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Is JPC=3−+ molecule possible? *
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Abstract: The confirmation of charged charmonium-like states indicates that heavy quark molecules should exist.

Here we discuss the possibility of a molecule state with JPC = 3−+. In a one-boson-exchange model investigation

for the S wave C = + D∗D̄∗
2 states, one finds that the strongest attraction is in the case J = 3 and I = 0 for both

π and σ exchanges. Numerical analysis indicates that this hadronic bound state might exist if a phenomenological

cutoff parameter around 2.3 GeV (1.5 GeV) is reasonable with a dipole (monopole) type form factor in the one-pion-

exchange model. The cutoff for binding solutions may be reduced to a smaller value once the σ exchange contribution

is included. If a state around the D∗D̄∗
2 threshold (≈4472 MeV) in the channel J/ψω (P wave) is observed, the heavy

quark spin symmetry implies that it is not a cc̄ meson and the JPC are likely to be 3−+.
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1 Introduction

Mesons with exotic properties play an important role
in understanding the nature of strong interactions. The
observation of the so-called XYZ states in the heavy
quark sector has triggered lots of discussions on their
quark structures, decays, and formation mechanisms. It
also motivates people to study new states beyond the
quark model assignments.

The X(3872), first observed in the J/ψπ+π− invariant
mass distribution by Belle collaboration in 2003 [1], is the
strangest heavy quark state. Since its extreme closeness
to the D0D̄∗0 threshold, lots of discussions about its prop-
erties are based on the molecule assumption. However,
it is very difficult to identify the X(3872) as a shallow
bound state of D0D̄∗0 since there are no explicitly exotic
molecule properties.

A charged charmonium- or bottomonium-like meson
labeled as Z is absolutely exotic because its number of
quarks and antiquarks must be four or more. Such states
include the Z(4430) observed in the ψ′π± mass distribu-
tion [2], the Z1(4050) and Z2(4250) observed in the χc1π

+

mass distribution [3], the Zb(10610) and Zb(10650) in the
mass spectra of the Υ (nS)π± (n=1,2,3) and π±hb(mP )
(m=1,2) [4], and charged structures Zc(3900), Zc(3885),
Zc(4020), and Zc(4025) observed by BES0 [5]. The
Zc(3900) and Z(4430) have been confirmed by analy-

ses from different data [6]. The existence of multiquark
states seems to be true. Since Z(4430) is around the
D∗D1 threshold, Zb(10610) is around the BB∗ threshold,
Zb(10650) is around the B∗B∗ threshold, and Zc(3900) is
around the DD̄∗ threshold, molecular models seem to be
applicable to their structure investigations [7–14].

To identify a state as a molecule is an important is-
sue in hadron studies. One should consider not only the
bound state problem of two hadrons, but also how to ob-
serve a molecular state in possible production processes.
In Refs. [15–18], bound states of ΣcD̄ and ΣcD̄

∗ were
studied. Since the quantum numbers are the same as
the nucleon but the masses are much higher, identifying
them as multiquark baryons is rather apparent. To ob-
tain a deeper understanding of the strong interaction, it
is necessary to explore possible molecules with explicitly
exotic quantum numbers.

The quark model gives us a constraint on the quan-
tum numbers of a meson, namely, a meson with JPC =
0−−, 0+−, 1−+, 2+−, 3−+, ··· could not be a qq̄ state,
but it may be a multiquark state. So the study on
such states may deepen our understanding of nature. If
two qq̄ mesons can form a molecule with such quantum
numbers, one gets the simplest configuration. The next
most simple configuration is the baryon-antibaryon case.
A possible place to search for them is around hadron-
hadron thresholds. There are some discussions on low
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spin heavy quark exotic states in Refs. [19, 20]. Here
we would like to discuss the possibility of a higher spin
state, JPC = 3−+. One will see that identification of it
from strong decay is possible.

First, we check meson-antimeson systems that can
form 3−+ states, where meson (antimeson) means that its
quark structure is cq̄ (c̄q). The established mesons may
be found in the Particle Data Book [21]. One checks
various combinations and finds that the lowest S-wave
system is D∗D̄∗

2. The next S-wave one is D∗
s D

∗
s2. Be-

tween these two thresholds, one needs D or G wave to
combine other meson-antimeson pairs (see Fig. 1). Below
the threshold of D∗D̄∗

2, the orbital angular momentum is
D, F , or G-wave. Above the D∗

s D
∗
s2 threshold, a partial

wave of P , F , or H is needed. Since the difference be-
tween these two thresholds is more than 200 MeV, one
may neglect the channel coupling and choose the D∗D∗

2

system to study.

