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A method for measuring D∗ electromagnetic form factors
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Abstract: We describe a method for measuring the electromagnetic form factors of the D∗ meson at time-like

momentum transfer in e+e− annihilation. This is to study the joint angular distribution of the e+e−→γ∗
→D∗+D∗−,

D∗+
→D0

π
+, and D∗−

→D
0
π
− processes. The magnitudes and relative phases of the charge, magnetic and quadrupole

form factors can be determined. The method can also be applied to other vector particles.
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1 Introduction

The electromagnetic interaction is an important
probe of the internal structure of hadrons. Figure 1
shows the Feynman diagram for a hadron undergoing
an electromagnetic interaction. In the diagram, p is the
initial momentum, p′ is the final momentum, and q=p′−p
is the momentum transfer.

p p

q

Fig. 1. Feynman diagram for a hadron undergoing
electromagnetic interaction.

For a spin 1 particle, assuming parity and time-
reversal invariance, the matrix element of the electro-
magnetic current Jµ can be written as [1–4]

〈p′λ′|Jµ|pλ〉=−G1(q
2)ε′∗λ′ ·ελ(pµ+p′µ)

+G2(q
2)(ε′∗µ

λ′ ελ·q−εµ

λε′∗λ′ ·q)

+G3(q
2)

1

2M 2
ελ·qε′∗λ′ ·q(pµ+p′µ). (1)

ελ (λ=0,±1) are polarization vectors of the initial state
and ε′λ′ (λ′ = 0,±1) the final state. M is the particle
mass. The scalar functions G1, G2 and G3 are related
to the charge form factor GC, magnetic form factor GM

and quadrupole form factor GQ [3, 4]:

GC=G1+
2

3
ηGQ, (2)

GM=G2, (3)

GQ=G1−G2+(1+η)G3, (4)

where η = −q2/4M 2. The charge, magnetic and
quadrupole form factors correspond to spatial distribu-
tions of charge, magnetic moment and quadrupole mo-
ment, respectively, by Fourier transform. Therefore,
measuring the electromagnetic form factors gives infor-
mation on the hadron structure. Perturbative quantum
chromodynamics (QCD) predicted the form factors to
have the ratios GC : GM : GQ = (1− 2

3
η) : 2 : −1 at large

space-like or time-like momentum transfer [4].
In this paper we propose a method for measuring the

electromagnetic form factors of the D∗ meson at time-
like momentum transfer. This is to study the e+e− →
γ∗ →D∗+D∗− process. The D∗ electromagnetic current
matrix element is transformed from Equation (1), which
is for space-like momentum transfer, to be

〈k′λ′|Jµ|kλ〉=−G1(q
2)ε′∗λ′ ·ε∗λ(k′µ−kµ)

+G2(q
2)(ε′∗µ

λ′ ε∗λ·q−ε∗µ

λ ε′∗λ′ ·q)

+G3(q
2)

1

2M 2
ε∗λ·qε′∗λ′ ·q(k′µ−kµ). (5)

k and k′ are the momenta of D∗+ and D∗−, respectively.
q =k+k′ in this case. The differential cross section can
then be calculated to be

dσ

dΩ
=K(C1+C2cos2θ), (6)
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where Ω is the solid angle of D∗+ in the center-of-mass
frame (CM) and θ is the polar angle.

K=
α2

em

8E2
CM

(

1−M 2

E2

) 3

2

, (7)

in which αem is the fine-structure constant, ECM is the
total energy in CM, E = ECM/2 is the energy of D∗ in
CM, and M is the D∗ mass.

