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Abstract: We apply a recently proposed covariant power counting in nucleon-nucleon interactions to study strangeness

S=−1 ΛN−ΣN interactions in chiral effective field theory. At leading order, Lorentz invariance introduces 12 low

energy constants, in contrast to the heavy baryon approach, where only five appear. The Kadyshevsky equation is

adopted to resum the potential in order to account for the non-perturbative nature of hyperon-nucleon interactions.

A fit to the 36 hyperon-nucleon scattering data points yields χ2
' 16, which is comparable with the sophisticated

phenomenological models and the next-to-leading order heavy baryon approach. However, one cannot achieve a

simultaneous description of the nucleon-nucleon phase shifts and strangeness S=−1 hyperon-nucleon scattering data

at leading order.
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1 Introduction

Since the quantum number strangeness was intro-
duced [1, 2] and the first observation of Λ hypernuclei
[3] in 1953, strangeness nuclear physics has always been
at the frontier of experimental and theoretical nuclear
physics. In recent years, open questions such as charge
symmetry breaking in A = 4 Λ-hypernuclei [4] and the
existence of the H-dibaryon [5] have attracted a lot of
attention [6–11]. In facilities like JLab, J-PARC, KEK,
MAMI, and COSY, many important studies are being
pursued, e.g., the level spectra and decay properties of
Λ, double Λ and Ξ hypernuclei [12–16], Σp scattering
[17], and final state interactions in production reactions,
such as ~pp → K+Λp [18], which can provide informa-
tion on the ΛN scattering lengths. Meanwhile, theo-
retical few- and many-body calculations of hypernuclei
have made steady progress, see, e.g., Refs. [19, 20]. One
particularly interesting ongoing issue is about the role
of hyperons in the cores of neutron stars, known as the
hyperon puzzle: nuclear many-body calculations incor-
porating hyperon degrees of freedom [21–25] have diffi-
culties in obtaining a two-solar mass neutron star that
was recently observed [26, 27].

As the most important theoretical input for few-
and many-body calculations, baryon-baryon interactions
play an indispensable role in studies of hypernuclear
physics. Although many efforts have been made to derive
them, previous theoretical investigations were mainly
based on phenomenological meson-exchange models [28–
35] and quark models [36–42]. In the past two decades,
two breakthroughs have occurred in constructing model-
independent baryon-baryon interactions. Both of them
are closely related to quantum chromodynamics (QCD),
the underlying theory of strong interactions. One break-
through is lattice QCD simulations [43–48], which pro-
vide an ab initio numerical solution to QCD from first
principles. With ever-growing computing power and
evolving numerical algorithms, lattice QCD simulations
are approaching the physical world [49, 50], thus pro-
viding us with more information and constraints on
baryon-baryon interactions. The other is chiral effective
field theory (χEFT), which has achieved great successes
in nucleon-nucleon (NN) interactions [51–53] following
Weinberg’s proposal [54, 55]. The latter approach has
been generalized to antinucleon-nucleon [56], hyperon-
nucleon (YN) [57–59] and multi-strangeness systems [60–
62]. The main advantage of χEFT is that by using a
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power counting scheme, one can improve calculations
systematically by going to higher orders in powers of
external momenta and light quark masses, and estimat-
ing the uncertainties of any given order. Furthermore,
three- and four-body forces automatically arise as we
push through the hierarchy of chiral forces.

However, the Weinberg approach for baryon-baryon
interactions, denoted as the heavy baryon (HB) ap-
proach, is based on a non-relativistic formalism. It is
sensitive to ultraviolet cutoffs, that is, renormalization
group invariance is violated, risking severe model depen-
dence of short-range physics. Various opinions on this is-
sue can be found in Refs. [63–70]. In two recent papers,
Epelbaum and Gegelia have proposed a new approach
(referred to as the EG approach in the present paper)
to NN scattering in χEFT [71, 72], where the relativistic
effects are partially retained. At leading order (LO), the
potential remains unchanged but the scattering equation
changes to the Kadyshevsky equation, compared to the
Lippmann-Schwinger equation with nonrelativistic nu-
cleon propagators in the HB approach. Although this
turned out to describe the Nijmegen partial wave analy-
sis [73] well, a higher order contact term is still needed in
the 3P0 partial wave to achieve renormalization group in-
variance. We applied the EG approach to the strangeness
S=−1 YN system [74] and found that the best descrip-
tion of the experimental data is quantitatively similar to
that of the HB approach, and that cutoff dependence is
mitigated but not removed.

