used. This agreement con-
firms the validity of our recent calculations. The total
spin of hadrons at all energies can be obtained from:

S(t)=
1

2
∆Σ+∆g(t)+Lqg(t) , (43)

which easily leads to a value of zero, using Eqs. (39) and
(41), as expected.

Fig. 5. The orbital angular momentum L(t) for
mesons with respect to Q2.

6 Mass dependence of the proton quark

distribution – evolution of sea quark

densities

Accessing the bare quark distributions inside the pro-
ton, using Eq. (16) and the valence densities of mesons
with Eq. (17), we can obtain the polarized quark dis-
tribution inside the proton using Eqs. (9) and (14). To
evolve the valance density to high energies, we use the
evolution of non-singlet moments, based on the DGLAP
equations. The required relation to evolve the non-
singlet moments is as follows:

δMval(n,Q
2)=δMval(n,Q

2
0)×δMNS(n,Q

2). (44)

The term δMNS(n,Q
2) is available from QCD calcula-

tions and δMval(n,Q
2
0) is the Mellin moment of the va-

lence distribution, which has been previously obtained
based on the χQM at low Q2 (see Eq.(9) and Eq.(14)).
The evolved valence densities inside the proton are indi-
cated in Fig. 6 and compared with available experimental
data.

The evolution of sea quark densities inside the proton
is not as simple as that of valence quarks. In this case
we need the singlet moment which does not relate indi-
vidually to the moment of sea quarks but relates to the
summation of all quark moments (δΣ). Although there
are some methods that solve this difficulty [16], we are
looking for a different method by applying the mass of
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Fig. 6. The polarized valence densities inside a pro-
ton at Q2 = 3 GeV2. Note that HERMES data
[18, 19] are at Q2 =2.5 GeV2 and the SMC data
[20] are at Q2=3 GeV2.

the quarks in the calculations. We first assume that all
four light sea quarks are eigenstates of the evolution op-
erator:

|δqsea;Q2〉 = E|δqsea;Q2
0〉

⇒|δqsea;Q2〉 = Eq(x,Q
2)|δqsea;Q2

0〉, (45)

in which E is the evolution operator and Eq is its eigen-
value. Two distinct cases can occur:
1) Degenerate state

In this case we have:

Eū=Ed̄=Es=Es̄=E(x,Q2), (46)

and subsequently:

δqsea(x,Q
2)=E(x,Q2)×δqsea(x,Q

2
0). (47)

By summing both sides of Eq. (47) for the four light
quarks and then factorizing E(x,Q2), we will finally
reach the following relation:

E(x,Q2) =
[δū+δd̄+δs+δs̄](x,Q2)

[δū+δd̄+δs+δs̄](x,Q2
0)

=
[δΣ−δuval−δdval](x,Q

2)

[δū+δd̄+δs+δs̄](x,Q2
0)
. (48)

In the second fraction of Eq. (48), the evolved valence
densities can be obtained from Eq. (44) and the evolved

distributions for δΣ can be obtained, using the notation
of Ref. [12], as:

δMΣ(n,Q2) = [δMuval(n,Q
2
0)+δMdval(n,Q

2
0)]

×δMs(n,Q
2). (49)

The denominator in Eq. (48) can be obtained from χQM
(see Eq. (14)). Having the functional form of E(x,Q2),
the evolution of individual sea quark densities will be
possible. This is also the method which has been used
in Ref. [17] based on another aspect of χQM.
2) Non-degenerate state

In this case, we cannot factorize Eq in Eq. (47). As-
suming that the eigenvalues in this equation depend on
Q2 through the running mass of the quarks, we can write:

[δΣ−δuval−δdval](x,Q
2)

= Eu(x,mu(Q
2))×δū(x,Q2

0)

+Ed(x,md(Q
2))×δd̄(x,Q2

0)

+Es(x,ms(Q
2))×[δs(x,Q2

0)+δs̄(x,Q2
0)], (50)

where mq(Q
2) =mq̄(Q

2) for all quarks and due to the
equality of the s and s̄ quarks masses, the two eigenval-
ues of the strange distributions (in the last bracket) are
equal.