C1=3|GC|2−2η|GM|2+8

3
η2|GQ|2, (8)

C2=−3|GC|2−2η|GM|2−8

3
η2|GQ|2, (9)

with η=−q2/4M 2=−E2/M 2. The total cross section is

σ=4πK(C1+
C2

3
). (10)

C1 and C2 can be obtained by measuring the angular
distribution ∼1+C2/C1cos2θ and the total cross section
∼C1+C2/3. Then from

C1+C2=−4η|GM|2, (11)

C1−C2=6|GC|2+
16

3
η2|GQ|2, (12)

we can obtain |GM| and a linear combination of |GC|2 and
|GQ|2. However, we cannot determine |GC| and |GQ| in-
dividually. Moreover, the phases of the form factors are
absent from the differential cross section formula. They
are contained in the spin states of the particles and there-
fore show in the angular distributions of subsequent de-
cays. In this spirit we shall study also the angular dis-

tributions of the D∗+→D0
π

+ and D∗−→D
0
π

− decays.

2 Method

2.1 Joint differential cross section

For the e+e− → γ∗ →D∗+D∗−, D∗+ →D0
π

+, D∗− →
D

0
π

− process, we calculate its joint differential cross sec-

tion to be

dσ

dcosθdαdcosβdα′dcosβ′
=

K

8π

f(θ,α,β,α′,β′), (13)

where the angles θ, α, β, α′ and β′ are defined in the
reference frames as shown in Fig. 2.
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Fig. 2. (color online) Reference frames for describ-
ing the D∗ pair production and subsequent de-
cays. In the center-of-mass frame (CM) xyz D∗+

has polar angle θ and azimuthal angle φ. The z′

axis of the D∗+ rest frame x′y′z′ is along the D∗+

direction in CM and the x′ axis has the same az-
imuthal angle φ in CM as D∗+. In x′y′z′ D0 has
polar angle β and azimuthal angle α. The D∗−

rest frame can be defined in the same way. In

that frame D
0

has polar angle β′ and azimuthal
angle α′.

f(θ,α,β,α′,β′)=(R2
CA(α,β,α′,β′)+4R2

QB(α,β,α′,β′)+RCRQcos(δC−δQ)C(α,β,α′,β′))sin2θ

+R2
M(D(α,β,α′,β′)cos2θ+E(α,β,α′,β′))+2(RCRMcos(δC−δM)F (α,β,α′,β′)

+2RMRQcos(δM−δQ)G(α,β,α′,β′))cosθsinθ, (14)

in which

A(α,β,α′,β′)=(cos(α+α′)sinβsinβ′+cosβcosβ′)2, (15)

B(α,β,α′,β′)=(cos(α+α′)sinβsinβ′−2cosβcosβ′)2, (16)

C(α,β,α′,β′)=(2cos(α+α′)sinβsinβ′−cosβcosβ′)2−9cos2βcos2β′, (17)

D(α,β,α′,β′)=(cosαsinβcosβ′−cosα′cosβsinβ′)2, (18)

E(α,β,α′,β′)=(sinαsinβcosβ′+sinα′cosβsinβ′)2, (19)

F (α,β,α′,β′)=(cos(α+α′)sinβsinβ′+cosβcosβ′)(cosαsinβcosβ′−cosα′cosβsinβ′), (20)

G(α,β,α′,β′)=(cos(α+α′)sinβsinβ′−2cosβcosβ′)(cosαsinβcosβ′−cosα′cosβsinβ′). (21)
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RC=3|GC|, (22)

RM=3r|GM|, (23)

RQ=r2|GQ|, (24)

where r = E/M . δC, δM and δQ are phase angles of
the corresponding form factors. Parity conservation and
time-reversal invariance are implied for the formula as in
Equation (1).

2.2 Angular distribution

Only relative values of the phase angles are meaning-
ful. Thus for convenience we define δM = 0. Factoring
out R2

M and defining

rC=
RC

RM

=
1

r

|GC|
|GM| , (25)

rQ=
RQ

RM

=
r

3

|GQ|
|GM| , (26)

Equation (14) reduces to

f(θ,α,β,α′,β′)=(r2
CA(α,β,α′,β′)+4r2

QB(α,β,α′,β′)

+rCrQcos(δC−δQ)C(α,β,α′,β′))sin2θ

+D(α,β,α′,β′)cos2θ+E(α,β,α′,β′)

+2(rCcosδCF (α,β,α′,β′)

+2rQcosδQG(α,β,α′,β′))cosθsinθ.(27)

We can obtain rC, rQ, δC and δQ by fitting
f(θ,α,β,α′,β′) to the angular distribution. It is best to
have an estimation of the parameter values before fitting.
For this we use the following procedure.