Partly motivated by the successes of covariant χEFT
in the one-baryon and heavy-light systems [75–83], a
new covariant power counting is explored in Ref. [84] to
study NN chiral interactions. The covariant treatment of
baryons maintains all the symmetries and analyticities,
and, at LO, it results in a description of the NN phase
shifts similar to that of the next-to-leading order (NLO)
HB scheme. In the present study, we apply this scheme
to YN scattering with strangeness S =−1, where more
particle channels and less experimental data should be
dealt with.

2 Formalism

2.1 Covariant power counting

First, we explain in some detail the covariant power
counting scheme proposed in Ref. [84]1). Unlike the
meson-meson and meson-baryon sectors, such a power
counting in the baryon-baryon sector is not yet system-
atically formulated beyond leading order. In particular,
relativistic contact baryon-baryon interactions should be
treated carefully, see, e.g. Ref. [85]. In the covariant
scheme, one takes the full Dirac spinors for the baryon
fields and uses partial derivatives on the baryon/meson

fields and meson mass insertions to increase the chiral
order.

The perturbative expansion is consistent with con-
ventional χEFT, in which the scattering amplitude is
expanded in terms of a small quantity over a large quan-
tity. The former could be the meson momentum or mass,
or the baryon three-momenta, and the latter could be the
ρ meson mass or the nucleon mass or the chiral symmetry
breaking scale. In Ref. [84], naive dimensional analysis
is used to determine the chiral order ν,

ν=2−1

2
B+2L+

∑

i

vi∆i, ∆i=di+
1

2
bi−2, (1)

where B denotes the number of external baryons, L is the
number of Goldstone boson loops and vi is the number of
vertices with dimension ∆i. For a vertex with dimension
∆i, di is the number of derivatives or Goldstone boson
masses, and bi is the number of internal baryon lines.

At leading order, there are no derivatives or pseu-
doscalar meson mass insertions. Therefore, the complete
structures are determined by the Clifford algebra (Γi),
namely the five Lorentz structures shown in the follow-
ing section. These five structures have been derived in
a number of early studies in the nucleon-nucleon sec-
tor [57, 85, 86]. Some authors consider the terms in-
volving only γ5 as higher order because they connect the
large and small components of the Dirac spinors [87]. In
our present case, we do not expand the Dirac spinors and
therefore retain them.

2.2 Leading order baryon-baryon interactions

In covariant power counting [84], the full baryon
spinor is retained to maintain Lorentz invariance

uB(p,s)=Np

(

1
σ·p

Ep+MB

)

χs, Np=

√

Ep+MB

2MB

, (2)

where Ep =
√

p2+M 2
B, while a non-relativistic reduc-

tion of uB is employed in the HB approach. The LO
baryon-baryon interactions include non-derivative four-
baryon contact terms (CT) and one-pseudoscalar-meson
exchange (OPME) potentials, as shown in Fig. 1,

B1 B2

B3 B4

B1 B2

B3 B4

φ

Fig. 1. Non-derivative four-baryon contact terms
and OPME at LO. The solid lines denote in-
coming and outgoing baryons (B1,2,3,4), and the
dashed line denotes the exchanged pseudoscalar
meson φ.

1) See, also, Refs.[85, 86] for early attempts.
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VLO=VCT+VOPME. (3)

2.2.1 Four-baryon contact terms

The Lagrangian term for non-derivative four-baryon
contact interactions [57] is

LCT=

5
∑

i=1

[

C̃1
i

2
tr
(

B̄1B̄2(ΓiB)2(ΓiB)1
)

+
C̃2

i

2
tr
(

B̄1(ΓiB)1B̄2(ΓiB)2
)

+
C̃3

i

2
tr
(

B̄1(ΓiB)1
)

tr
(

B̄2(ΓiB)2
)

]

, (4)

where tr indicates the trace in flavor space (u, d, and s).
Only baryon fields with the same subscript, 1 or 2, are
grouped to form a Lorentz-covariant bilinear. Γi are the
elements of the Clifford algebra,

Γ1=1, Γ2=γµ , Γ3=σµν , Γ4=γµγ5 , Γ5=γ5 ; (5)

and C̃m
i (m=1,2,3) are the LECs corresponding to inde-

pendent four-baryon operators. The ground-state octet
baryons are collected in the 3×3 traceless matrix:

B=















Σ0

√
2
+

Λ√
6

Σ+ p

Σ− −Σ0

√
2
+

Λ√
6

n

Ξ− Ξ0 − 2Λ√
6















. (6)

The Pauli exclusion principle applies; therefore, the two-
baryon wave function is antisymmetric with respect to
angular momentum L, spin S and flavor. The fla-
vor symmetric and flavor antisymmetric interactions are
treated differently by using Fierz rearrangements, as has
been done in Ref. [57]. The resulting Lagrangians for
strangeness S =−1 YN system in the isospin basis are
shown in the following, corresponding to the three Feyn-
man diagrams shown in Fig. 2.

