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Phase transition in finite density and temperature lattice QCD *
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Abstract: We investigate the behavior of the chiral condensate in lattice QCD at finite temperature and finite

chemical potential. The study was done using two flavors of light quarks and with a series of β and ma at the lattice

size 24×122×6. The calculation was done in the Taylor expansion formalism. We are able to calculate the first and

second order derivatives of 〈ψ̄ψ〉 in both isoscalar and isovector channels. With the first derivatives being small, we

find that the second derivatives are sizable close to the phase transition and that the magnitude of ψ̄ψ decreases

under the influence of finite chemical potential in both channels.
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1 Introduction

Since the advent of lattice QCD in the 1970s by K.
G. Wilson [1], it has been proven that the theory is ex-
tremely successful in the analysis of low-energy dynamics
among mesons and baryons [2, 3]. Combined with large-
scale computations on supercomputers, people have been
investigating various non-perturbative qualities, such as
the hadron spectrum, chiral transitions, behavior of glue-
balls, hadronic matrix elements, spatial momentum de-
pendence and vector current correlation [4, 5].

However, lattice QCD also suffers from some short-
comings. For example, it violates some of the impor-
tant symmetries that the continuum theory acquires and
which can only be restored in the continuum limit. One
of the most important symmetries is chiral symmetry.
A well-known no-go theorem due to Nielson and Ni-
nomiya [6] says that chiral symmetry has to be realized
differently on the lattice. It is known that the fermion
matrix of the lattice theory has to satisfy the so-called

Ginsparg-Wilson relation [7]. One example in this cate-
gory is the so-called overlap fermion. However, practical
simulations of overlap fermions encounter other techni-
cal problems and are rather costly. A compromise to
this problem is to use staggered fermions, which pre-
serves part of the continuum chiral symmetry [8] and
runs effectively on supercomputers.

In this article, using staggered quarks, we study the
chiral condensate 〈ψ̄ψ〉 and the relevant chiral symmetry
breaking. As is well known, 〈ψ̄ψ〉 is an important order
parameter in the measurement of phase transition in lat-
tice QCD [9–11]. Basically, the quantity 〈ψ̄ψ〉 exhibits
a fast decrease around the critical point but placidity in
other places. This enables us to investigate the phase
transition and chiral properties in both low tempera-
ture and QGP phases. Simulations of lattice QCD at
finite density encounters another well-known long-lasting
problem, the sign problem - the name is borrowed from
condensed matter physics, where it also appears in the
simulation of models with fermions. In this article we
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will follow the strategy of the Taylor expansion
method [12], in which all physical quantities are ex-
panded around µ=0.

This paper is organized as follows. In the next sec-
tion, we briefly review the derivation of the derivatives
for the chiral condensate. In the third part, our numer-
ical results for the chiral condensate are presented and
we will summarize and conclude in the fourth part.

2 Taylor expansion

When the chemical potential is present, the simula-
tion encounters the infamous sign problem. However, if
the chemical potential is not too large, everything can
be expanded into a Taylor expansion in (µ/T ). For the
purpose of this letter, we need the expansion for 〈ψ̄ψ〉,
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The first order and second order responses in the above
expansion can be computed using numerical simulation
at vanishing chemical potential. Using this equation, we
can investigate the behavior of 〈ψ̄ψ〉 at a small but non-
vanishing chemical potential.

The staggered quark fermion matrix is given by

D(U,µ̂) = maδn,m+
1

2

∑
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ησ(n)

×[Uσ̂(n)δn+σ̂,m−U †
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+
1

2
ηt(n)[Ut̂(n)eµ̂δn+t̂,m−U †

t̂
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×e−µ̂δn−t̂,m], (2)

where m is the bare quark mass, a is the lattice spacing
and ηn,µ is a parameter which depends only on the parity.
The parameter µ̂=µ/(NtT ) designates the chemical po-
tential. It is switched on for each flavor of quark. In our
simulation, we have both u and d quarks, whose chemical
potentials are denoted by µu and µd respectively. The
quark propagator is related to the Dirac operatorD[U ;µ̂]
in the background gauge field configuration U by:

g(µ̂)=D(U,µ̂)−1. (3)

In lattice QCD, the chiral condensate can be written as
follows:

〈ψ̄ψ〉≡Re〈G〉=

〈

1

2
Re{Tr[g(µ̂u)]+Tr[g(µ̂d)]}

〉

, (4)

where Tr implies summing over all indices and 〈·〉 indi-
cates averaging over the gauge field ensembles.

For the observable 〈G〉, one can take the first and
the second order derivatives with respect to the reduced

chemical potential µ̂≡µ/T and obtain
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where ∆ is the fermion determinant given by

∆=det(D(µ̂u))det(D(µ̂d)), (6)

and a dot indicates the derivative with respect to µ̂.
It is interesting to investigate the response of the

chiral condensate to both the isoscalar chemical poten-
tial (the traditional finite density case) and its isovec-
tor counterpart (the finite isospin density case). For the
isoscalar we set

µ̂S=µ̂u=µ̂d, (7)

while for the isovector case we choose

µ̂V=µ̂u=−µ̂d. (8)

We will call these two cases the isoscalar and isovec-
tor channels in the following by calculating the corre-
sponding derivatives ofG with respect to the correspond-
ing chemical potential. It is known that the first order
derivative for both the isoscalar case and the isovector
case are zero, so the second order derivatives become
crucial in our calculation.

