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Abstract: We construct a holographic superconductor model, based on a gravity theory, which exhibits novel

metal-insulator transitions. We investigate the condition for the condensation of the scalar field over the parameter

space, and then focus on the superconductivity over the insulating phase with a hard gap, which is supposed to be

Mott-like. It turns out that the formation of the hard gap in the insulating phase benefits the superconductivity.

This phenomenon is analogous to the fact that the pseudogap phase can promote the pre-pairing of electrons in high

Tc cuprates. We expect that this work can shed light on understanding the mechanism of high Tc superconductivity

from the holographic side.
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1 Introduction

Mott physics, a mechanism for metal-insulator transi-
tions due to electron-electron interactions, plays a crucial
role in understanding strongly correlated phenomena in a
many-body system (see Refs. [1–4] for reviews). Typical
examples include transition metal oxides like NiO and
CoO, as well as the superconducting cuprates, fullerene
compounds like C60 and C70, and organic conductors
[2, 3]. Most Mott materials exhibit a hard gap rather
than a power law behavior of frequency dependence as for
the soft gap, which can be observed in the spectral func-
tion of single particles as well as in the optical conductiv-
ity. The spectral weight transfer and the formation of the
hard gap are viewed as two key features of Mott physics
[4]. It is widely believed that the strong electron-electron
correlation is responsible for these characteristics of Mott
materials. This means that conventional methods devel-
oped using perturbation techniques are, unfortunately,
ineffective. AdS/CFT correspondence, as a powerful

tool which in the large N limit maps a strongly cou-
pled quantum field theory to a weakly coupled gravita-
tional theory, may provide a different viewpoint on these
strongly correlated systems in condensed matter physics
[5–8]. Several novel localization mechanisms have been
proposed in recent years using this approach, by con-
structing different lattice structures as deformations of
the bulk geometry [9–19]. In this way, Peierls insula-
tors [9], polaron-localization insulators [10], and Mott-
like insulators [11–13] as well as other novel insulating
phases, have been implemented and many exciting prop-
erties have been observed [14–20], some of which resem-
ble those found in strongly correlated electronic systems.
AdS/CFT duality has provided an intuitive and geomet-
ric scenario for understanding the phenomena in strongly
correlated electronic systems.

It is still challenging to understand the mechanism of
high temperature superconductivity. In contrast to con-
ventional superconductors, for which the normal state is
metallic and the superconductivity emerges due to the
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formation of Cooper pairs by means of electron-phonon
interactions, it is found that high temperature copper-
oxide superconductors are strongly correlated electronic
systems, which can be generated by doping a Mott insu-
lator [1]. The mechanism of pairing electrons to form su-
perconductivity in high Tc cuprates is still not clear, but
it has been found that before entering the superconduct-
ing phase, some interesting phases with pseudogap and
competing orders are involved. It is very desirable to ex-
plore the mechanism of high Tc superconductivity using
a holographic approach. Until now, for most holographic
models of superconductors in the literature, the normal
state is either a perfect conductor [21–24], a metal [25]
or an ordinary insulator [26]. Thus, to mimic high Tc su-
perconductivity by holography it is essential to construct
a holographic model dual to a Mott insulator at first. As
the first step we have successfully proposed a two-gauge
formalism in gravity theory and built a Mott-like insula-
tor in Ref. [12], which is characterized by the emergence
of a hard gap in the optical conductivity. This appealing
progress stimulates us to further explore the supercon-
ductivity based on this Mott-like insulating phase in a
holographic scenario, which is the main purpose of this
work.

Our paper is organized as follows. In Section 2, we
present the holographic setup for the construction of a
superconductor in two-gauge formalism with a Q-lattice
structure. Section 3 contains four subsections where the
phase structure, the relation between the gap in the nor-
mal state and the critical temperature, and solutions to
scalar condensation and optical conductivity in the su-
perconducting phase are studied in detail. The conclu-
sion and discussion are presented in Section 4.