Λ N

Λ N

Λ N

Σ N

Σ N

Σ N

Fig. 2. The non-derivative four baryon contact
terms in the ΛN−ΣN system.

1) The Lagrangians for the isospin I=1/2 ΛN→ΛN
reaction are:

LΛΛ
1/2,FS=

(

1

6
C1

i +
5

3
C2

i +2C3
i

)

(

Λ̄ΓiΛ
)(

N̄ΓiN
)

≡CΛΛ
i,1/2,FS

(

Λ̄ΓiΛ
)(

N̄ΓiN
)

, (7)

LΛΛ
1/2,FA=

(

3

2
C1

i +C2
i +2C3

i

)

(

Λ̄ΓiΛ
)(

N̄ΓiN
)

≡CΛΛ
i,1/2,FA

(

Λ̄ΓiΛ
)(

N̄ΓiN
)

, (8)

where the subscripts FS and FA are short for flavor
symmetric (e.g., 1S0,

3P0,1,2 ...) and flavor antisymmetric
(e.g., 3S1,

1P1 ...), respectively.
2) The Lagrangians for the isospin I=3/2 ΣN→ΣN

reaction are:

LΣΣ
3/2,FS=2(C2

i +C3
i )
(

Σ̄ΓiΣ
)(

N̄ΓiN
)

≡CΣΣ
i,3/2,FS

(

Σ̄ΓiΣ
)(

N̄ΓiN
)

, (9)

LΣΣ
3/2,FA=−2(C2

i −C3
i )
(

Σ̄ΓiΣ
)(

N̄ΓiN
)

≡CΣΣ
i,3/2,FA

(

Σ̄ΓiΣ
)(

N̄ΓiN
)

. (10)

3) The Lagrangians for the isospin I=1/2 ΣN→ΣN
reaction are:

LΣΣ
1/2,FS=

(

3

2
C1

i −C2
i +2C3

i

)

(

Σ̄ΓiΣ
)(

N̄ΓiN
)

≡CΣΣ
i,1/2,FS

(

Σ̄ΓiΣ
)(

N̄ΓiN
)

=
(

9CΛΛ
i,1/2,FS−8CΣΣ

i,1/2,FS

)(

Σ̄ΓiΣ
)(

N̄ΓiN
)

, (11)

LΣΣ
1/2,FA=

(

3

2
C1

i +C2
i +2C3

i

)

(

Σ̄ΓiΣ
)(

N̄ΓiN
)

≡CΣΣ
i,1/2,FA

(

Σ̄ΓiΣ
)(

N̄ΓiN
)

=CΛΛ
i,1/2,FA

(

Σ̄ΓiΣ
)(

N̄ΓiN
)

. (12)

4) The Lagrangians for the isospin I=1/2 ΛN→ΣN
reaction are:

LΛΣ
1/2,FS=

(

1

2
C1

i −C2
i

)

(

Λ̄ΓiΣ
)(

N̄ΓiN
)

≡CΛΣ
i,1/2,FS

(

Λ̄ΓiΣ
)(

N̄ΓiN
)

=3
(

CΛΛ
i,1/2,FS−CΣΣ

i,1/2,FS

)(

Λ̄ΓiΣ
)(

N̄ΓiN
)

, (13)

LΛΣ
1/2,FA=−

(

3

2
C1

i −C2
i

)

(

Λ̄ΓiΣ
)(

N̄ΓiN
)

≡CΛΣ
i,1/2,FA

(

Λ̄ΓiΣ
)(

N̄ΓiN
)

. (14)

The superscript Y Y ′ denotes the hyperons in the reac-
tion of Y N →Y ′N . Strict SU(3) symmetry is imposed,
as shown in the second line of Eqs. (11-13). Note that
the LECs C1,2,3

i here are different from those in Eq. (4)
due to the application of Fierz rearrangement [57]. The
potentials of the contact terms are derived from Eqs. (7-
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14), which can be symbolically written as