Fig. 1. Thresholds of JPC =3−+ meson-antimeson
systems between that of D∗D∗

2 and that of D∗
s D

∗
s2.

S, D, G, and I are orbital angular momenta.

Secondly, we check baryon-antibaryon systems. If
one combines the established cqq baryons and their an-
tibaryons, one finds that the lowest S-wave threshold is
for Λc(2880) and Λ̄c (≈ 5168 MeV). Even for the low-
est threshold of Λc(2595) and Λ̄c in F -wave, the value
(≈4879 MeV) is still higher than that of D∗

sD
∗
s2. Thus,

we may safely ignore the possible baryon-antibaryon con-
tributions in this study.

In a 3−+ D∗D̄∗
2 state, partial waves of S, D, G, and I

may all contribute. As a first step exploration, we con-
sider only the dominant S-wave interactions. Possible
coupled channel effects will be deferred to future works.
The present study is organized as follows. After the in-
troduction in section 1, we present the main ingredients
for our study in section 2. Then we give the numerical
results in section 3. The final part is for discussions and
conclusions.

2 Wavefunctions, amplitudes, and La-

grangian

We study the meson-antimeson bound state problem
in a meson exchange model. The potential is derived
from the scattering amplitudes [22] and the flavor wave
functions of the system are necessary. Since the states
we are discussing have a definite C-parity while the com-
bination of cq̄ and c̄q mesons does not, a relative sign
problem arises between the two parts of a flavor wave
function. One has to find the relation between the flavor
wave function and the potential with definite C-parity.
There are some discussions about this problem in the
literatures [22–26]. Here we revisit it by using the G-
parity transformation rule which relates the amplitudes
between NN and NN̄ [27]. The final potential is irrele-
vant with the relative sign.

Since D mesons do not have defined C-parity, we may
assume arbitrary complex phases α and β under the C-
parity transformations

D∗−↔α1D
∗+, D̄∗0↔α2D

∗0,

D∗−
2 ↔β1D

∗+
2 , D̄∗0

2 ↔β2D
∗0
2 . (1)

According to the SU(2) transformation, one finds the
following isospin doublets

(

D̄∗0

D∗−

)

,

(

α1D
∗+

−α2D
∗0

)

,

(

D̄∗0
2

D∗−
2

)

,

(

β1D
∗+
2

−β2D
∗0
2

)

, (2)

from which the G-parity transformations read
(

D̄∗0

D∗−

)

→
(

α1D
∗+

−α2D
∗0

)

→
(

−D̄∗0

−D∗−

)

,

(

D̄∗0
2

D∗−
2

)

→
(

β1D
∗+
2

−β2D
∗0
2

)

→
(

−D̄∗0
2

−D∗−
2

)

. (3)

Similar to the study of the D∗D̄1 bound state prob-
lem [22], one may construct several states from D∗ and
D̄∗

2. Here we concentrate only on the C=+ case. If the
system is an isovector (isoscalar), we label it ZJ (XJ)
where J is the angular momentum. Explicitly, one has
the G-parity eigenstates

Z0
J =

1

2
√

2

[

(D∗−D∗+
2 +(−1)J−3D∗+

2 D∗−)

−β†
1β2(D̄

∗0D∗0
2 +(−1)J−3D∗0

2 D̄
∗0)

+cα1β
†
1((−1)J−3D∗−

2 D∗++D∗+D∗−
2 )

−cα2β
†
1((−1)J−3D̄∗0

2 D
∗0+D∗0D̄∗0

2 )
]

,
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X0
J =

1

2
√

2

[

(D∗−D∗+
2 +(−1)J−3D∗+

2 D∗−)

+β†
1β2(D̄

∗0D∗0
2 +(−1)J−3D∗0

2 D̄
∗0)

+cα1β
†
1((−1)J−3D∗−

2 D∗++D∗+D∗−
2 )

+cα2β
†
1((−1)J−3D̄∗0

2 D
∗0+D∗0D̄∗0

2 )
]

