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Abstract: The relativistic mean-field models tested in previous works against nuclear matter experimental values,

critical parameters and macroscopic stellar properties are revisited and used in the evaluation of the symmetry energy

γ parameter obtained in three different ways. We have checked that, independent of the choice made to calculate the

γ values, a trend of linear correlation is observed between γ and the symmetry energy (S0) and a more clear linear

relationship is established between γ and the slope of the symmetry energy (L0). These results directly contribute

to the arising of other linear correlations between γ and the neutron star radii of R1.0 and R1.4, in agreement with

recent findings. Finally, we have found that short-range correlations induce two specific parametrizations, namely,

IU-FSU and DD-MEδ, simultaneously compatible with the neutron star mass constraint of 1.936Mmax/M¯62.05

and with the overlap band for the L0×S0 region, to present γ in the range of γ=0.25±0.05.
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1 Introduction

Since the introduction of the first models in nuclear
physics, the main idea was to describe experimental data.
Not all nuclear models can be applied to the description
of nuclear matter but they are relevant nevertheless. Rel-
ativistic mean field (RMF) models were developed to de-
scribe observables of nuclei, from which nuclear matter
parameters can be extracted.

A detailed analysis of 263 RMF models based on
pure neutron and symmetric nuclear matter properties
was done in Ref. [1], and only 35 of them were shown
to satisfy important nuclear constraints. In a subse-
quent work, these models were used to analyse stel-
lar properties related to commonly studied astrophys-
ical quantities, namely, neutron star masses and radii
of the canonical neutron stars (obtained from observa-
tional data), the possible onset of the Direct Urca pro-
cess and sound velocity constraints [2]. As a result, only
13 out of them produced neutron stars with maximum
mass in the range of 1.936Mmax/M¯62.05 [3, 4] with-
out considering hyperons, including one with density-
dependent couplings (DD-F) and one also incorporat-

ing scalar-isovector δ mesons (DD-MEδ). The remain-
ing parametrizations (BKA20, BKA22, BKA24, BSR8,
BSR9, BSR10, BSR11, BSR12, FSUGZ03, IU-FSU,
G2*) present constant couplings, non-linear σ and ω
terms, and cross terms involving these fields. None of
them could reproduce pulsars with 2M¯ if hyperons were
included. More recently, the same models were revisited
and their critical parameters were obtained [5]. These
critical parameters are the critical temperature, critical
pressure and critical density, at which nuclear matter is
no longer unstable and the liquid-gas phase transition
ceases to exist [6–12]. In this investigation, the models
were divided into 6 categories (BKA, BSR, FSU, G2*,
Z271 and DD). More experimental data is necessary, but
so far, only two of them (Z271 and DD) provided critical
temperatures close to existing ones. A clear correlation
between the critical temperature and the compressibil-
ity was obtained. More details of these models are given
later in this paper.

In the same context, the symmetry energy [13] and
its slope are very important quantities and in the last fif-
teen years, they were shown to be correlated with a series
of physical properties, on which we comment next. The
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symmetry energy is related to the nuclei neutron skin
thickness, which in turn is related to neutron star ra-
dius: models that yield smaller neutron skin thickness in
heavy nuclei, give rise to smaller neutron star radii [14].
On the other hand, neutron skins are larger for models
with higher slope [15]. Also, a strong correlation has
been observed between the neutron star radius and the
variation of the slope at sub-threshold densities [16]. The
symmetry energy and the slope, however, can be easily
controlled by the inclusion of a ω−ρ [15, 17–19] or a
σ−ρ interaction [20] in non-linear models. The larger
the value of the ω−ρ interaction, for instance, the lower
the values of the symmetry energy and its slope. On
the other hand, for density-dependent models a change
in the density dependence of the ρ-meson coupling can
modify the symmetry energy and its slope.

Besides the neutron skin thickness, the neutron star
crust-core properties are also correlated with the slope of
the symmetry energy, a fact that had already been ob-
served in studies involving liquid-gas phase transitions,
whose transition densities are approximately the same as
those obtained as the separating densities from the pasta
phase to homogeneous matter [21].