V Y Y ′

CT =CY Y ′

i (ū3Γiu1)(ū4Γiu2), (15)

where CY Y ′

i could be CΛΛ
i,1/2,FS, CΛΛ

i,1/2,FA, CΣΣ
i,1/2,FS,

CΣΣ
i,1/2,FA and CΛΣ

i,1/2,FA. They are first calculated in the
helicity basis and then transformed to the |LSJ〉 ba-

sis [33]. We found that they contribute to all partial
waves that have total angular momentum J≤1 (except
for the 1P1−3P1 mixing). We choose the LECs in 1S0,

3S1

and 3P1 to be independent1), which is consistent with
the NN interactions [84]. The partial wave projected po-
tentials are

V Y Y ′

CT (1S0)=ξB

[

(CY Y ′

1 +CY Y ′

2 −6CY Y ′

3 +3CY Y ′

4 )(1+R2
pR

2
p′)+(3CY Y ′

2 +6CY Y ′

3 +CY Y ′

4 +CY Y ′

5 )(R2
p+R2

p′)
]

≡ξB

[

CY Y ′

1S0 (1+R2
pR

2
p′)+ĈY Y ′

1S0 (R2
p+R2

p′)
]

, (16)

V Y Y ′

CT (3S1)=ξB

[

1

9
(CY Y ′

1 +CY Y ′

2 +2CY Y ′

3 −CY Y ′

4 )(9+R2
pR

2
p′)+

1

3
(CY Y ′

2 +2CY Y ′

3 −CY Y ′

4 −CY Y ′

5 )(R2
p+R2

p′)

]

≡ξB

[

1

9
CY Y ′

3S1 (9+R2
pR

2
p′)+

1

3
ĈY Y ′

3S1 (R2
p+R2

p′)

]

, (17)

V Y Y ′

CT (3P1)=ξB

[

−4

3
(CY Y ′

1 −2CY Y ′

2 +4CY Y ′

3 +2CY Y ′

4 −CY Y ′

5 )RpRp′

]

≡ξB

[

−4

3
CY Y ′

3P1 RpRp′

]

, (18)

V Y Y ′

CT (3P0)=ξB

[

−2(CY Y ′

1 −4CY Y ′

2 −4CY Y ′

4 +CY Y ′

5 )RpRp′

]

=ξB

[

−2(−CY Y ′

1S0 −ĈY Y ′

1S0 +2CY Y ′

3S1 −2ĈY Y ′

3S1 )RpRp′

]

, (19)

V Y Y ′

CT (1P1)=ξB

[

−2

3
(CY Y ′

1 +CY Y ′

5 )RpRp′

]

=ξB

[

−2

3
(CY Y ′

3S1 −ĈY Y ′

3S1 )RpRp′

]

, (20)

V Y Y ′

CT (3S1−3D1)=ξB

[

2

9

√
2(CY Y ′

1 +CY Y ′

2 +2CY Y ′

3 −CY Y ′

4 )R2
pR

2
p′+

2

3

√
2(CY Y ′

2 +2CY Y ′

3 −CY Y ′

4 −CY Y ′

5 )R2
p

]

=ξB

[

2

9

√
2CY Y ′

3S1 R2
pR

2
p′+

2

3

√
2ĈY Y ′

3S1 R2
p

]

, (21)

V Y Y ′

CT (3D1−3S1)=ξB

[

2

9

√
2(CY Y ′

1 +CY Y ′

2 +2CY Y ′

3 −CY Y ′

4 )R2
pR

2
p′+

2

3

√
2(CY Y ′

2 +2CY Y ′

3 −CY Y ′

4 −CY Y ′

5 )R2
p′

]

=ξB

[

2

9

√
2CY Y ′

3S1 R2
pR

2
p′+

2

3

√
2ĈY Y ′

3S1 R2
p′

]

, (22)

V Y Y ′

CT (3D1)=ξB

[

8

9
(CY Y ′

1 +CY Y ′

2 +2CY Y ′

3 −CY Y ′

4 )R2
pR

2
p′

]

=ξB

[

8

9
CY Y ′

3S1 R2
pR

2
p′

]

, (23)

where ξB =N 2
pN 2

p′ , Rp = |p|/(Ep+MB), Rp′ = |p′|/(Ep′+
MB) and MB =1080 MeV stands for the SU(3) average
mass of the octet baryons in the chiral limit2). p and p

′

denote the initial and final momenta, respectively. Note
that the second line of Eq. (19) for V Y Y ′

CT (3P0) is only
valid for NN interactions, because the structures of the
Lagrangians for 1S0 and 3S1 partial waves are different
in ΛN−ΣN systems, as shown in Eqs. (7–14). To re-
cover the potentials in the HB approach we simply take
Rp = Rp′ = 0 and ξB = 1. The independent potentials
respecting SU(3) symmetry are shown in Table 1.