In the modified minimal subtraction (MS) scheme,
the renormalization group equation for the running mass
of quarks has the following form [34, 35]:

[

Q2 ∂
∂Q2

−β(αs)
∂

∂αs

+

(

1

2
+γm(αs)

)

m
∂

∂m

]

×R(Q2/µ2,αs,m/Q)=0. (51)

The running mass equation m(Q2) (in analogy with the
running coupling constant) is governed by:

Q2 ∂m
∂Q2

=−γm(αs)m(Q2), (52)

and finally its solution is:

m(Q2)=m(µ2)exp

[

−
∫Q2

µ2

dQ2

Q2
γm(αs(Q

2))

]

. (53)

The numerical values for the light quark masses, which
are denoted here by m(µ2), are those which were indi-
cated just below Eq. (7).

We assume the following function for the Eqs in
Eq. (50):

Eq=Aq(mq) x
Bq(mq) (1−x)Cq(mq). (54)

Eq. (47) shows that E(x,Q2) should be equal to 1 at Q2=
Q2

0, and hence in Eq. (50) Eu=Ed=Es→1 when Q2→Q2
0.

However, the natures of the two sides of Eq. (50) are ac-
tually different. The left hand side of Eq. (50) can be
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calculated, based on the Valon framework [15], while its
right hand side comes from χQM [17, 23]. As a result we
consider an additional coefficient to fill this gap between
the two models and write Eu=Ed=Es =N . Thereupon
in Eq. (54), when Q2→Q2

0 we have:

as Q2→Q2
0 :

limAu=limAd=limAs=N,

limBu=limBd=limBs=0,

limCu=limCd=limCs=0, (55)

where N can be determined from Eq. (50) when its left
hand side is calculated at Q2 = Q2

0 using a regression
method [36–38].

Also, we know that quarks at high energy scales can
be considered massless [35]. According to Eq. (54), this
condition implies the following limits:

as Q2→∞:

limAu=limAd=limAs,

limBu=limBd=limBs,

limCu=limCd=limCs. (56)

One of the simple functions which satisfies these con-
ditions can be indicated by:

Aq(mq) = N

(

mq(Q
2)

mq(µ2)

)−A

,

(

Bq(mq)

Cq(mq)

)

=

(

B

C

)

[

−lg

(

mq(Q
2)

mq(µ2)

)](

lg[mq(Q
2)]

lg[mq(Q′2)]

)

,

(57)

here Q′2 refers to the limit of large energy value in which
the quarks can be considered massless.

Using Eq. (50) at Q2 =Q2
0 will tend the value of N

to 2.785. To find A, B and C, we substitute the evolved
δū, δd̄ and δs̄ distributions into the first equation of the
DGLAP equations:

d

dlgQ2
δq(x,Q2) =

αs

2π

∫1

x

dy

y

[

δq(y,Q2)δPqq

(

x

y

)

+δg(y,Q2)δPqg

(

x

y

)]

. (58)

(Note that, according to Ref. [21] we can calculate the
‘frozen’ gluon distribution, δg(x), from χQM and evolve
it using δMg(n,Q

2)). Considering Eq. (58), we get three
equations for δū, δd̄ and δs̄, which should be solved nu-
merically for A, B and C. Consequently the results for
the parameters in Eq.(57) are:

A=0.797, B=−0.502, C=−1.306. (59)

Substituting Eqs. (57) and (59) into Eq. (54), we can
obtain the numerical value for the evolution functions,
Eqs, at any given values of Q2 and x. The results are
shown in Fig. 7.

Fig. 7. The evolution functions in Eq. (50) at x=0.3.

Fig. 8. The sea quark distributions inside the pro-
ton at Q2 =3 GeV2 together with the HERMES
data [18, 19].
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Using these functions we can evolve the sea quark
densities to higher values of energy scales. The results
are depicted in Fig. 8 at Q2=3 GeV2.