We next reanalyze the parametrizations studied in
Ref. [1], which we call consistent relativistic mean
field (CRMF) models from now on. In this context, the
word “consistent” refers to those parametrizations that
were shown to satisfy the nuclear matter constraints in
Ref. [1]. For these CRMF parametrizations, we evalu-
ate the symmetry energy coefficient γ in three different
cases. Such a quantity is defined from S = Skin+Spot,
with Spot(ρ) ∝ (ρ/ρ0)

γ and was first analyzed in Refs.
[22, 23]. Our aim is to look for possible correlations
between the γ parameter and some important nuclear
matter and neutron star properties, namely the symme-
try energy, its slope, and the radii of 1.0 and 1.4 so-
lar mass neutron stars. Within the assumptions made
in the present work, the γ parameter fully defines the
potential part of the symmetry energy and its density
dependence. Theoretically, γ is sensitive to the nucleon-
nucleon interaction at very short distances and can be
extracted from the existing calculations. We also inves-
tigate which parametrizations satisfy the ranges of γ re-
cently obtained in Refs. [24, 25]. It is worth pointing out
that from the experimental side, the γ parameter is not
directly measured but, as for most of the bulk nuclear
matter properties, it can be inferred from experiments.
In order to be consistent with previous studies, the ω−ρ
and σ−ρ interactions that can be included in most mod-
els to cure their symmetry energy and slope values are
left aside. They are just considered in the models that

introduced them when they were proposed.
The rest of this paper is organized as follows. In Sec-

tion 2, the formalism is introduced and three different
forms of separate kinetic and potential parts of the sym-
metry energy are presented. In Section 3 the results are
discussed. A summary is given in Section 4.

2 Formalism

The analysis performed in Ref. [1] pointed to only 35
parametrizations, out of the 263 investigated, that simul-
taneously meet seven distinct nuclear matter constraints.
These CRMF parametrizations had their bulk and ther-
modynamical quantities compared to respective theoret-
ical/experimental data from symmetric nuclear matter
(SNM), pure neutron matter (PNM), and a mixture of
both, namely, symmetry energy and its slope evaluated
at the saturation density, and the ratio of the symmetry
energy at ρ0/2 to its value at ρ0 (MIX). These detailed
constraints are specified in Table 1.

Table 1. Set of updated constraints (SET2a) used
in Ref. [1]. See that reference for more details.

constraint quantity density region range

SM1 K0 at ρ0 190 − 270 MeV

SM3a P (ρ) 2<
ρ

ρ0

<5 band region

SM4 P (ρ) 1.2<
ρ

ρ0

<2.2 band region

PNM1 EPNM/ρ 0.017<
ρ

ρo

<0.108 band region

MIX1a J at ρ0 25 − 35 MeV

MIX2a L0 at ρ0 25 − 115 MeV

MIX4
S(ρ0/2)

J
at ρ0 and ρ0/2 0.57 − 0.86

In Table 2 we present a brief compilation of the
structure and methods used in fitting the finite range
RMF interactions in accordance with the macroscopic
constraints, and the data used for the fittings. For full
explanation and details, we refer readers to the original
papers and for a complete description of the relativistic
mean-field theory, to Ref. [26].

Thirty out of the 35 parametrizations which match
the constraints analyzed in Ref. [1] are of type 4, i.e.,
the Lagrangian density includes non-linear σ and ω
terms and cross terms involving these fields. They are:
BKA20, BKA22, BKA24, BSR8, BSR9, BSR10, BSR11,
BSR12, BSR15, BSR16, BSR17, BSR18, BSR19, BSR20,
FSU-III, FSU-IV, FSUGold, FSUGold4, FSUGZ03,
FSUGZ06, G2*, IU-FSU, Z271s2, Z271s3, Z271s4,
Z271s5, Z271s6, Z271v4, Z271v5, and Z271v6. They are
described by the following Lagrangian density,
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Table 2. Structure of the RMF models and data used for fitting the finite range parametrizations considered in the
present work. NL: non-linear model. DD: density dependent model. NAP: number of adjusted parameters. AT:
additional terms in comparison with the standard non-linear σ3

−σ4 model with meson ρ included.

parametrization type of model, no. of parameters, NAP, AT data used for fitting purposes

BKA20, NL, 12, 10 Constraint properties of asymmetric nuclear matter for 26 different

BKA22, AT: ω2, σ−ω2, σ2−ω2, σ−ρ2 parametrizations:

BKA24 [27] binding energies, charge radii for closed shell nuclei,

neutron-skin thickness in the 208Pb nucleus: 0.20, 0.22, and 0.24 fm.