Table 1. Independent contact terms and LECs of
strangeness S=−1 YN system.

channel I
V

1S0
3P1

3S1

ΛN→ΛN
1

2
V ΛΛ
1S0 V ΛΛ

3P1 V ΛΛ
3S1

ΛN→ΣN
1

2
3(V ΛΛ

1S0−V ΣΣ
1S0 ) 3(V ΛΛ

3P1−V ΣΣ
3P1 ) V ΛΣ

3S1

ΣN→ΣN
1

2
9V ΛΛ

1S0−8V ΣΣ
1S0 9V ΛΛ

3P1−8V ΣΣ
3P1 V ΛΛ

3S1

ΣN→ΣN
3

2
V ΣΣ
1S0 V ΣΣ

3P1 V ΣΣ
3S1

1) The other choice is to take those in 1S0, 3S1 and 3P0 partial waves.

2) The baryon mass difference is treated as a higher order correction in chiral perturbation theory.
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The analytical form of the potentials, e.g., V ΛΛ
1S0 , V ΛΛ

1P1,
can be obtained from Eqs. (16–23). Finally we have 12
independent LECs: CΛΛ

1S0, ĈΛΛ
1S0, CΣΣ

1S0 , ĈΣΣ
1S0 , CΛΛ

3S1, ĈΛΛ
3S1,

CΣΣ
3S1 , ĈΣΣ

3S1 , CΛΣ
3S1, ĈΛΣ

3S1, CΛΛ
3P1, CΣΣ

3P1. The other three
LECs only contribute to the strangeness S=−2 system.

2.2.2 One-pseudoscalar-meson-exchange potentials

At LO, we have seven Feynman diagrams for
strangeness S = −1 systems, as shown in Fig. 3. The
one-pseudoscalar-meson-exchange potentials are derived
from the covariant SU(3) meson-baryon Lagrangian,

L(1)
MB =tr

(

B̄
(

iγµDµ−MB

)

B−D

2
B̄γµγ5{uµ,B}

−F

2
B̄γµγ5[uµ,B]

)

, (24)

where DµB = ∂µB+[Γµ,B] and D and F are the ax-
ial vector couplings. In the numerical analysis, we use
D+F = gA = 1.277 [88] and F/(F +D) = 0.4, where gA

is the nucleon axial vector coupling constant. Γµ and
uµ are the vector and axial vector combinations of the
pseudoscalar-meson fields and their derivatives,

Γµ=
1

2

(

u†∂µu+u∂µu†), uµ=i(u†∂µu−u∂µu†),

where u2=U =exp
(

i
√

2φ

f0

)

, with the pseudoscalar-meson

decay constant f0'fπ=92.2 MeV [88], and the traceless
matrix φ collecting the pseudoscalar-meson fields is:

φ=















π
0

√
2
+

η√
6

π
+ K+

π
− − π

0

√
2
+

η√
6

K0

K− K̄0 − 2η√
6















. (25)

The potentials for OPME can be expressed in a generic
form:

VOPME = −NB1B3φNB2B4φ

(ū3γ
µγ5qµu1)(ū4γ

νγ5qνu2)

q2−m2

×IB1B2→B3B4
, (26)

where q = p′−p is the momentum transfer, q2 = (Ep′−
Ep)

2−(p′−p)2, and m is the mass of the exchanged pseu-
doscalar meson. The SU(3) coefficient NBB′φ and isospin
factor IB1B2→B3B4

are listed in Refs. [57, 74]. The re-
tardation effects are included in the denominator. Just
like the contact terms, Eqs. (15–23), the average baryon
mass MB=1080 MeV is used in the baryon spinors u(ū)
and energies Ep(p′). One can easily obtain VOPME in the
|LSJ〉 basis following the same procedure as that for the
contact terms. We note that by the mass differences of
the exchanged mesons1) the SU(3) symmetry is broken.