2.3 Parameter extraction

We show the procedure with a Monte Carlo (MC)
sample distributed according to f(θ,α,β,α′,β′) with the
parameter values

rC=0.3,

rQ=0.1,

δC=60,

δQ=45,

where δC and δQ are in degrees.
We use 0) to represent the entire sample and classify

the events into four sub-samples:

1) F (α,β,α′,β′)>0 and G(α,β,α′,β′)>0,

2) F (α,β,α′,β′)<0 and G(α,β,α′,β′)<0,

3) F (α,β,α′,β′)>0 and G(α,β,α′,β′)<0,

4) F (α,β,α′,β′)<0 and G(α,β,α′,β′)>0.

The cosθ distributions of 0), 1), 2), 3) and 4) are shown
in Fig. 3 and Fig. 4.
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Fig. 3. (color online) The cosθ distribution of the
entire Monte Carlo sample. The curve is the fit
with f0(θ).

The corresponding distribution function for i) (i =
0,1,2,3,4) is obtained by integrating f(θ,α,β,α′,β′) over
α, cosβ, α′ and cosβ′ under the conditions of i):

fi(θ)=
(

r2
CAi+4r2

QBi+rCrQcos(δC−δQ)Ci

)

sin2θ

+Dicos2θ+Ei

+2(rCcosδCFi+2rQcosδQGi)cosθsinθ (28)

where

A0=
1

2
B0=

3

2
D0=

3

2
E0=

16

3
π

2, (29)

C0=F0=G0=0, (30)

A1=A2=15.09, (31)

B1=B2=22.12, (32)

C1=C2=−C3=−C4=56.31, (33)

D1=D2=E1=E2=8.71, (34)

F1=−F2=6.82, (35)

G1=−G2=10.61, (36)

A3=A4=11.23, (37)

B3=B4=30.52, (38)

D3=D4=E3=E4=8.84, (39)

F3=−F4=6.34, (40)

G3=−G4=−12.26 (41)

are the integral values for A(α,β,α′,β′), B(α,β,α′,β′), ...
G(α,β,α′,β′). The integral values are calculated numer-
ically except for 0).

Define

a0=A0(r
2
C+8r2

Q), (42)

a=r2
CA1+4r2

QB1+rCrQcos(δC−δQ)C1, (43)

b=rCcosδCF1+2rQcosδQG1, (44)

a′=r2
CA3+4r2

QB3+rCrQcos(δC−δQ)C3, (45)

b′=rCcosδCF3+2rQcosδQG3. (46)
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Fig. 4. (color online) The cosθ distributions of the four sub-samples. The curves are the corresponding distribution
functions fi(θ) (i=1,2,3,4).
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Fig. 5. (color online) The addition and subtraction of the distributions of 1) and 2), and 3) and 4). The curves are
fits to them with the corresponding functions.
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fi(θ) can then be written as

f0(θ)=D0+a0+(D0−a0)cos2θ, (47)

f1(θ)=D1+a+(D1−a)cos2θ+2bcosθsinθ, (48)

f2(θ)=D1+a+(D1−a)cos2θ−2bcosθsinθ, (49)

f3(θ)=D3+a′+(D3−a′)cos2θ+2b′cosθsinθ, (50)

f4(θ)=D3+a′+(D3−a′)cos2θ−2b′cosθsinθ (51)

with the normalizing factors

S0=
4

3
(2D0+a0), (52)

S1=S2=
4

3
(2D1+a), (53)

S3=S4=
4

3
(2D3+a′). (54)

a0 can be obtained by fitting f0(θ)/S0 to the cosθ
distribution of 0). The fit is shown in Fig. 3. a, b, a′, b′

can be obtained by fitting

f1(θ)