, (4)

where c=1 is the C-parity and the superscript indicates
the electric charge. The factor (−1)J−3 is from the ex-

change of two bosons [28]. One may check

ĜZ0
J =−cZ0

J , ĈX0
J =cX0

J . (5)

The procedure to derive the potential is similar to
that in [22]. Now we calculate the amplitude T (Z0

J) =
〈Z0

J |T̂ |Z0
J〉 with the G-parity transformation rule (3). We

just present several terms to illustrate the derivation. To-
gether with the above Z0

J wave function, one has

T (Z0
J) =

1

4

{

T[D∗+
2

→D
∗+
2

,D∗−→D∗−]−β1β
†
2T[D∗+

2
→D∗0

2
,D∗−→D̄∗0]+cα

†
1β1(−1)J−3T[D∗+

2
→D∗+,D∗−→D

∗−

2
]+···

}

=
Gπ

4

{

T[D∗+
2

→D
∗+
2

,D∗0→D∗0]+α
†
1α2β1β

†
2T[D∗+

2
→D∗0

2
,D∗0→D∗+]+cα

†
1α2β1β

†
2(−1)J−3T[D∗+

2
→D∗+,D∗0→D∗0

2
]+···

}

.

(6)

In fact, the convention α1α
†
2=β1β

†
2 is implied in the Lagrangian in Eq. (8). So α1α

†
2β

†
1β2=α†

1α2β1β
†
2 =1 and one

finally gets

TJ =
1

2
Gπ

{

T[D∗+
2

→D
∗+
2

,D∗0→D∗0]+xT[D∗+
2

→D∗0
2

,D∗0→D∗+]+xT[D∗0
2

→D
∗+
2

,D∗+→D∗0]+T[D∗0
2

→D∗0
2

,D∗+→D∗+]

+c(−1)J−3T[D∗+
2

→D∗+,D∗0→D∗0
2

]+xc(−1)J−3T[D∗+
2

→D∗0,D∗0→D
∗+
2

]+xc(−1)J−3T[D∗0
2

→D∗+,D∗+→D∗0
2

]

+c(−1)J−3T[D∗0
2

→D∗0,D∗+→D
∗+
2

]

}

, (7)

where x=1 (−1) for I =1 (0) state. It is obvious that
we may calculate the potential of meson-antimeson inter-
action from that of meson-meson together with a given
Lagrangian for (cq̄) meson fields. The arbitrary relative
phase in the flavor wave function of a meson-antimeson
system is canceled in this procedure. To derive the ex-
plicit expression of the potential, one needs interaction
Lagrangian.

The Lagrangian for pion interactions in the heavy
quark limit and chiral limit reads [29, 30]

Lπ = gTr[H 6Aγ5H̄ ]+g′′Tr[Tµ 6Aγ5T̄
µ]

+

{

h1

Λχ

Tr[T µ(Dµ 6A)γ5H̄]+h.c.

}

+

{

h2

Λχ

Tr[T µ(6DAµ)γ5H̄ ]+h.c.

}

, (8)

where

H =
1+ 6v

2
[P ∗µγµ+Pγ5],

T µ =
1+ 6v

2

{

P ∗µν
2 γν+

√

3

2
P ν

1 γ5[g
µ
ν−

1

3
γν(γµ−vµ)]

}

,

H̄=γ0H†γ0, T̄ µ=γ0T †γ0. (9)

The fields P ∗ =(D∗0, D∗+), and P ∗
2 =(D∗0

2 , D
∗+
2 ) anni-

hilate the cq̄ mesons. P and P1 have a similar form but
they are not involved in the following calculation. The

axial vector field Aµ is defined as Aµ =
i

2
(ξ†∂µ

ξ−ξ∂µ
ξ†)

with ξ=exp(iM/f), f=132 MeV and

M =









π0

√
2

π+

π− − π
0

√
2









. (10)