In our covariant power counting scheme we keep the
complete form of the Dirac spinors and do not perform
expansions in terms of small external three momenta, dif-
ferent from what done in the HB approach. In relativistic
atomic and nuclear structure studies, the small compo-
nents of the Dirac spinors have been shown to play an
important role, mostly of a dynamical nature. As we will
see below, they also play an important role in the present
study and result in a good description of YN scattering
data. Because the small components are retained, once
written in terms of three-momenta and Pauli matrices,
the relativistic potential contains terms of higher chiral
order in the HB language, similar to the one-baryon sec-
tor in covariant chiral perturbation theory. Furthermore,
we can see that the LO potentials obtained in the EG ap-
proach are the same as those of the HB approach [74],
different from the relativistic potentials.

Λ N

Λ N

η

Λ N

N Λ

K

Λ N

Σ N

π

Λ N

N Σ

K

Σ N

Σ N

π, η

Σ N

N Σ

K

Fig. 3. The one-pseudoscalar-meson exchange diagrams in the ΛN−ΣN system.

2.3 Scattering equation

The infrared enhancement in two-baryon propaga-
tions gives the theoretical argument for low-energy
baryon-baryon interactions to be non-perturbative [55].
As a result, one needs to iterate the potentials in the

Bethe-Salpeter equation. In practice this is difficult. A
three-dimensional reduction of the Bethe-Salpeter equa-
tion is often used [89]. In the present work, following
Ref. [74], we use the coupled-channel Kadyshevsky equa-
tion

1) We have used mπ=138.039 MeV, mK =495.645 MeV and mη =547.853 MeV in the numerical calculations.
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T νν′,J
ρρ′ (p′,p;

√
s)=V νν′,J

ρρ′ (p′,p)+
∑

ρ′′,ν′′

∫ ∞

0

dp′′p′′2

(2π)3

MB
1,ν′′

MB
2,ν′′

V νν′′,J
ρρ′′ (p′,p′′) T ν′′ν′,J

ρ′′ρ′ (p′′,p;
√

s)

E1,ν′′E2,ν′′ (
√

s−E1,ν′′−E2,ν′′+iε)
, (27)

where
√

s is the total energy of the baryon-baryon system

in the center-of-mass frame and En,ν′′ =
√

p′′+MB
n,ν′′

,

(n = 1,2). The labels ν,ν ′,ν′′ denote the particle chan-
nels, and ρ,ρ′,ρ′′ denote the partial waves. Relativistic
kinematics is used throughout to relate the laboratory
momenta to the center-of-mass momenta.

To regularize the integration in the high-momentum
region, baryon-baryon potentials are multiplied with an
exponential form factor,

fΛF
(p,p′)=exp

[

−
(

p

ΛF

)2n

−
(

p
′

ΛF

)2n
]

, (28)

where n=2 [90]. Note that Eq. (28) is not a covariant
cutoff function. Although there exist covariant cutoff
functions of q2, they are not favored in constructing chi-
ral forces because they will introduce additional angular
dependence to partial wave potentials and thus affect
the interpretation of contact interactions. It would be
interesting to construct a separable and covariant cutoff
function and study its consequences in the future.

The Kadyshevsky equation is solved in the particle
basis in order to properly account for the physical thresh-
olds and the Coulomb force in charged channels. The
latter is treated with the Vincent-Phatak method [91].

3 Fitting procedure

In our approach, there are 12 LECs that need to be
pinned down by fitting to the 36 YN scattering data
points as done in Ref. [74], which consist of 35 cross
sections [92–95] and a Σ−p inelastic capture ratio at
rest [98].

Due to the poor quality of experimental data, it is
customary to consider the hypertriton 3

ΛH binding en-
ergy [99, 100] as a further constraint, which is crucial
in fixing the relative strength of the 1S0 and 3S1 con-
tributions to Λp scattering. However, we are unable to
perform a 3-body calculation at present, so we use as
benchmarks the Λp S-wave scattering lengths extracted
in the LO [57] and next-to-leading order (NLO) [59] HB
calculations, mainly because they combine to describe
the hypertriton very well [101]. In addition, it seems
necessary that aΛp

1S0 should be neither smaller nor too
much larger than aΛp

3S1, as shown in Ref. [102].
Another constraint that should be considered is the

Σ+p 3S1 scattering length. A repulsive ΣN interac-
tion with isospin I=3/2 is obtained from recent experi-

ments [103–109]. In addition, the conventional G-matrix
calculations [110] indicate that the 3S1 partial wave for
I = 3/2 ΣN should be at least moderately repulsive,

therefore in our fits we require a positive aΣ+p
3S1 .