2 Holographic setup

A holographic model which exhibits a novel metal-
insulator transition with a Q-lattice structure has been
investigated in Ref. [12]. To construct a superconductor
based on this model, we introduce an additional charged
scalar field with U(1) gauge symmetry into the system
such that the action becomes

S=S1+S2, (1)

where S1 and S2 are, respectively,

S1 =
1

2κ2

∫
d4x

√−g
[
R+6−|∇Φ|2−m2|Φ|2

−1
4
F 2−Z(Φ)

4
G2

]
, (2)

S2 =
1

2κ2

∫
d4x

√−g
(
−|DµΨ |2−M2|Ψ |2

)
. (3)

Notice that we have set the AdS radius L = 1. The
action S1 is proposed in Ref. [12], which contains back-

ground solutions dual to a Mott-like insulating phase.
Φ is a neutral complex scalar field with mass m which
is responsible for the breaking of translational symme-
try in spatial directions, thus dubbed the Q-lattices [16].
F = dA, G = dB are the curvatures of two U(1) gauge
fields A and B, respectively. The B field is treated as
the Maxwell field and we concentrate on its transport
properties in this paper. Z(Φ)=(1−β|Φ|2)2 with β be-
ing positive, which describes the interaction between the
Q-lattice Φ and the Maxwell field B in bulk geometry.
This action with two gauge fields plays a crucial role in
obtaining an insulating phase with a hard gap. When
the hard gap is present, the coupling term Z→0 on the
horizon, which means that the effect of the term Z(Φ)

4
G2

is not strong enough to deform the IR fixed point from
AdS2 geometry, which is dual to a metallic phase, to a
new one dual to an insulating phase. Therefore the sec-
ond gauge field term F 2/4 is introduced to obtain an
insulating phase with a hard gap. The action S2 sup-
ports a superconducting black brane whenever the U(1)
gauge symmetry associated with B is spontaneously bro-
ken [21]. Ψ is the charged complex scalar field with mass
M , which can be written as Ψ=ψeiθ with ψ being a real
scalar field and θ a Stückelberg field. Dµ =∂µ−ieBµ is
the covariant derivative where e is the charge associated
with the Maxwell field B. For convenience, we choose
the gauge θ=0 and therefore S2 can be rewritten as

S2=
1

2κ2

∫
d4x

√−g
[
−(∇µψ)2−(M2+e2BµBµ)ψ2

]
. (4)

The equations of motion can be derived from the actions
(2) and (4) as

Rµν−
(
3+

1
2
R

)
gµν+

1
2
(T A

µν+T B
µν+T Φ

µν+T ψ
µν)=0, (5)

∇µFµν =0, (6)

∇µ
[
(1−β|Φ|2)2Gµν

]−2e2Bνψ
2=0, (7)

[
∇2−m2+

1
2
β(1−β|Φ|2)G2

]
Φ=0, (8)

[∇2−(M2+e2B2)
]
ψ=0, (9)

where

T A
µν =

1
4
gµνF

2−FµρF
ρ

ν , (10)

T B
µν = (1−β|Φ|2)2

(1
4
gµνG

2−GµρG
ρ

ν

)
, (11)

T Φ
µν = −2∇(µΦ∇ν)Φ

∗+gµν(|∇Φ|2+m2|Φ|2), (12)

T ψ
µν = −2(∇µψ∇νψ+e2BµBνψ

2)

+gµν

[
(∇µψ)2+(M2+e2BµBµ)ψ2

]
. (13)

The gravitational dual of the normal phase (ψ = 0)
has been numerically constructed in Ref. [12], in which
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the ansatz is

ds2 =
1
z2

[
−(1−z)p(z)Udt2+

dz2

(1−z)p(z)U

+V1dx2+V2dy2
]
,

A = µ(1−z)adt,

B = µ(1−z)bdt,

Φ = eik̂xz3−∆φ,

ψ = 0, (14)

where p(z)=1+z+z2−µ2z3/4 and the scaling dimension of
the scalar field ∆=3/2+(9/4+m2)1/2. All the functions
U,V1,V2,a,b and φ depend on the radial coordinate z only.
Throughout this paper we set m2=−2 so that ∆=2. For
a given coupling parameter β, each black hole solution
is specified by four scaling-invariant parameters, i.e., the
Hawking temperature T̂ /µ with T̂ = (12−µ2)U(1)/16π,
the lattice amplitude λ̂/µ3−∆ with λ̂ = φ(0), the wave
vector k̂/µ and b0≡b(0), where without loss of general-
ity we have set a(0)=1. For convenience, these quantities
are abbreviated as T , λ and k in what follows.