In one-boson-exchange models of nuclear force, long-
range interaction is controlled by pion exchange while
the intermediate interaction mainly results from a phe-
nomenological broad σ meson. This scalar meson ex-
change represents an effective description of the 2π con-
tributions. Its contribution can even be approximated
by a zero-width scalar exchange with suitably adjusted
parameters in the Bonn model [31]. In the Nijmegen
model, a broad scalar meson ε is described by a two-pole
approximation with the lower pole corresponding to the
σ [32]. In the present study of the bound state problem,
we use a zero-width approximation for the σ. In prin-
ciple, this economical description may capture the main
feature of the correlated 2π contribution. Recent inves-
tigations indicate that the pole mass of σ is around 400–
600 MeV [33]. We will use a larger value 600 MeV which
provides a weaker attraction. To further consider this σ
contribution, one needs additional interaction terms

Lσ = gσTr[HσH̄ ]+g′′
σ
Tr[T µσT̄µ]+

h′
σ

fπ

Tr[T µ(∂µσ)H̄

+H(∂µσ)T̄ µ]. (11)

The coupling constants must be determined in order
for numerical analysis. One extracts the pion coupling
constant g from the decay D∗→Dπ: g=0.59±0.07±0.01
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[34]. For hχ =
h1+h2

Λχ

, we use the value 0.55 GeV−1 es-

timated in [29]. To determine the coupling constant g′′,
we turn to the chiral quark model [35] with which one
may get the relation g′′=−g.

For the sigma coupling constants, we can just get esti-
mates from the chiral quark model or the chiral multiplet
assumption [36]. These approaches have been used in the
baryon case [37] for the purpose of cross checking, where
we get consistent results. Now the former method may
give the relation g′′

σ
=−gσ and the value gσ =gch =2.621

if one adopts the Lagrangian [35]

LI = −gchψ̄(σ+iγ5πaτa)ψ, (12)

where ψ=(u,d)T is the quark field and τa the Pauli ma-
trix. One should note the normalization problem in this
approach [30, 38]. However, if one estimates gσ from
the chiral multiple assumption, a value less than 1 is ob-
tained. For the remaining h′

σ, no available approach may
be used. Because of the large uncertainties of the cou-
pling constants, we will select several values to see the
σ-exchange effects on the conclusions.

In deriving the above relations for the coupling con-

stants, we have used the polarization vectors εµ
±1=

1√
2
(0,

±1, i, 0) and εµ
0 =(0, 0, 0, −1) for the vector meson D∗

and

εµν
±2 = εµ

±1ε
ν
±1,

εµν
±1 =

√

1

2
[εµ

±1ε
ν
0+ε

µ
0ε

ν
±1],

εµν
0 =

√

1

6
[εµ

+1ε
ν
−1+ε

µ
−1ε

ν
+1+2εµ

0ε
ν
0 ], (13)

for the tensor meson D∗
2 [39].

3 Potentials and numerical analysis

Now one may derive the potentials through the am-
plitudes in (7). Using the same procedure as [22], one
gets the one-pion-exchange potential (OPEP) for S-wave
interaction in the case I=1

V π(ZJ) = −gg
′′

6f 2
GπCd

[

δ(~r)−m
2
π
e−mπr

4πr

]

+
|hχ|2
15f 2

Gπc(−1)J−3Ce [∇2δ(~r)−µ2δ(~r)

− µ4

4πr
cos(µr)

]

, (14)

where µ=
√

(mD2
−mD∗)2−m2

π
, and

Cd =



























−1, (J=3)

1

2
, (J=2)

3

2
, (J=1)

, Ce=































1

2
, (J=3)

−5

4
, (J=2)

−3

4
, (J=1)

. (15)

There are two parts in the potential: the direct part and
the spin-exchange part. The later corresponds to the
terms containing c in Eq. (7). For the case of I = 0,
V π(XJ)=−3V π(ZJ).

The singular behavior at small distances needs to be

regularized [40]. If a form factor FF =

(

Λ2−m2

Λ2−q2

)2

is

added to each vertex, one finally has

V π(ZJ) = −gg
′′

6f 2
GπCd

[

−m2
π

4πr
(e−mπr−e−Λr)+

m2
π
η2

8πΛ
e−Λr+

m2
π
η4

32πΛ3
(1+Λr)e−Λr+

η6

192πΛ3
(3+3Λr+Λ2r2)e−Λr

]

+
|hχ|2
15f 2

Gπc(−1)J−3Ce

{

− µ4

4πr
(cos(µr)−e−αr)+

µ4η2

8πα
e−αr

− µ2η4

32πα
(1+αr)e−αr− η6

192πα
(3+3αr−α2r2)e−αr

}

, (16)

where η=
√

Λ2−m2
π
, and α=

√

Λ2−(mD2
−mD∗)2.