Previous works in χEFT [57, 59, 74] showed that the
optimum cutoff ΛF may be around 600 MeV. Therefore
we first tentatively fix ΛF at 600 MeV. With this cut-
off we find that the best description of the experimental
data yields aΛp

3S1≈−1.30±0.02 fm and aΛp
1S0 ≈−2.44+0.16

−0.54

fm. These numbers are between the LO and NLO HB
results, which are aΛp

3S1 = −1.23 fm (LO), aΛp
3S1 = −1.54

fm (NLO), aΛp
1S0 =−1.91 fm (LO), and aΛP

1S0 =−2.91 fm
(NLO). Best fits within ΛF =500−850 MeV yield similar
scattering lengths. In the results presented below, we
fix aΛp

3S1 =−1.32 fm and aΛp
1S0 =−2.44 fm1). It should be

noted that at present we could in principle choose other
combinations within the uncertainties allowed in the best
fits. To fix them uniquely, more experimental inputs are
needed.

We have made an attempt at a combined fit to the
NN and YN data, in which strict SU(3) symmetry was
imposed upon the contact terms so that no additional
LECs are needed. However, we failed to describe the
NN and YN data simultaneously. As a result, consistent
with previous NLO results in the HB approach [59], we
conclude that one needs to treat SU(3) symmetry break-
ing more carefully in order to simultaneously describe
both the NN and the YN systems in χEFT.

4 Results and discussion

With the three additional constraints aΛp
1S0 = −2.44

fm, aΛp
3S1 = −1.32 fm and aΣ+p

3S1 > 0 as explained above,
we perform a fit to the 36 scattering data points while
varying the cutoff ΛF . The dependence of χ2 on the
cutoff is shown in Fig. 4, in comparison with other ap-
proaches. One can see that our new covariant χEFT ap-
proach shows a clear improvement in describing the YN
data compared with the HB and EG approach at LO,
and the cutoff dependence is much mitigated, both of
which are comparable with the NLO HB approach [59].

The minimum value of the χ2 is about 16.1, located
at ΛF =550−650 MeV. Note that the NSC97a-f [30] mod-
els, which provide the best description among the phe-
nomenological potentials of the 36 scattering data points,
also have a χ2 around 16.

The best fitted LECs obtained with ΛF = 600 MeV
are listed in Table 2. Since the LECs in the Λp 1S0 par-

1) We have chosen a larger a
Λp
3S1 given the fact that most phenomenological studies seem to prefer a larger scattering length in this

channel.
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tial wave cannot be uniquely determined, as mentioned
previously, we only show a typical case here. One should
note that these LECs are certain combinations of those
appearing in the Lagrangians, and hence they are not
necessarily of the same order of magnitude (see, e.g.,
Refs. [57, 59]).

Fig. 4. (color online) χ2 as a function of the cut-
off in the covariant χEFT approach at LO (green
solid line), the HB approach at LO (blue dotted
line), NLO (orange dashed-dotted line) [59] and
the EG approach at LO (red dashed line).

In Fig. 5 we compare the descriptions of the exper-
imental cross sections that we have used in the fitting
procedure with the LO HB approach. The NSC97f [30]
and Jülich 04 results [35] are also shown for compari-
son. It is clear that the covariant χEFT approach can
reproduce the experimental data rather well. The cusp
at the ΣN threshold in the Λp → Λp reaction is also
reproduced well. Note that the experimental data with
Plab>300 MeV are not used in the fitting procedure.

Due to the lack of near-threshold experimental data,
the value of the Λp→Λp cross section at rest is not yet
known. Our value is about 350 mb, which is smaller
than the two phenomenological models. Our result in
the Σ−p→Λn reaction is similar to the LO HB approach
and NSC97f results, but quite different from the Jülich
04 model. This channel can partially reflect the nature
of ΛN−ΣN coupling, which is crucial in hypernuclear
structure calculations [19]. It is interesting to note that
the Jülich 04 model predicts an overbound Λ single par-
ticle potential UΛ(0) in G-matrix calculations. On the
other hand, the results from the former two are much
closer to the empirical value, c.f. Ref. [110] and refer-
ences therein. In addition, the differential cross sections
shown in Fig. 6 are also well predicted within experimen-
tal uncertainties, although those data are not taken into
account in the fitting procedure.

Table 2. Low-energy constants (in units of 104 GeV−2) at ΛF =600 MeV in the covariant χEFT approach.

