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Abstract: The statistical uncertainties of 13 model parameters in the Weizsäcker-Skyrme (WS*) mass model are

investigated for the first time with an efficient approach, and the propagated errors in the predicted masses are

estimated. The discrepancies between the predicted masses and the experimental data, including the new data in

AME2016, are almost all smaller than the model errors. For neutron-rich heavy nuclei, the model errors increase

considerably, and go up to a few MeV when the nucleus approaches the neutron drip line. The most sensitive

model parameter which causes the largest statistical error is analyzed for all bound nuclei. We find that the two

coefficients of symmetry energy term significantly influence the mass predictions of extremely neutron-rich nuclei,

and the deformation energy coefficients play a key role for well-deformed nuclei around the β-stability line.
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1 Introduction

Nuclear masses, as one of the basic quantities in nu-
clear physics, play crucial roles not only in the study of
nuclear structure and reactions, but also in the study
of astrophysics, such as understanding the origin of ele-
ments in the universe. The nuclear mass models [1–16],
including global and local mass models, are of signif-
icant importance for exploring the exotic structure of
extremely neutron-rich nuclei, as well as the structures
of super-heavy nuclei and their decay properties [17–22].
In addition, the nuclear mass models are also helpful
in the investigation of nuclear symmetry energy [23–28],
which probes the isospin part of nuclear forces, because
the symmetry energy coefficient in nuclear mass models
significantly affects the masses of heavy nuclei near the
neutron drip line.

Up to now, a number of nuclear mass models have
been developed with root-mean-square (rms) deviations
of about several hundred keV to one MeV with re-
spect to all known masses. For example, a macroscopic-
microscopic mass model, the Weizsäcker-Skyrme (WS*)
model [14], which is inspired by the Skyrme energy-
density functional and the isospin symmetry of nuclear
force, was proposed with an RMS deviation of 441 keV
with respect to the 2149 measured masses [29] in the
2003 Atomic Mass Evaluation (AME2003). For unmea-
sured nuclear masses, the discrepancies between different

model predictions are still large and even larger than 20
MeV for heavy nuclei near the neutron drip line [30]. It
is therefore important and interesting to estimate the un-
certainties of mass predictions and the predictive power
of these different mass models. Unfortunately, it is dif-
ficult to accurately calculate the uncertainties of model
predictions due to the complicated parameter space and
limited computational power, and thus most nuclear
mass models omit the theoretical estimation of errors
and correlations between parameters. In recent years,
estimates of extrapolation errors of theoretical models
from different strategies such as least-squares fit, covari-
ance analysis, variation of fit data, and so on, have at-
tracted a lot of attention [31–34]. Covariance analysis is
a useful tool for understanding the limitations of a model,
the correlations between observables and the statistical
errors, with which the statistical errors in the parame-
ters of nuclear energy density functionals and in some
predicted observables such as neutron-skin thickness of
208Pb are investigated [33]. Although the statistical er-
rors in the parameters of some energy-density functionals
have been studied in the literature [35–37], a system-
atic study of statistical errors in the predicted masses
of all bound nuclei, especially the unmeasured extremely
neutron-rich nuclei and super-heavy nuclei, has not yet
been performed based on the macroscopic-microscopic
mass models. In addition, it is interesting to investigate
the influence of parameter sensitivity on the uncertainty
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of predicted masses of extremely neutron-rich nuclei and
super-heavy nuclei.

In this work, we attempt to study the statistical un-
certainties in the 13 parameters of the WS* mass model
[14] and the corresponding model errors in mass pre-
dictions, with a more efficient approach rather than the
traditional covariance matrix method. The paper is or-
ganized as follows. In Section 2, the WS* mass model is
briefly introduced. In Section 3, the procedure of extrac-
tion of the statistical uncertainties in parameters and the
estimation of the model errors will be introduced. The
calculated results will also be presented. Finally, a sum-
mary is given in Section 4.