Similarly, the one-σ-exchange potential (OsEP) is

V σ(ZJ) = gσg
′′
σ

[

1

4πr
(e−mσr−e−Λr)− η2

σ

8πΛ
e−Λr− η4

σ

32πΛ3
(1+Λr)e−Λr− η6

σ

192πΛ5
(3+3Λr+Λ2r2)e−Λr

]

+
|h′

σ
|2

3f 2
π

c(−1)J−3Cσ

[

µ2
σ

4πr
(e−µσr−e−αr)−µ

2
σ
η2

σ

8πα
e−αr− µ2

σ
η4

σ

32πα3
(1+αr)e−αr− η6

σ

192πα3
(3+3αr+α2r2)e−αr

]

,

V σ(XJ) = V σ(ZJ), (17)
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where µσ =
√

m2
σ
−(mD2

−mD∗)2, ησ =
√

Λ2−m2
σ
. The

coefficient Cσ = 1 for J = 3,
1

2
for J = 2, and

1

6
for

J=1. The spin-dependent nature of OsEP comes from
the third coupling term in the Lagrangian (11).

Before the numerical calculation, we take a look at
the relative strengths of the potentials. For the me-
son masses, we use mπ = 137.27 MeV, mD∗ = 2008.63
MeV, and mD2

=2463.5 MeV [21]. We plot OPEPs with
Λ=1 GeV in Fig. 2. It is obvious that X3 is the most
attractive case.

Fig. 2. OPEP for (a) Z states and (b) X states with
the cutoff Λ=1 GeV.

In Fig. 3, we show OsEPs with g′′
σ

= −gσ = −1.0,
h′

σ
= 1.0, and Λ= 1 GeV. It is interesting that the po-

tential for X3 is also the most attractive one. Thus the
long-range and medium-range meson-exchanges are both
helpful for the formation of a IG(JPC)=0+(3−+) state.

Now we turn to the numerical results for the OPEP
case by solving the Schrödinger equation. In the poten-
tial, there is an unknown phenomenological cutoff pa-
rameter Λ. It incorporates the size information of the
interacting mesons. If Λ goes to infinity, the potential de-
scribes the interactions of structureless mesons. A small

cutoff is relevant to the real case. In principle, an appro-
priate value should be around 1 GeV which is realized
from the nuclear potential models [31, 41]. There, the
values of the cutoffs can be determined by fitting plenty
of scattering data. Since the system we are discussing is
completely different and no experimental data are avail-
able, we just tune the cutoff value and check whether
a bound state exists or not if it falls into a reasonable
range. The results are sensitive to the cutoff parameter
and we tend to use some criteria to constrain the range.
Noticing a hadronic molecule is not a tightly bound state
and the cutoff can reach 3.0 GeV in the CD-Bonn model
[42], we will not show results if the root-mean-square ra-
dius rrms <0.8 fm or Λ >4 GeV. Binding energy (BE)
and rrms for X3 with various Λ are presented in Table 1.
Similarly, one may get numerical results for other possi-
bilities, which are also given in that table. The resultant

Fig. 3. OsEP for X and Z states with the cutoff
Λ=1 GeV and the coupling constants g′′

σ =−gσ=
−1.0, h′

σ=1.0.

Table 1. Cutoff (Λ), binding energy (BE) and root-
mean-square radius (rrms) for X and Z states with
OPEP. We do not show results if Λ > 4 GeV or
rrms<0.8 fm. We present one more significant fig-
ure for the cutoff if the results are very sensitive
to it.

state Λ/GeV BE/MeV rrms/fm

X3 2.3 0.6 3.8

2.4 3.7 1.6

2.5 9.9 1.0

2.6 19.8 0.8

X2 3.13 1.0 2.8

3.14 3.5 1.5

3.15 7.0 1.1

3.16 11.5 0.8

Z1 3.6 1.9 2.2

3.7 8.4 1.1
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cutoff being much larger than 1 GeV indicates that the
attraction is not strong enough for the formation of a
hadronic bound state. From the numerical calculations,
one does not find binding solutions for X1, Z3, and Z2

with the above criteria. The binding solution exists for
X2 in a very narrow range (Λ∼3.15 MeV). Thus we give
one more significant figure for the cutoff in the table.
Among the three cases in the table, of course X3 is the
most likely to be existent. If Λ around 2.3 GeV is a rea-
sonable value in the OPEP model, the existence of X3 is
possible. However, the sensitivity of results to the cutoff
does not allow us to reach a definite conclusion.