7 Conclusions

The polarized distribution function of mesons cannot
be supposed to vanish trivially, as otherwise all sea quark
distributions in Eq. (14) would be zero. In addition,
there exist a variety of reliable studies that have calcu-
lated the PPDF of mesons [3–5]. We have determined
these polarized parton densities by calculating the ratios
of the polarized valence densities inside the meson using
Monte Carlo algorithms and the expansion of the PPDFs
in terms of quark masses (see Eq. (25)). In cases where
the polarized valence density of the pion is given (us-
ing any model), this method can offer the corresponding
functions for kaon and eta.

The orbital angular momentum was used to calcu-
late the meson spins. These equations are written and
solved for the proton [6] to justify the spin crisis, and
we solved them for mesons to calculate the parton or-
bital angular momentum of mesons and justify the zero
spin of mesons. These calculations can be considered

as additional evidence for the existence of non-zero po-
larized valence distributions for mesons. The agreement
with the result in Ref. [17] confirms the validity of our
calculations.

Due to the fact that the mass of the quarks can be
responsible for chiral symmetry breaking, we employed
the mass dependence of the proton quark densities, using
the running mass equation [25], to reveal their asym-
metry in a clearer way. The functional form of the
eigenvalues of the evolution operator could be extracted,
given appropriate boundary conditions for its parame-
ters. By numerical solution of the DGLAP evolution
equations, the numerical values of the required param-
eters in Eq. (57) were obtained. At high enough ener-
gies, where the quarks become massless, these eigenval-
ues tend to each other and the degenerate formulation
can be used.

For further research, the bare quark distributions in-
side the proton can be obtained theoretically rather than
phenomenologically, based on the solution of the Dirac
equation under a specified potential. The asymmetry of
polarized light quark distributions can also be investi-
gated, considering the charge asymmetry of parton den-
sities, and this is something we hope to work on in future.

Appendix A

The coefficients in the function axb(1−x)c have a typical expansion as follows:

(a, b and c)=

3
∑

i=0

Ri αi
s . (A1)

Their numerical values for polarized valence, gluon and singlet sector of pion, kaon and eta are calculated based on the
valon model. They are tabulated below (Table A1). The αs in Eq. (A1) denotes the running coupling constant at NLO
approximation. We have taken ΛMS=0.200 GeV in all parts of these calculations.
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Table A1.

R0 R1 R2 R3

a 0.292 1.592 −1.399 0.561

δqπ
v b 0.610 2.160 −1.884 0.797

c 2.628 −4.435 4.940 −2.215

a 0.229 3.784 −2.899 0.983

δΣπ b 0.0132 3.520 −3.039 1.221

c 2.404 −3.509 3.664 −1.632

a −0.0540 4.832 −7.796 5.515

δgπ b −0.598 3.220 −4.905 4.505

c 5.135 −12.79 14.84 −6.364

a 0.269 1.564 −1.302 0.522

δqK
v b 0.586 2.098 −1.840 0.778

c 2.783 −4.496 5.026 −2.256

a 0.229 3.725 −2.907 0.993

δΣK b 0.00802 3.455 −3.019 1.212

c 2.433 −3.547 3.703 −1.648

a −0.0423 4.688 −7.443 5.212

δgK b −0.592 3.129 −4.692 4.298

c 5.186 −12.89 14.98 −6.436

a 0.245 1.527 −1.193 0.478

δq
η

v b 0.553 2.008 −1.777 0.751

c 2.994 −4.590 5.152 −2.314

a 0.179 3.559 −2.377 0.749

δΣη b −0.00478 3.358 −2.988 1.195

c 2.759 −3.589 3.763 −1.683

a −0.0954 4.478 −7.264 5.417

δgη b −0.582 2.933 −4.177 3.836

c 5.657 −13.55 15.81 −6.762
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