2 The WS* nuclear mass model

The WS* nuclear mass model is based on the
macroscopic-microscopic method. The total energy of
a nucleus is expressed as a sum of the liquid-drop energy
and the Strutinsky shell correction ∆E,

E(A,Z,β)=ELD(A,Z)
∏
k≥2

(1+bkβ
2
k)+∆E(A,Z,β). (1)

The liquid drop energy of a spherical nucleus ELD(A,Z)
is described by a modified Bethe-Weizsäcker mass for-
mula,

ELD(A,Z)=avA+asA
2/3+EC+asymI2A+apairA

−1/3δnp (2)

with the Coulomb energy term,

EC=ac

Z2

A1/3

[
1−Z−2/3

]
. (3)

asym is the symmetry energy coefficient with isospin
asymmetry I=(N−Z)/A,

asym=csym

[
1− κ

A1/3
+

2−|I|
2+|I|A

]
. (4)

The terms with bk describe the contribution of nuclear
deformation to the macroscopic energy, which is efficient
in sharply reducing the CPU hours needed in the calcu-
lations of deformed nuclei,

bk=
(

k

2

)
g1A

1/3+
(

k

2

)2

g2A
−1/3. (5)

The microscopic shell correction of a nucleus, ob-
tained by the traditional Strutinsky procedure, is:

∆E=c1Esh+|I|E′
sh. (6)

Here, Esh and E′
sh denote the shell energy of a nucleus

and of its mirror nucleus, respectively. The additionally
introduced |I|E′

sh term is to take into account the mirror
constraint from the isospin symmetry. In the calculations
of shell corrections, the single particle levels of a nucleus
are calculated under the axially deformed Woods-Saxon
potential with four parameters: depth of the potential

V0, radius coefficient of the potential r0, surface diffuse-
ness a, and strength of the spin-orbit potential λ0.

In Table 1 we list the RMS deviations σ(M) between
experimental masses and the predictions of some models
(in keV). The RMS deviations with respect to the data in
AME2003 are 441, 656 and 360 keV from the predictions
of WS*, finite range droplet model (FRDM) and Duflo-
Zuker (DZ28) model, respectively. The optimal values of
the parameters in the three models listed in Table 1 are
mainly determined by the measured masses in AME2003
or earlier data. Very recently, the latest atomic mass
evaluation table AME2016 was published [38], in which
the measured masses of 270 new nuclei (since AME2003)
are presented. These newly measured unstable nuclei
are extremely neutron-rich or neutron-deficient, which is
very helpful to test the predictive power of theoretical
models. The RMS deviations of the three models with
respect to the data of the 270 new nuclei in AME2016
go up to 589, 901 and 763 keV, respectively. The result
of the WS* model is the best in the description of the
masses of these new nuclei. Considering that the number
of model parameters is only 13 in the WS* model, which
is much smaller than the two other models, the WS*
model provides us with a useful balance between accu-
racy and computation cost in performing a systematic
study of the statistical errors in mass predictions.

Table 1. RMS deviations between data (N > 8,
Z>8) and model predictions from different mass
models (in keV). The row σ(M) refers to all the
2149 measured masses in AME2003, and the row
σ(Mnew) to the measured masses of 270 “new”
nuclei in AME2016 [38].

WS* RDM [2] DZ28 [12]

σ(M) 441 656 360

σ(Mnew) 589 901 763

3 Statistical uncertainties in model pa-
rameters and mass predictions

In the WS* mass model, there are 13 independent
parameters, and the energy of a certain nucleus in its
ground state is expressed as a function of these 13 model
parameters: E(av,as,ac,csym,κ,apair,g1,g2,c1,V0,r0,a,λ0).
The optimal values of these parameters are fixed by the
measured masses of 2149 nuclei given in AME2003 and
listed in Table 2. Here, the optimal values of the pa-
rameters are obtained from the masses of all 2149 nuclei
rather than the mass of a certain nucleus, and for a cer-
tain nucleus the “best” values of the parameters could
be different from the optimal values listed in Table 2.
In the traditional statistical error analysis to nuclear en-
ergy density functional [31], the covariance matrix needs
to be calculated. The calculation of the covariance ma-
trix is time consuming due to the huge number of all
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bound nuclei and the complicated parameter space. In
this work, we attempt to analyze the statistical error
of the macroscopic-microscopic mass model in a more
efficient way. In the macroscopic-microscopic mass mod-
els, the correlations between the model parameters of
the macroscopic part and those of the microscopic part
are weak, which may provide us with an opportunity to
investigate the statistical uncertainties in the model pa-
rameters independently.