The minimal cutoff for a binding solution is a lit-
tle larger than 2 GeV if we consider only π-exchange.
One may understand that other contributions have been
encoded in the cutoff parameter in the OPEP model.
This means that additional attraction may lower the
value to a more appropriate number. We would like
to check how much attraction the sigma meson con-
tributes. Because of the large uncertainty for the cou-
pling constants, we take three sets of them: (1) gσ=2.621,
g′′

σ
=−gσ, h′

σ
=0; (2) gσ =1.0, g′′

σ
=−gσ, h′

σ
=1; and (3)

gσ = 2.621, g′′
σ

= −gσ, h′
σ

= 2.621. After the solution
of the Schrödinger equation, the cutoff parameters sat-
isfying the condition rrms >0.8 fm and Λ <4 GeV are
summarized in Table 2. Set 1 corresponds to the case
without spin-exchange sigma potential. In this case, the
existence of X3 is possible if the cutoff around 1.7 GeV
is a reasonable value. Set 2 has a larger spin-dependent
sigma potential and a smaller spin-independent sigma
potential. The conclusion in this case is similar to set 1.
The last set is the most attractive case, where the arbi-
trary number for the h′

σ
might be a large value. In this

case, X3, Z3, and Z1 all seem to be existent. Comparing
set 1 and set 3, one sees that the spin-exchange sigma
potential may give an important contribution. From the
comparison with the OPEP case, one sees that the cutoff
value reduced by the sigma meson exchange depends a
lot on the unfixed coupling constants. The readers may
draw their own conclusions for the importance of the
sigma contributions from Table 2. If the bound state X3

really exists, the structure should be observed around the

Table 2. Cutoff values (GeV) for X and Z states
with OPEP+OsEP when binding solutions exist.
We do not show cutoffs if Λ>4 GeV or rrms<0.8
fm. We present one more significant figure for the
cutoff if the results are very sensitive to it.

states set 1 set 2 set 3

X3 1.7–2.2 1.5–1.7 1.0–1.1

X2 2.8–2.9 3.63–3.64 >3.5

X1

Z3 2.7–3.0 1.1–1.2

Z2 >3.3

Z1 2.2–2.9 2.8–3.1 1.5–1.7

D∗D∗
2 threshold (≈4472 MeV).

In the above investigation, we have added a dipole
type form factor at each vertex to regularize the original
potential. One may also use a monopole type form factor

FF=

(

Λ2−m2

Λ2−q2

)

. Now the obtained potentials are

V π(ZJ) = −gg
′′

6f 2
GπCd

[

−m2
π

4πr
(e−mπr−e−Λr)+

Λη2

8π
e−Λr

]

+
|hχ|2
15f 2

Gπc(−1)J−3Ce

{

− 1

4πr
[µ4cos(µr)

−α4e−αr+2α2η2e−αr]+
α3η2

8π
e−αr

}

, (18)

V σ(ZJ) = gσg
′′
σ

[

1

4πr
(e−mσr−e−Λr)− η2

σ

8πΛ
e−Λr

]

+
|h′

σ
|2

3f 2
π

c(−1)J−3Cσ

[

µ2
σ

4πr
(e−µσr−e−αr)

−αη
2
σ

8π
e−αr

]

. (19)

These functions are simpler than the previous ones.
However, the resultant cutoff satisfying our criteria is
now smaller (see results in Tables 3 and 4). The results
are more sensitive to the cutoff parameter. One may
understand the feature from the differences in the regu-
larization. Since the original potential has a second order
derivative term on the delta function, the regularized po-
tential is not finite at origin in the monopole case while it
is finite in the dipole case. Therefore, the singular behav-
ior of the potential in the monopole case is not purely
regularized and the sensitivity to the cutoff is higher.
The relation between the two cutoffs in the nuclear case
is around Λdipole≈

√
2Λmonopole [31]. Here and in [43], we

also observe Λdipole>Λmonopole for similar binding solu-
tions between these two cases. In the monopole case of
the OPEP model, if cutoff around 1.5 GeV is reasonable,
one gets a possible X3 bound state. The existence of X2

is also possible. In the OPEP+OsEP model, X3 (also Z3

and Z1) is possible for a cutoff around 1.2 GeV.