The phase structure for the normal state has been
investigated in detail in Ref. [12]. We briefly review its
main features over the parameter space (λ,k,β,b0) in the
low temperature region, which is essential for us to ex-
plore the superconducting phase in the current work. In
the ordinary Q-lattice background (λ,k) with β=0 and a
single gauge field, a novel metal-insulator transition has
been found by changing the parameters (λ,k) in Ref. [16].
Later, the specific phase diagram over the (λ,k) plane
was given in Refs. [26] and [27]. Qualitatively, one finds
that the region with large k and small λ falls into the
metallic phase, while the region with small k and large
λ falls into the insulating phase. This rule is also consis-
tent with Mott’s thought experiment, since small wave-
number k implies a larger lattice constant such that it
becomes harder for electrons to hop to their neighbor
sites, leading to an insulating phase. However, for the
above insulating phases the hard gap is absent, which has
been justified in the plot of optical conductivity [16, 26].
Remarkably, after introducing the interaction term with
β in two-gauge formalism, we found in Ref. [12] that a
hard gap can eventually emerge with the increase of the
parameter β for an insulating phase. Next, we intend
to investigate the key features of superconductivity over
such Mott-like insulating phases with hard gaps.

In the holographic approach, the superconducting
phase is achieved by finding non-trivial solutions of the
charged scalar hair. Once its back reaction to the back-
ground is taken into account, we need to numerically
solve the equations of motion (5)–(9). Without loss of
generality, let us set M2 =−2. Then, beyond any de-
tails of equations, it is easy to see that the asymptotical

behavior of ψ at infinity is

ψ=zψ1+z2ψ2 . (15)

Here, we treat ψ1 as the source and ψ2 as the expecta-
tion value of the scalar operator in dual quantum field
theory. Since we expect the condensation will emerge
without being sourced, we set ψ1=0.

3 Condensation and phase structure

In this section we demonstrate the main numerical
results. Superconductivity phase structures will be dis-
cussed first. After that, a connection between the critical
temperature for condensation and the formation of a gap
in the normal state will be shown. Numerical solutions
to the background with scalar hair are obtained explic-
itly and it is verified that the phase transition is second
order. Finally, the frequency behavior of optical con-
ductivity in the superconducting phase is investigated in
detail.

3.1 Phase structure

The charged scalar is expected to condensate when
the Hawking temperature of the black brane drops to
some critical temperature Tc, which reflects the instabil-
ity of the AdS background with a violation of the usual
BF bound. The condition for the occurrence of conden-
sation depends on the charge of the scalar field as well
as the background which is specified by the system pa-
rameters. In this section we will analyze the condition
for condensation and obtain the critical temperature Tc

for different system parameters.
The critical temperature for the formation of the su-

perconducting phase can be estimated by finding static
normalizable modes of the charged scalar field on a fixed
background (14), which has been described in detail in
Refs. [25, 26]. To this end, one may turn this problem
into a positive self-adjoint eigenvalue problem for e2 and
so we rewrite the equation of motion for the charged
scalar field in Eq. (9) as

−(∇2+2)ψ=−e2B2ψ, (16)

which can be numerically solved once a specific metric of
the background is given. Figure 1 illustrates the charge
of the scalar field as the function of the critical tem-
perature Tc for some representative values of the system
parameters. First, in general, Tc is always increasing
with the charge e. This tendency is the same as that in
other holographic models as described in Refs. [25, 26].
It indicates that the increase of the charge makes the
condensation easier. We shall fix e=10 throughout this
paper without loss of generality. Second, we observe that
Tc increases with β (b0) when the other parameters are
fixed (Fig. 1(a) and (b)) but Tc may be a non-monotonic
function of λ or k (Fig. 1(c)), which implies there are
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some interesting phenomena worth exploring. Thus we
plot the critical temperature Tc as a function of lattice
parameters (λ,k) in Fig. 2 and summarize our main ob-
servations as follows.