Table 2. Optimal values and statistical uncertain-
ties of model parameters in the WS* mass model.

parameter WS* σi

av/MeV −15.6223 0.0030

as/MeV 18.0571 0.0156

ac/MeV 0.7194 0.0007

csym/MeV 29.1563 0.1298

κ 1.3484 0.0186

apair/MeV −5.4423 1.9095

g1 0.00895 0.0024

g2 −0.4632 0.0668

c1 0.6297 0.1566

V0/MeV −46.8784 3.3602

r0/fm 1.3840 0.0835

a/fm 0.7842 0.1038

λ0 26.3163 2.7898

In this work, the statistical errors in the model pa-
rameters are obtained based on maximum likelihood esti-
mation. More specifically, for a certain model parameter,
e.g. the diffuseness parameter a of the Woods-Saxon po-
tential, we calculate the energy E of a certain nucleus by
varying the value of this parameter around its optimal
value and keeping other parameters unchanged. If the
discrepancy of the calculated mass for a certain nucleus
from the corresponding experimental data equals zero,
the “best” value of this parameter for the given nucleus
is therefore obtained. In Fig. 1(a) we show, as an exam-
ple, the discrepancies of the calculated masses for 132Sn

and 208Pb from the experimental data as a function of
the diffuseness parameter a. The “best” values of a for
132Sn and 208Pb are slightly different from each other.
For all the measured nuclei, we can obtain a distribution
of the “best” value of a. The peak of the distribution is
generally located at the optimal value a=0.7842 fm given
in the WS* model. With the same procedure, the distri-
bution of the other 12 parameters can also be obtained.
Some results are shown in Fig. 2. We find that the ob-
tained distributions can be reasonably well described by
using two Gaussian functions with the same centroid but
different widths. The shoulder and long tail of the distri-
bution may come from the influence of other parameters.
Based on the obtained distributions of the model param-
eters, the statistical uncertainties in the 13 parameters
can be extracted with 68.3% confidence level. In Table
2, we also list the standard deviation σi for each model
parameter. We note that the statistical uncertainties in
the pairing coefficient apair, the deformation energy coef-
ficient g1, the shell correction factor c1, the depth of the
Woods-Saxon potential V0, and the strength of spin-orbit
potential λ0 are relatively large.

Based on the extracted statistical uncertainties σi in
the model parameters, we further investigate the statis-
tical error in the predicted masses induced by the uncer-
tainties in the parameters. In this work, the statistical
error δE in the predicted energy for a certain nucleus
at its ground state is estimated by the maximal energy
uncertainty considering the cancellation from different
parameters, i.e.,

δE=max(δE1,··· ,δEi,··· ,δE13). (7)

Here, δEi denotes the uncertainty of the ground state
energy of a nucleus induced by the uncertainty σi of the
i-th model parameter xi,

δEi=|E(x1,··· ,xi+σi,··· ,x13)−E(x1,··· ,xi,··· ,x13)|. (8)
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FIG. 1: (Color online) (a) Discrepancies between the experimental data and the calculated masses

for 132Sn and 208Pb with the WS* model as a function of diffuseness parameter a of the Woods-