BSR8 to NL, 14, 11 Binding energies: 16,24O, 40,48Ca, 56,78Ni, 88Sr, 90Zr,100,116,132Sn,

BSR12 [28] AT: ω2, σ−ω2, σ2−ω2, σ−ρ2, and 208Pb nuclei,

σ2−ρ2, ω2−ρ2 charge radii: 16O, 40,48Ca, 56Ni, 88Sr, 90Zr, 116Sn, and 208Pb nuclei

neutron skin thickness: 208Pb

free parameters: neutron-skin thickness ∆R=0.16,0.18,··· ,0.28 fm

and the ω-meson self-coupling strength ξ0=0.03

BSR15 to NL, 14, 11 The same as BSR8-BSR12 with ξ0=0.06

BSR20 [28] AT: ω2, σ−ω2, σ2−ω2, σ−ρ2,

σ2−ρ2, ω2−ρ2

FSU-III, NL, 10,7 Properties of asymmetric nuclear matter; the proton fraction in

FSU-IV[29] AT: ω2, ω2−ρ2 β-stable npeµ matter; the core-crust transition density and pressure

in neutron stars as predicted by FSUGold and IU-FSU;

free parameters: the coupling constants between the isovector ρ

meson (Λv) and the isoscalar σ and ω mesons (Λs):

FSU-III: Λv=0.00 and Λs=0.02

FSU-IV: Λv=0.00 and Λs=0.04

FSUGold [30] NL, 10, 8 Binding energies and charge radii magic nuclei for 40Ca, 90Zr,

AT: ω2, ω2−ρ2 116,132Sn, 208Pb

FSUGold4 [31] NL, 10, 8, AT: ω2, ω2−ρ2 Adjusting the isovector parameters of the model gρ and Λv

FSUGZ03, NL, 14, 12 Binding energies: 16,24O, 40,48Ca, 56,78 Ni, 88Sr, 90Zr,

FSUGZ06 [32] AT: ω2, σ−ω2, σ2−ω2, σ−ρ2, 100,116,132Sn,208Pb

σ2−ρ2, ω2−ρ2 charge rms radii:16O, 40,48Ca, 56 Ni, 88Sr, 90Zr, 116Sn,208Pb

neutron-skin thickness for208Pb nucleus: 0.18±0.01 fm

free parameters: ζ and ξ corresponding to self-couplings for ω

and ρ mesons: ζ=0.03,0.06 and ξ=0

G2* [33] NL, 12, 10 Adjust the isovector-vector channel of the G2 parameter set.

AT: ω2, σ−ω2, σ2−ω2, σ−ρ2

IU-FSU [34] NL, 10, 10 Change the isoscalar parameter to ξ=0.03;

AT: ω2, ω2−ρ2 refitting of the isoscalar parameters to maintain the saturation

properties of SNM of FSU;

increase the isoscalar-isovector coupling constant to Λ=0.046

Z271s2 to NL, 10, 8 Model parameters used: Z271

Z271s5 [35] AT: ω2, σ2−ρ2 free parameters: λv=0 and λs=0.020,0.030,0.040,0.050

Z271v4 to NL, 10, 8 The same as Z271s2-s5, but the

Z271v6 [35] AT: ω2, ω2−ρ2 free parameters are: λs=0 and λv=0.020,0.25,0.030

DD-F [36] DD, 15, 12 Properties of finite nuclei: binding energies, charge and

diffraction radii, surface thicknesses, neutron skin

in 208Pb, spin-orbit splittings

TW99 [37] DD, 15, 12 Fix the density dependence of the couplings from

Dirac-Brueckner calculations of nuclear matter

binding energies of symmetric nuclei ( 16O, 40Ca, 56Ni)

and neutron-rich nuclei (24O, 48Ca, 90Zr, 208Pb).