S1

+
f2(θ)

S2

=
2(D1+a+(D1−a)cos2θ)

S1

, (55)

f1(θ)

S1

−f2(θ)

S2

=
4bcosθsinθ

S1

, (56)

f3(θ)

S3

+
f4(θ)

S4

=
2(D3+a′+(D3−a′)cos2θ)

S3

, (57)

f3(θ)

S3

−f4(θ)

S4

=
4b′cosθsinθ

S3

(58)

to the addition and subtraction of the cosθ distributions
of 1) and 2), and 3) and 4), respectively. The fits are
shown in Fig. 5.

Equation (42) can be obtained by adding Equa-
tions (43) and (45) using A0=A1+A2+A3+A4=2(A1+A3)
and similar relations. Thus Equation (45) is duplicate.
r2
Q can be expressed in terms of r2

C by Equation (42):

r2
Q=

1

8
(
a0

A0

−r2
C). (59)

We define
X=rCcosδC, (60)

Y =rQcosδQ. (61)

Equations (44) and (46) form an equation group:

F1X+2G1Y =b, (62)

F3X+2G3Y =b′. (63)

X and Y can then be solved. With the expression

rCrQcos(δC−δQ)=rCrQ(cosδCcosδQ+sinδCsinδQ)

=XY +rCrQ(±
√

1−cos2δC)

×(±
√

1−cos2δQ)

=XY ±
√

(r2
C−X2)(r2

Q−Y 2), (64)

Equation (43) can be transformed:

A1r
2
C+4B1r

2
Q+C1

(

XY ±
√

(r2
C−X2)(r2

Q−Y 2)
)

=a, (65)

C1

(

XY ±
√

(r2
C−X2)(r2

Q−Y 2)
)

=a−A1r
2
C−4B1r

2
Q, (66)

XY ±
√

(r2
C−X2)(r2

Q−Y 2)=
a−A1r

2
C−4B1r

2
Q

C1

, (67)

±
√

(r2
C−X2)(r2

Q−Y 2)=
a−A1r

2
C−4B1r

2
Q

C1

−XY, (68)

(r2
C−X2)(r2

Q−Y 2)=

(

a−A1r
2
C−4B1r

2
Q

C1

−XY

)2

, (69)

(r2
C−X2)(r2

Q−Y 2)−
(

a−A1r
2
C−4B1r

2
Q

C1

−XY

)2

=0. (70)

Putting in Equation (59), and defining x=r2
C, the equa-

tion becomes

(x−X2)

(

1

8

(

a0

A0

−x

)

−Y 2

)

−









a−A1x−
1

2
B1

(

a0

A0

−x

)

C1

−XY









2

=0. (71)

The left-hand-side of the equation is a quadratic func-
tion of x. We call this function g(x). Figure 6 shows the
original g(x) with the default setting values of rC, rQ, δC

and δQ, and g(x) with a0, a, X and Y we obtained.
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Fig. 6. (color online) The dotted curve is the origi-
nal g(x) with the default setting values of the pa-
rameters. The solid curve is g(x) with the quan-
tities we obtained. The vertical dashed line below
the original g(x) is at the default setting value of
r2
C. The vertical dashed line below the g(x) with

the obtained quantities indicates its lowest point.

The g(x) with the obtained quantities is slightly
shifted from the original g(x). Although it does not in-
tersect with the x axis, we can take the point closest to
the x axis as the approximate solution for x. Hence we

093001-5



Chinese Physics C Vol. 41, No. 9 (2017) 093001

obtain rC=
√

x. From Equations (59), (60) and (61) we
also obtain rQ, δC and δQ. The results are

rC=0.298,

rQ=0.101,

δC=59.1,

δQ=46.1.

They are close to the default setting values of rC =0.3,
rQ = 0.1, δC = 60 and δQ = 45. The uncertainties of the

parameters are to be given by a combined fit described
as follows.