Saxon potential. (b) Distribution of the “best” value of a from all 2149 measured nuclei. The solid

curve in (b) denotes the Gaussian fit to the distribution.
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In this work, the statistical errors in the model parameters are obtained based on max-

imum likelihood estimation. More specifically, for a certain model parameter, e.g. the

diffuseness parameter a of the Woods-Saxon potential, we calculate the energy E of a cer-

tain nucleus by varying the value of this parameter around its optimal value and keeping

other parameters unchanged. If the discrepancy of the calculated mass for a certain nucleus

from the corresponding experimental data equals zero, the “best” value of this parameter

for the given nucleus is therefore obtained. In Fig. 1(a) we show, as an example, the dis-
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Fig. 1. (color online) (a) Discrepancies between the experimental data and the calculated masses for 132Sn and
208Pb with the WS* model as a function of diffuseness parameter a of the Woods-Saxon potential. (b) Distribution
of the “best” value of a from all 2149 measured nuclei. The solid curve in (b) denotes the Gaussian fit to the
distribution.
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FIG. 2: (Color online) Distributions of Coulomb energy coefficient ac, volume symmetry energy

coefficient csym, deformation energy coefficient g1, and potential radius coefficient r0. The solid

curve denotes the Gaussian fit to the distribution.
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find that the obtained distributions can be reasonably well described by using two Gaussian

functions with the same centroid but different widths. The shoulder and long tail of the

distribution may come from the influence of other parameters. Based on the obtained dis-

tributions of the model parameters, the statistical uncertainties in the 13 parameters can be

extracted with 68.3% confidence level. In Table 2, we also list the standard deviation σi for

7

Fig. 2. (color online) Distributions of Coulomb energy coefficient ac, volume symmetry energy coefficient csym,
deformation energy coefficient g1, and potential radius coefficient r0. The solid curve denotes the Gaussian fit to
the distribution.
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FIG. 3: (Color online) Difference between the measured masses of Ca, Zr, Sb, Rn isotopes and the

predicted results from the WS* model. The squares and circles denote the data from AME2003

and AME2016, respectively. The error bars denote the statistical errors in the predicted masses.

each model parameter. We note that the statistical uncertainties in the pairing coefficient

apair, the deformation energy coefficient g1, the shell correction factor c1, the depth of the

Woods-Saxon potential V0, and the strength of spin-orbit potential λ0 are relatively large.

Based on the extracted statistical uncertainties σi in the model parameters, we further

investigate the statistical error in the predicted masses induced by the uncertainties in the

parameters. In this work, the statistical error δE in the predicted energy for a certain

nucleus at its ground state is estimated by the maximal energy uncertainty considering the

cancellation from different parameters, i.e.,

δE = max (δE1, · · · , δEi, · · · , δE13) . (7)

Here, δEi denotes the uncertainty of the ground state energy of a nucleus induced by the

8

Fig. 3. (color online) Difference between the measured masses of Ca, Zr, Sb, Rn isotopes and the predicted results
from the WS* model. The squares and circles denote the data from AME2003 and AME2016, respectively. The
error bars denote the statistical errors in the predicted masses.

In Fig. 3, we show the discrepancies between the ex-
perimental data and the calculated masses for Ca, Zr,
Sb, Rn isotopes using the WS* model. The squares and
circles denote the data from AME2003 and AME2016,
respectively. The error bars denote the statistical errors
δE in the predicted masses according to Eq. (7). One
can see from the figure that δE is different for different

nuclei. The discrepancies for all these nuclei, not only
the nuclei in AME2003 (squares) but also the new data
in AME2016 (circles), are almost all located in the range
of the error bars, which indicates that the proposed esti-
mation for the statistical error in the predicted masses is
reasonable. For extremely neutron-rich heavy nuclei, δE
clearly increases with neutron number, which is mainly
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due to the symmetry energy term. In addition, the un-
certainties do not increase monotonically in some mass
regions, which is due to the competition among differ-
ent model parameters. For example, the uncertainty in
the symmetry energy is proportional to I2A whereas the
uncertainty in the deformation energy is proportional to
nuclear deformations. To see the global behavior of the
statistical errors, we show in Fig. 4 the values of δE for
almost all nuclei in the nuclear landscape. For interme-
diate and heavy nuclei around the β-stability line, the
statistical errors in the predicted masses are generally
smaller than 1 MeV. For super-heavy nuclei with neu-
tron number larger than 180 and heavy nuclei approach-
ing the neutron drip line, the statistical errors increase
significantly, even larger than 4 MeV.