DDHδ [38] DD, 20, 16 Reproduce bulk asymmetry parameter a4=33.4 MeV

DD-MEδ [39] DD, 24, 14 Finite nuclei and adjustment to ab initio calculations in infinite

nuclear matter
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LNL = ψ(iγµ∂µ−M)ψ+gσσψψ−gωψγ
µωµψ−

gρ
2
ψγµ~ρµ~τψ+

1

2
(∂µσ∂µσ−m

2
σσ

2)−
A

3
σ3

−
B

4
σ4−

1

4
F µνFµν+

1

2
m2
ωωµω

µ+
C

4
(g2
ωωµω

µ)2−
1

4
~Bµν ~Bµν+

1

2
m2
ρ~ρµ~ρ

µ+
1

2
α′3g

2
ωg

2
ρωµω

µ~ρµ~ρ
µ

+gσg
2
ωσωµω

µ

(

α1+
1

2
α′1gσσ

)

+gσg
2
ρσ~ρµ~ρ

µ

(

α2+
1

2
α′2gσσ

)

, (1)

where Fµν=∂νωµ−∂µων and ~Bµν=∂ν~ρµ−∂µ~ρν . The nu-
cleon rest mass is M and the meson masses are mj, for
j=σ,ω, and ρ.

The other four CRMF parametrizations are density-
dependent (DD): DD-F, TW99, DDHδ and DD-MEδ.
Their Lagrangian density reads:

LDD = ψ(iγµ∂µ−M)ψ+Γσ(ρ)σψψ−Γω(ρ)ψγ
µωµψ

−
Γρ(ρ)

2
ψγµ~ρµ~τψ+Γδ(ρ)ψ~δ~τψ−

1

4
F µνFµν

+
1

2
(∂µσ∂µσ−m

2
σσ

2)+
1

2
m2
ωωµω

µ−
1

4
~Bµν ~Bµν

+
1

2
m2
ρ~ρµ~ρ

µ+
1

2
(∂µ~δ∂µ~δ−m

2
δ
~δ2), (2)

where

Γi(ρ) = Γi(ρ0)fi(x); fi(x)=ai

1+bi(x+di)
2

1+ci(x+ei)2
, (3)

for i=σ,ω, and x=ρ/ρ0. For the ρ coupling one has

Γρ(ρ)=Γρ(ρ0)e
−aρ(x−1). (4)

The Lagrangian density describing the DD-F and TW99
parametrizations is the same as the one in Eq. (2) when
the meson δ is not taken into account. For the DD-MEδ
parametrization, the couplings in Eq. (3) are valid for
i=σ,ω,ρ, and δ. Finally, the DDHδ model has the same
coupling parameters as in Eq. (3) for the mesons σ and
ω, but functions fi(x) given by

fi(x)=aie
−bi(x−1)−ci(x−di), (5)

for i=ρ,δ.
Only one parametrization belongs to the non-linear

point coupling category, namely, the FA3 [40]. In this
kind of model, nucleons interact with each other with-
out explicitly including mesons [41–44]. Here, we do not
investigate such a model since in Ref [2] we have shown
it is not capable of generating a mass radius curve for
neutron stars, due to a very particular behavior in the
high-density regime, namely, a fall in the pressure versus
energy density (E) curve near E = 809 MeV/fm3. For
that reason, we have decided to discard this particular
parametrization.

All the details about the RMF approximation and
related equations of state (EoS) are given in Ref. [1] and
will not be repeated here. Only the formulae necessary
for the understanding of the present analysis are defined
next.