1) For large k, we find Tc rises and approximately
saturates to a constant, which coincides with the phe-
nomenon observed in the simplest superconductor model
on the Q-lattice [26]. This is not surprising since in that
region the hard gap is disappearing or the system simply
enters a metallic phase. Also, when k is large the lattice
effect is suppressed, and hence the system is similar to
condensation on the AdS-RN background.

One remarkable phenomenon is observed in the small
k region (Fig. 2(a) and (c)). That is, Tc rises as the
wavenumber k decreases, with the other parameters
fixed, which is contrary to the tendency observed in pre-
vious holographic superconductor model on the Q-lattice
[26], in which the critical temperature always goes down
with the decrease of wavenumber k until it approaches
zero at tiny k, implying that no condensation could take
place in such deep insulating phases [26]. This differ-
ence is significant because it indicates that in the cur-
rent setup the superconductivity becomes easier as the
system enters a deep insulating phase. This difference
results from the involvement of the coupling term with
non-zero β. In particular, the larger β is, the higher
Tc is, as shown in Fig. 2(a). Physically, we know that
this term is responsible for the formation of a hard gap
when the system falls into an insulating phase. There-
fore, we argue that the presence of a hard gap in the

insulating phase benefits the condensation of the scalar
hair, reminiscent of the phenomenon observed in copper-
oxide superconductors where the presence of a pseudo-
gap causes the pre-pairing of electrons so as to make the
superconductivity easier [28]. We have checked that this
phenomenon is always observed in the small k region un-
der the condition that the system falls into an insulating
phase with non-zero β, independent of the values of the
other parameters. We will further verify the connection
between the formation of the hard gap and the super-
conductivity in the next subsection.

Interestingly, the critical temperature with vanishing
k is much higher than that saturated constant for large k
which would dual to a metallic phase. This phenomenon
definitely deserves further investigation in future.

2) It is also interesting to plot Tc as a function of
λ with other parameters fixed (Fig. 2(b) and (c)). For
large k, Tc decreases monotonically with the increase of
λ, as found in the simplest superconductor model on the
Q-lattice [26]. For small k, however, Tc rises as λ in-
creases! As we mentioned in the previous section, large
λ always points to an insulating phase, but the key dif-
ference is that a hard gap presents in the small k region.
Furthermore, for a fixed k with small value, we find the
larger β makes the hard gap more evident, such that the
corresponding Tc is higher.

Next we explicitly demonstrate that the formation of
hard gap indeed leads to a higher critical temperature of
superconductivity, by calculating the optical conductiv-
ity in the insulating phase.
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Fig. 1. (color online) The charge of the scalar field as a function of the critical temperature Tc for some representative
values of the system parameters.
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3.2 Critical temperature and gap in the normal
state

In this subsection we will visualize our above state-
ment, arguing that the presence of a hard gap in the
insulating phase will make the condensation easier.

The connection between the formation of the gap and
the formation of the condensation can be investigated by
examining how critical temperature behaves when the
gap in optical conductivity emerges with the variation of
certain parameters. In what follows we fix b0 =0.5, i.e.,
the chemical potential dual to the Maxwell field B, which
means that we essentially work in the grand canonical
ensemble. After that, we examine explicitly the relation
between the gap and the condensation when changing
system parameters β,λ, and k.