Fig. 4. (color online) Statistical errors δE in the
predicted masses for almost all nuclei in the nu-
clear landscape.

To understand the influence of the model parameters
on the mass predictions, we simultaneously investigate
the most sensitive parameter in the mass calculations
for a certain nucleus. Here, the most sensitive parame-
ter means the parameter that results in the largest sta-
tistical uncertainty among the 13 δEi from Eq. (8). In
Fig. 5, we show the distribution of the most sensitive pa-
rameters for almost all nuclei in the nuclear landscape.
We find that for nuclei approaching the neutron drip line,
the volume symmetry energy coefficient csym and surface-
symmetry coefficient κ play a key role in the mass pre-
dictions. For extremely neutron-rich intermediate-mass
nuclei, the influence of the surface-symmetry energy term
is relatively stronger, due to the mass dependence of the
symmetry energy coefficient asym becoming stronger in
the intermediate-mass region compared with the heavy-
mass region. For well-deformed nuclei around the β-
stability line, the deformation energy coefficients g1, g2

play a role in accurate mass predictions. In addition, the
radius parameter r0 of the single-particle Woods-Saxon
potential and the strength λ0 of the spin-orbit potential
strongly influence the masses of light nuclei and nearly-
spherical nuclei.

Fig. 5. (color online) Distribution of the most sen-
sitive parameter.

4 Summary and discussion

In this work, the statistical uncertainties in the 13
model parameters of the Weizsäcker-Skyrme (WS*) mass
model are investigated, and at the same time the prop-
agated statistical errors in the predicted masses of mea-
sured and unmeasured nuclei are estimated with an effi-
cient approach considering the weak correlations between
the parameters of the macroscopic part and those of the
microscopic part. The RMS deviations with respect to
the masses of 270 new nuclei in AME2016 is only 589 keV
from the WS* model, with 13 independent model pa-
rameters. By varying the value of one parameter around
its optimal value given in the WS* model and check-
ing the discrepancy between the experimental data and
model prediction for a certain nucleus, one can obtain
the “best” value of this parameter for a given nucleus if
the discrepancy equals zero. The statistical distribution
of the “best” values of the parameter is finally obtained
according to all measured masses. The statistical uncer-
tainties in the pairing coefficient apair, the deformation
energy coefficient g1, the shell correction factor c1, the
depth of the Woods-Saxon potential V0 and the strength
of spin-orbit potential λ0 are relatively large. The sta-
tistical error δE in the predicted energy of a certain nu-
cleus in its ground state is estimated by the maximal
energy uncertainty due to the statistical uncertainties in
the 13 parameters, which is tested by the differences be-
tween the predicted masses and the experimental data in
AME2003 and the new data in AME2016. The discrep-
ancies from the data are almost all smaller than the sta-
tistical errors estimated with the proposed approach. In
addition, we investigate the most sensitive parameter in
the mass calculations for a certain nucleus, and find that
for nuclei approaching the neutron drip line, the volume
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symmetry energy coefficient csym and surface-symmetry
coefficient κ play a key role in the mass predictions.

In the proposed approach, we assume that the corre-
lations between the model parameters of WS* are weak
in the estimation of the model statistical errors. To check
the assumption, the correlations between any two param-
eters in the WS* model are also studied and the Pearson
correlation coefficient r is calculated. We find that the
correlations between the parameters of the macroscopic
part and those of the microscopic part is very weak, as
expected, and the corresponding absolute values of r are
smaller than 0.3. The correlations between the param-

eters of the macroscopic part are relatively strong, with
0.5.|r|.0.8 in general, and the correlations between the
parameters of the Woods-Saxon potential are also weak,
with |r|<0.6. If the correlations between the parameters
of the macroscopic part are considered, the statistical
error in the predicted masses could be slightly reduced.

We thank Liyong Liang for performing the mass cal-
culations with the WS* model. The WS* mass table with
the statistical errors obtained by using the proposed ap-
proach is available at http://www.imqmd.com/mass/
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