Table 3. Cutoff (Λ), binding energy (BE) and root-
mean-square radius (rrms) for X and Z states with
OPEP and monopole FF. We do not show results
if Λ > 4 GeV or rrms < 0.8 fm. We present one
more significant figure for the cutoff if the results
are very sensitive to it.

state Λ/GeV BE/MeV rrms/fm

X3 1.5 4.5 1.5

X2 1.66 1.2 2.4

1.67 9.9 0.9

Z1 2.2 6.2 1.2
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Table 4. Cutoff values (GeV) for X and Z states
with OPEP+OsEP and monopole FF when bind-
ing solutions exist. We do not show cutoffs if
Λ>4 GeV or rrms<0.8 fm. We present one more
significant figure for the cutoff if the results are
very sensitive to it.

states set 1 set 2 set 3

X3 1.2–1.4 1.0–1.1 ∼0.8

X2 ∼1.6 ∼1.8 ∼2.23

X1 2.7–3.1

Z3 1.8–2.0 0.81–0.87

Z2 3.0–3.8 >2.9

Z1 1.5–1.9 1.8–1.9 1.1–1.2

4 Discussions and conclusions

From the meson exchange potentials, it has been
found that the most attractive one appearing in the
C = + D∗D̄∗

2 system is for X3. In the OPEP model,
the S-wave molecule X3 is possible if the cutoff param-
eter around 2.3 GeV (1.5 GeV) is reasonable with a
dipole (monopole) form factor introduced at each ver-
tex. In the OPEP+OsEP model, a lower cutoff around
1.7 GeV (1.2 GeV) may result in the binding solution for
X3. Probably the reason for the sensitivity to the cutoff
parameter is the incompleteness in considering balances
among various contributions to the molecule problem.
Whether a bound X3 state exists or not needs more elab-
orate investigations. For example, higher partial waves
and channel coupling effects also have contributions to
the 3−+ state, which might afford additional attraction.
However, the width of the considered σ meson, the de-
cays of the charmed components, and additional meson
exchanges might reduce the attraction. Future studies
on such effects may be helpful for the understanding on
exotic states.

In one-boson-exchange models of nuclear forces,
short-range vector meson exchanges provide a strong re-
pulsive force. In the study of a meson-antimeson bound
state problem, the contributions from the ρ and ω ex-
changes may also be important. However, the inclusion
of them introduces two more coupling constants which
could not be determined reliably at present. One has
noticed that the large uncertainty for the sigma meson
coupling constant results in difficulty in drawing a con-
clusion. The inclusion of vector meson contributions in-
creases the difficulty further. We tend to consider them
when coupling constants could be determined in a more
reliable way. The tensor force contributions and cou-
pled channel effects may also be important for the bound
state problem. The consideration of such effects for the
present system needs an improved formalism and we will
discuss the effects in a separate work.

If this state really exists, it may decay through its
components, i.e. D∗→Dπ, D∗

2→Dπ, or D∗
2→D∗π. The

X3 may also decay through the quark rearrangement, i.e.
the final states are a cc̄ meson and a qq̄ (q=u,d) meson.
The later type decay may be used to identify the exotic
quantum numbers. Here we focus only on this case.

For convenience of discussion, we assume that L is
the relative orbital momentum between the cc̄ and the
qq̄ mesons and relax the isospin requirement temporarily.
Since the spins of the charm quark and the light quark
in both D∗ and D∗

2 are parallel, the spin of cc̄ in X3 must
be 1. According to the heavy quark spin symmetry, the
spin of the final charmonium after rearrangement should
also be S=1. Thus the final cc̄ state can only be ψ or
χcJ. The decay channels are obtained as follows:

(1) If the final cc̄ is J/ψ, the JPC of the produced
qq̄ meson may be (1–5)−− for L=1, (1,3,5)+− for L=2,
(1–7)−− for L=3, and so on. After some inspections on
the meson masses, one finds that kinematically allowed
decays for the X3 molecule are just J/ψρ and J/ψω
with L=1,3,5, and J/ψh1(1170) and J/ψb1(1235) with
L=2,4.