The optical conductivity of dual quantum field the-
ory can be calculated by a linear perturbation theory in
bulk geometry. To this end, we turn on the following
self-consistent perturbations

δAx=ax(z)e−iωt, δBx=bx(z)e−iωt,

δgtx=htx(z)e−iωt, δΦ=ieikxz3−∆ϕ(z)e−iωt. (17)

Once the background solution is obtained, we can nu-
merically solve the corresponding linearized perturbation
equations with variables (ax(z),bx(z),htx(z),ϕ(z)) with
the ingoing boundary conditions at the horizon, and read
off the optical conductivity in response to the B field
along the x-direction in terms of

σ(ω)=
∂zbx(z)
iωbx(z)

∣∣∣∣
z=0

. (18)

There are some key points to consider in the analysis:
1) We are only interested in the electrical response

to the Maxwell field B, therefore on the boundary only
bx(0) is turned on, with the other gauge field perturba-
tion ax(0) set to 0.

2) To ensure that we are extracting the current-
current correlator, the perturbations are required
to satisfy an additional boundary condition ϕ(0) −
ikλhtx(0)/ω = 0, obtained from diffeomorphism and
gauge transformation [16].

We demonstrate the numerical results of the phase
diagram and the optical conductivity in Fig. 3. Fig-
ure 3(a) and (b) show that Tc increases with β, while
the gap in optical conductivity becomes more evident as
β increases. When varying parameter λ, similar phenom-
ena are observed, as can be seen from Fig. 3(c) and (d).
Finally, Tc increases with the decrease of k, and indeed
the gap becomes more pronounced when k decreases, as
shown in Fig. 3(e) and (f). To sum up, Tc increases
when the gap becomes more evident. The gap in optical
conductivity resembles the role of the pseudogap in the
cuprates phase diagram.

We conclude that the presence of the hard gap in the

insulating phase makes the condensation easier, indicat-
ing that at least in a holographic regime this kind of
insulating phase with a hard gap is qualitatively differ-
ent from all the insulating phases without a hard gap, as
found in previous studies.

3.3 Condensation

So far, all the above discussions on the conditions of
condensation are just based on the solutions to the eigen-
value problem of e2 as described in Eq. (16), where each
background is fixed without the condensation of scalar
hair. Such an approximation is good enough for us to es-
timate the critical temperature Tc. Now to explicitly con-
struct a background with scalar hair, we need to directly
solve the coupled EOMs (5)-(9) with the ansatz (14),
which can be done numerically with the standard spec-
tral method. At the end of this section we demonstrate
a result for the condensation of scalar hair

√
〈O2〉/Tc as

a function of the temperature T/Tc in Fig.4.
In conventional BCS theory, the superconductivity

phase transition is second order, which is described by√
〈O〉∼t1/4 where t≡(1−T/Tc). It is interesting to ex-

amine the order of the phase transitions demonstrated
in our model. As a representative example, we show
dlog(

√
O2/µ)

dlog(t)
vs log(t) as the inset in Fig. 4(a). It is read-

ily seen that the superconductivity phase transition in
our model is also second order, since dlog(

√
O2/µ)

dlog(t)
∼ 0.25

uniformly.

3.4 Optical conductivity in the superconducting
phase

In this subsection we investigate the frequency de-
pendent behavior of the optical conductivity in the su-
perconducting phase, with a focus on the influence of the
hard gap in the insulating phase before the condensation
takes place.

First, we illustrate the process of phase transition
with the behavior of the optical conductivity. When
the system transits from a normal phase to a super-
conducting phase, the DC conductivity changes from
a finite value into a δ function. Thanks to the lattice
structure which breaks the translational invariance in
our formalism, this process now can be observed man-
ifestly in optical conductivity. Nevertheless, a diver-
gent DC conductivity cannot be captured by taking the
limit ω → 0. Instead, the δ function can be reflected
by Imσ(ω) ∼ ω−1 in the low frequency region, in light
of the Kramers-Kronig relations. Figure 5(a) demon-
strates σ(ω) at four different temperatures across the
phase transitions. The critical temperature Tc ' 0.606
at parameter β = 4,k = 0.03,λ = 2, b0 = 0.5,e = 10.
For insulating phases with T = 0.632,0.6062, which are
above Tc, it is found that in the low frequency region
dlogImσ(ω)/dlog(ω) ∼ 1. This is expected since the
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imaginary part of Drude conductivity Imσ ∼ ω1).
For T = 0.0612, 0.5985, which are below Tc,
dlogImσ(ω)/dlog(ω)∼−1, i.e. Imσ(ω)∼ ω−1. There-
fore, the different scaling behavior of Imσ clearly demon-
strates the process of phase transition.