2.4 Combined fit

We combine the distributions of 1), 2), 3) and 4) as
shown in Fig. 4 into one, and fit it with the corresponding
functions fi(θ) combined. In the fit, we take the previous
results as the initial values for the parameters. The fit is
shown in Fig. 7.
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Fig. 7. (color online) The combined distribution of 1), 2), 3) and 4). The curve is the fit with fi(θ) combined.

The results are

N=999627.1±999.8,

rC=0.301±0.045,

rQ=0.100±0.016,

δC=59.5±4.9,

δQ=45.3±8.8,

where N is the total number of events.

2.5 Full fit

Now we can fit f(θ,α,β,α′,β′) to the 5 dimensional
angular distribution. We use the extended maximum
likelihood fit. The combined fit results are taken as the
initial values and uncertainties. The full fit results are

N =1000001.2±1000.0,

rC=0.299±0.001,

rQ=0.101±0.001,

δC=59.2±0.4,

δQ=44.7±0.4.

The uncertainties for rC, rQ, δC and δQ are much smaller
than the combined fit. This is due to use of the full
angular information.

2.6 Application to experimental data

When applied to experimental data, the angular dis-
tributions should be corrected for the detection efficiency,

and the background events should be taken into account.
Although the situations could be different in different
experiments, we describe here how to deal with them in
general.

The efficiency can be obtained by Monte Carlo sim-
ulation. For 0), 1), 2), 3) and 4) distributions of the
experimental data, the count of each bin should be di-
vided by the efficiency in that bin. In the full fit, we
should include the efficiency function in the likelihood.
The efficiency function can be obtained by fitting to the
efficiency histogram with a suitable function.

For the background, we should identify all the
sources. For each source, we obtain its angular distribu-
tion function. We then include the distribution functions
of all sources into each fit function. In such a way, the
contributions of the signal and each background compo-
nent can be evaluated. The parameters of the signal will
not be affected if we model the background correctly.

2.7 Electromagnetic form factors

|GC|, |GM| and |GQ| can be obtained from Equa-
tions (8), (9), (10), (25) and (26):

|GM|= 1

r

√

σ0

8πK(r2
C+ 4

3
+8r2

Q)
, (72)

|GC|=rrC|GM|, (73)

|GQ|=
3

r
rQ|GM|. (74)
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σ0 above is the Born cross section. The Born cross sec-
tion is obtained by making radiative corrections to the
observed cross section. This accounts for initial state ra-
diation. The initial state radiation also causes loss of the
total energy, and variation of the form factors. This ef-
fect could be negligible, however, if we select events with
the energy loss small enough.

Since we defined δM =0, the δC and δQ we obtained
are actually δC−δM and δQ−δM, respectively.

In this way, the magnitudes and relative phases of
GC, GM and GQ can be determined. For uncertainties of
the quantities, the covariance of the parameters should
be taken into account.

3 Summary

We have described a method for measuring the
charge, magnetic and quadrupole form factors of the
D∗ meson at time-like momentum transfer in e+e− an-
nihilation. Table 1 lists an estimation of the number of
e+e−→D∗+D∗− events in data samples of the BESIII and

Belle experiments. The expectation for Belle II, which
will 50 times as much data as Belle, is also given. The
estimation uses the measured e+e−→D∗+D∗− cross sec-
tions [5, 6]. We suggest measuring the D∗ electromag-
netic form factors in e+e− experiments with this method.
The method may also be applied to other vector particles
such as ρ. The perturbative QCD prediction in Ref. [4]
can be tested with experimental measurements. Mea-
suring q2 dependence of the electromagnetic form factors
will provide useful information on hadron structure.

Table 1. Estimation of the number of e+e− →

D∗+D∗− events in data samples of the BESIII,
Belle and Belle II experiments. Belle II will have
50 times more data than Belle.

experiment
√

s/GeV luminosity /fb−1 events

BESIII 4.18 3 9,200,000

BESIII 4.36 0.5 550,000

BESIII 4.416 1.1 1,100,000

Belle 10.58 711 390,000

Belle II 10.58 711 × 50 20,000,000
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