If it is ψ(2S), the kinematically allowed decays are
ψ(2S)ρ and ψ(2S)ω with L=1,3,5.

(2) If the cc̄ is χc0, the JPC of the qq̄ meson may
be (2–4)++ for L = 1, (2,4)−+ for L = 2, (0–6)++ for
L=3, and so on. The kinematically allowed decays are
χc0f0(500), χc0f0(980), and χc0a0(980) with L=3.

(3) If the cc̄ is χc1, the JPC of the qq̄ meson may be
(2,4)−+ for L= 0, (1–5)++ for L= 1, (0, 2, 4, 6)−+ for
L=2, (0–7)++ for L=3, and so on. The kinematically
allowed decays are χc1π, χc1η, χc1η

′ with L= 2,4, and
χc1f0(500) with L=3.

(4) If the cc̄ is χc2, the JPC of the qq̄ meson may be
(2, 4)−+ for L=0, (0–6)++ for L=1, (0, 2, 4, 6)−+ for
L=2, (0–8)++ for L=3, and so on. The kinematically
allowed decays are χc2f0(500) with L= 1,3,5, and χc2π

and χc2η with L=2, 4.
Therefore, the allowed two-body strong decays for X3

are J/ψω (PFH), ψ(2S)ω (PFH), J/ψh1(1170) (DG),
χc0f0(500) (F), χc0f0(980) (F), χc1η (DG), χc1η

′ (DG),
χc1f0(500) (F), χc2f0(500) (PFH), and χc2η (DG). There
is no S-wave decay. Because high L processes are sup-
pressed and ψ(2S) and χc2 are excited states, the sim-
plest way to identify X3 may be through the J/ψω chan-
nel.

Let us analyze the JPC of an assumed state X(4472)
observed in the J/ψω mass distribution. Since J/ψ and
ω are both JPC =1−− mesons, the quantum numbers of
J/ψω are (0, 1, 2)++ for S-wave combination, (0–3)−+

for P -wave combination, (0–4)++ for D-wave combina-
tion, and so on. What we are interested in is the case
that the partial wave is determined to be P . If X were
a conventional cc̄ meson, the state is ηc(4472) and the
spin of cc̄ must be 0. Because of the heavy quark spin
symmetry, the decay ηc(4472)→J/ψω is suppressed.
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Then X(4472) could be a hadronic state. Although
other meson-antimeson pairs may also form molecules
with JPC =(0–2)−+, the masses are smaller. Therefore,
based on our numerical analysis, this X around the D∗D̄∗

2

threshold is very likely to be a state with the exotic
JPC =3−+.

If one wants to look for Z3, one can use those kine-
matically allowed decay channels, J/ψρ (PFH), ψ(2S)ρ
(PFH), J/ψb1(1235) (DG), χc0a0(980) (F), χc1π (DG),
and χc2π (DG). The practical way to identify the JPC is
to analyze the partial wave of J/ψρ. The search is also
helpful to test the meson exchange models.

Replacing a c quark with a b quark, one may study
the bottom case. Because the production of a hidden
bottom molecule B∗B̄∗

2 needs much higher energy and
the production cross section is smaller, it is difficult for
experimentalists to explore this case in the near future.
In the future colliders, e.g. Z factory, such a search can
be performed. However, with the replacement c→s, one

may study whether there is a bound state or resonance
with JPC =3−+ near the K∗K2(≈2322 MeV) threshold.
If such a state exists, it may decay into ωφ and could
be detected at BES0 and BELLE.

In summary, we have investigated whether hadronic
bound states exist in the D∗D̄∗

2 system in a one-boson-
exchange model. The C = + case is discussed in this
paper. We find that the IG(JPC)=0+(3−+) X3 state has
the most attractive potential. Whether a bound state
exists or not depends strongly on a phenomenological
cutoff parameter, which we do not have available data
to determine. If a value around 2.3 GeV (1.5 GeV) in
the one-pion-exchange potential is reasonable for a dipole
(monopole) form factor, the bound state is possible. If
the molecule really exists, a feasible place to identify
it may be in the invariant mass distribution of J/ψω
around 4472 MeV. A similar study for a state around
2322 MeV in the ωφ mass distribution is also called
for.
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