LECs CΛΛ
1S0 CΣΣ

1S0 CΛΛ
3S1 CΣΣ

3S1 CΛΣ
3S1 ĈΛΛ

1S0 ĈΣΣ
1S0 ĈΛΛ

3S1 ĈΣΣ
3S1 ĈΛΣ

3S1 CΛΛ
3P1 CΣΣ

3P1

−0.0096 −0.0276 0.0110 0.0872 0.0257 4.2463 4.6182 0.3660 −0.4132 0.8499 0.2044 0.2616

Fig. 5. (color online) Cross sections in the covariant χEFT approach (green solid lines) and HB approach (blue
dotted lines) at LO as functions of the laboratory momentum at ΛF =600 MeV. For reference, the NSC97f [30]
(red dashed lines) and Jülich 04 [35] (orange dashed-dotted lines) results are also shown. The experimental data
are taken from Sechi-Zorn et al. [92], Alexander et al. [93], Eisele et al. [94], Engelmann et al. [95], Hauptman et
al. [96] and Kadyk et al. [97].
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Fig. 6. (color online) Differential cross sections as a function of cosθ at various laboratory momenta Plab, where θ

is the center-of-mass scattering angle. The covariant χEFT approach is shown by the green solid lines, the HB
approach at LO by the blue dotted lines, the NSC97f [30] results by the red dashed lines, and the Jülich 04 [35]
results by the orange dashed-dotted lines. The experimental data are taken from Engelmann et al. [95], Eisele et
al. [94], Ahn et al. [111, 112] and Kohno et al. [113].

S- and P -wave phase shifts of Λp and Σ+p reactions
are shown in Figs. 7, 8. The 1S0 and 3P0 phase shifts
are quite different from those of the LO HB approach,
but the 3P2 phase shifts are similar, where only OPME
terms contribute. Furthermore, the 1S0 phase shifts are
similar to those of the NLO HB approach [59].

The improved description of the scattering data by
the covariant χEFT scheme for the most part arises
from the contact terms. In the LO HB approach, con-
tact terms only appear in central and spin-spin poten-
tials without momentum dependence, which only con-

tribute to the 1S0 and 3S1 partial waves. In covariant
power counting, tensor, spin-orbit and quadratic spin-
orbit terms appear at LO in addition to the central and
spin-spin terms, namely the momentum dependent terms
of R2

p (p′) in Eqs. (16-23). These terms are responsible
for the improved description. On the other hand, rel-
ativistic corrections to the OPME terms are small. As
a result, phase shifts of higher partial waves where only
such terms contribute are similar in the covariant and
HB approaches at LO. A related discussion for the NN
sector can be found in Ref. [84].
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Fig. 7. (color online) Λp S- and P -wave phase shifts in the covariant χEFT approach (green solid lines) and HB
approach (blue dotted lines) at LO as functions of the laboratory momentum at ΛF =600 MeV. For reference, the
NSC97f [30] (red dashed lines) and Jülich 04 [35] (orange dashed-dotted lines) results are also shown.

Fig. 8. (color online) Σ+p S- and P -wave phase shifts in the covariant χEFT approach (green solid lines) and HB
approach (blue dotted lines) at LO as functions of the laboratory momentum at ΛF =600 MeV. For reference, the
NSC97f [30] (red dashed lines) and Jülich 04 [35] (orange dashed-dotted lines) results are also shown.
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5 Summary and outlook

We have studied strangeness S=−1 hyperon-nucleon
scattering at leading order in a covariant framework of
chiral effective field theory. Starting from the covariant
chiral Lagrangian, the small components of the baryon
spinors are retained in deriving the potentials in order
to preserve Lorentz invariance. Strict SU(3) symme-
try is imposed on the contact terms, which yield 12
independent low energy constants. SU(3) symmetry is
broken in the one-pseudoscalar-meson-exchange poten-
tials because of the mass difference of exchanged mesons.

The potentials are iterated using the Kadyshevsky equa-
tion. A quite satisfactory description of the 36 hyperon-
nucleon scattering data points is obtained and the cut-
off dependence is shown to be mitigated, both of which
are comparable with the next-to-leading order heavy
baryon approach. However, one cannot achieve a simul-
taneous description of the nucleon-nucleon phase shifts
and strangeness S=−1 hyperon-nucleon scattering data
at leading order. The relativistic interactions obtained
in the this work may provide essential inputs to rela-
tivistic hypernuclear structure studies, e.g., relativistic
Brueckner-Hartree-Fork theory in many-body systems.
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