3 Numerical simulation and results

The conventional Wilson plaquette action is used,
which is characterized by the parameter β. The gauge
field configurations are generated using the conventional
R-algorithm for Hybrid Monte Carlo with molecular dy-
namics step δ=0.01 and trajectory length of 50. The size
of the lattices are all 24×122×6 and for each parameter
set, 600 gauge field configurations are obtained. By scan-
ning the temperature dependence of the Polyakov loop
the ratio T/Tc can be determined. This information, to-
gether with other simulation parameters, is summarized
in Table 1.

We have calculated the value of 〈ψ̄ψ〉 and its second
order derivatives for both µ̂S and µ̂V for all our data
sets and the results are listed in Table 2. The tempera-
ture dependence of the second order derivatives of 〈ψ̄ψ〉
with respect to µ̂S and µ̂V are illustrated in Fig. 1 for
ma=0.020.

It is seen from Fig. 1 that the second order deriva-
tives in both isoscalar and isovector channels share some
common features. They are both negative but the abso-
lute value is very small when away from the critical point.
Close to the critical point, both increase substantially.

Now it is possible to consider the behavior of 〈ψ̄ψ〉
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Table 1. Simulation parameters used in this study.
All lattices are of size 242×12×6 and Nconf stands
for the number of configurations.

ma β Nconf T/Tc

0.020 5.292 600 0.90

0.020 5.327 600 0.95

0.020 5.347 600 0.98

0.020 5.373 600 1.02

0.020 5.392 600 1.05

0.020 5.422 600 1.10

0.015 5.317 600 0.95

0.015 5.337 600 0.98

0.015 5.363 600 1.02

0.015 5.382 600 1.05

0.012 5.327 600 0.95

0.012 5.347 600 0.98

0.012 5.373 600 1.02

0.012 5.392 600 1.05

Fig. 1. Second order derivatives of 〈ψ̄ψ〉 at ma=0.020.

with chemical potential and temperature in the critical
region for both channels. We omit the first order deriva-
tives, since they vanish, and only consider the second
order derivatives. Using the data listed in Table 2, we
obtain the following expansion near βc. For instance,

slightly below Tc at β=5.347 and ma=0.020, we obtain:
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As we can see, the derivative corrections are quite sub-
stantial in the critical region. Thus, the effect of the
chemical potential makes βc drop from its original value
at µ = 0. At an even lower temperature, for example,
β=5.292 and ma=0.020, the data suggests
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These derivative corrections are not as large as is the
case in the critical region. In the phase above Tc (in the
QGP phase) at β=5.422 and ma=0.020, we obtain
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Table 2. The values of 〈ψ̄ψ〉 and its second order
derivatives in the isoscalar and isovector channels.

ma β 〈ψ̄ψ〉
∂2

〈ψ̄ψ〉

∂µ̂2
S

∂2
〈ψ̄ψ〉

∂µ̂2
V

0.020 5.292 0.367(13) −1.71(12) −1.96(18)

0.020 5.327 0.351(13) −2.26(31) −2.75(30)

0.020 5.347 0.325(28) −5.73(42) −6.21(34)

0.020 5.373 0.138(24) −6.73(45) −7.12(53)

0.020 5.392 0.129(10) −2.27(19) −2.25(22)

0.020 5.422 0.119(8) −1.43(5) −0.98(4)

0.015 5.317 0.367(26) −2.81(31) −2.79(29)

0.015 5.337 0.335(33) −7.07(59) −6.55(56)

0.015 5.363 0.144(28) −6.39(36) −5.92(34)

0.015 5.382 0.123(8) −2.13(20) −2.62(24)

0.012 5.327 0.377(21) −2.97(26) −2.83(28)

0.012 5.347 0.347(34) −6.08(41) −6.17(45)

0.012 5.373 0.148(28) −5.68(35) −5.67(32)

0.012 5.392 0.126(7) −2.55(23) −1.84(17)
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We can now plot the results for the chiral condensate
at small chemical potential in both the isoscalar and the
isovector channels. This is illustrated in Fig. 2.

Fig. 2. Behavior of 〈ψ̄ψ〉 at finite isoscalar chemi-
cal potential (a) and isovector potential (b).

In this figure, we include the behavior of 〈ψ̄ψ〉 for the
chemical potential µ̂S,V=0.05 and µ̂S,V=0.10. Since the
second order derivatives are all negative, we find the crit-
ical temperature tends to decrease under the influence of
µ̂S,V. Thus, in the low temperature phase, turning on
the chemical potential brings the system closer to the
phase transition where chiral symmetry is restored and
decreases the magnitude of the chiral condensate. In the
high temperature phase, however, since chiral symmetry
is already restored, the responses of the chiral conden-
sate to the isoscalar and isovector chemical potential are
relatively small.

4 Conclusions

In this work, we have studied the response of the
chiral condensate 〈ψ̄ψ〉 to the chemical potentials using
the Taylor expansion method. The quantity is expanded
around µ = 0 and the second derivatives of 〈ψ̄ψ〉 with
respect to both µS and µV are obtained. As is seen,
though the first order derivatives are small, the second
order responses are sizable and exhibit several unique
features. The behavior of the responses for the 〈ψ̄ψ〉 is
closely related to chiral restoration. For both isoscalar
and isovector channels, we find that the critical tem-
perature decreases with the influence of both chemical
potentials, and the magnitude of 〈ψ̄ψ〉 tends to decrease
under finite chemical potential.

The numerical calculations were performed on the

TianHe-1A supercomputer at the National Supercom-

puter Center in Tianjin.
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