Second, we are interested in how the gap behaves with
respect to the temperature below Tc. It is well-known in
BCS theory, as well as in many holographic models, that
the gap becomes more and more pronounced when the
temperature drops. Figure 5(b) shows the real part of
optical conductivity at several temperatures below Tc.
It is easily seen that the gap becomes more and more
evident when the temperature drops. This phenomenon
is in agreement with both BCS theories and many other
holographic superconductivity models.
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Fig. 5. (color online) (a) Reσ(ω) at four different
temperatures specified by the plot legend. The in-
set is dlogImσ(ω)/dlog(ω). (b) Reσ(ω) at several
temperatures below Tc.

4 Discussion

In this paper we have constructed a novel holo-
graphic superconductor based on a gravity theory with
Q-lattices, in which an interacting term characterized
by parameter β is involved such that a hard gap can

be observed in the insulating phase. In contrast to all
the previous holographic models, in which the insulating
phase suppresses the condensation of the scalar hair and
the critical temperature becomes lower in comparison
with that in the metallic phase, we have found that with
the emergence of the hard gap, the insulating phase will
benefit the condensation and the critical temperature be-
comes higher whenever the hard gap becomes more evi-
dent. The phase transition from an insulating phase to
a superconducting phase has been explicitly justified by
examining the behavior of the imaginary part of optical
conductivity. All above phenomena imply that the hard
gap in this model resembles the role of the pseudogap
in cuprate phase diagrams. Therefore, this work may
provide valuable insights into the mechanism of high Tc

cuprates from the holographic side.
We believe that the fact of the presence of the hard

gap in the insulating phase benefiting the superconduc-
tivity should be robust and general in the holographic
approach, in the sense that it does not depend on the
specific choice of parameter values in this model, nor on
the specific formalism of the setup. Basically, we think
the formation of a hard gap in the optical conductivity
implies that more electrons are pre-paired in the dual
field theory, such that the instability of the system can
be induced at a higher temperature, leading to the con-
densation of the scalar hair.

The current setup in our model has one weak point
that should be mentioned. As we have noticed and
pointed out in Ref. [12], the existence of background
solutions is strongly constrained by the values of the
parameters. In particular, whenever an insulating phase
with a hard gap is achieved, the bulk geometry dual to
a superconducting phase can be obtained only in some
region below the critical temperature. Numerical solu-
tions do not exist when the temperature is decreased
further. Although we could adjust the charge e as well
as the other parameters to have solutions in an arbi-
trarily low temperature region, not all the parameters
guarantee the existence of solutions in the zero temper-
ature limit. Mathematically, it is not rare to encounter
a gravitational system without domain wall solutions in
certain ranges of parameters or boundary conditions [29].
From the dual theory side, when the hard gap is formed,
the optical conductivity tends to vanish in the low fre-
quency region. Further increasing β or decreasing the
temperature would lead to negative conductivity, which
is of course unphysical. In our model this unphysical
phenomenon is not encountered due to the absence of
solutions to the Einstein equations for these parameters.
It is still desirable to obtain a system solvable for any
given parameters and which exhibits all the interesting

1) For both metallic and insulating phases, the coherent and incoherent behavior of the conductivity have been discussed in Ref. [12].
For an insulating phase the zero-frequency behavior of conductivity is not exactly Drude, but this linear relation with ω still holds.
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behaviors revealed in our current work. We expect to
improve this by adjusting the setup in the holographic
models.

Along this direction, there is much worthy of further
investigation. One avenue is to investigate the spectral
function of a probe such as holographic fermions to see if
the two fundamental features of Mott insulator could be

observed, namely, the hard gap and the spectral weight
transfer, and then observe its variations during the su-
perconducting phase transition. Since the fermionic field
only feels the bulk geometry as a probe, its spectral func-
tion would be very sensitive to the specific couplings of
the fermion and background. We hope to explore this
issue in the near future.
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