The general definition of the symmetry energy reads
as follows,

S(ρ) =
1

8

∂2(E/ρ)

∂y2

∣

∣

∣

∣

ρ,y=1/2

=Skin(ρ)+Spot(ρ), (6)

where y=ρp/ρ is the proton fraction of the system with
ρp being the proton density. By using such an expres-
sion, we compute the kinetic and potential contributions
of the symmetry energy slope

L(ρ) = 3ρ
∂S

∂ρ
=3ρ

∂Skin

∂ρ
+3ρ

∂Spot

∂ρ

= Lkin(ρ)+Lpot(ρ). (7)

If we consider the potential part of the symmetry en-
ergy written as a power-law in density according to

Spot(ρ)=Spot
0 (ρ/ρ0)

γ≡Spot
approx.

(ρ), (8)

it is possible to express L0 as

L0=3ρ0

[

(

∂Skin

∂ρ

)

ρ=ρ0

+
γ

ρ0

Spot
0

]

. (9)

By using Eq. (7) at ρ=ρ0 and comparing it to Eq. (9),
one can find γ as in Ref. [24], namely,

γ=
L0−L

kin
0

3Spot
0

=
Lpot

0

3Spot
0

, (10)

where Fkin,pot
0 =Fkin,pot(ρ0), for F =S, L. In Ref. [24],

the authors also introduced effects from short-range cor-
relations (SRC) between proton-neutron pairs [45–47] in
symmetric nuclear matter in order to provide an ana-
lytical expression for the kinetic part of the symmetry
energy. From this expression, which we will also use in
Section 2.3, they found the range of −10±7.5 MeV for
the kinetic part of the symmetry energy at the saturation
density, Skin

0 , based on data from free proton-to-neutron
ratios measured in intermediate energy nucleus-nucleus
collisions. Such a range allowed the authors to predict
the values of γ=0.25±0.05.

Another proposition for the calculation of the γ value
is given in Ref. [25], where no short-range correlations in
the kinetic part of the symmetry energy are taken into
account. In that case, the density dependence of the
symmetry energy was given by

S(ρ)=Skin(ρ)+Spot(ρ)=a(ρ/ρ0)
2/3+b(ρ/ρ0)

γ , (11)

with a= 12 MeV, b= 22 MeV, and γ possibly ranging
from 0.5 to 1.5 corresponding respectively to a soft and
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a stiff dependence. In that paper [25], a constraint for
the nuclear symmetry energy at suprasaturation densi-
ties was deduced from the ASY-EOS experiment at GSI
at twice saturation density, where the measurement of
the elliptic flows of neutrons and light-charged particles
in a gold-gold reaction resulted in γ=0.72±0.19.

2.1 Complete kinetic term (case 1)

Here we consider the complete kinetic term for the
different models. Within this assumption, the first term
of the symmetry energy is the kinetic part and the re-
maining is treated as the potential part. For the kinetic
part, the corresponding expressions for non-linear and
density-dependent (with δ meson) RMF models are,

Skin
i (ρ) =

k2
F

6E∗Fi

(12)

where i= NL, DD, with E∗Fi=(k2
F+M

∗

i
2)1/2 and

M∗

NL
=M−gσσ, M∗

DD
=M−Γσ(ρ)σ, (13)

for symmetric matter (y=1/2). The Fermi momentum
is written in term of density as kF=(3π2ρ/2)1/3.

The potential part of the symmetry energy is written
as

Spot
NL

(ρ) =
g2
ρ

8m∗ρ
2
ρ, (14)

Spot
DD

(ρ) =
Γ 2
ρρ

8m2
ρ

−
(Γδ/mδ)

2(M∗

DD
)2ρ

2E∗2F DD

[

1+
(

Γδ
mδ

)2

ADD

] , (15)

where

m∗ρ
2 = m2

ρ+gσg
2
ρσ(2α2+α

′

2gσσ)+α
′

3g
2
ωg

2
ρω

2
0 , and (16)

ADD =
2

π2

∫ kF

0

k4dk

[k2+(M∗
DD

)2]3/2
=3

(

ρs

M∗
DD

−
ρ

E∗FDD

)

.

(17)

The mean-field value of the vector field ωµ is ω0, and ρs

is the scalar density.
The respective expressions for the different contribu-

tions of the symmetry energy slope, namely, Lkin(ρ) and
Lpot(ρ), are obtained as indicated in Eq. (7), for this case
and the next ones.

2.2 “Free” kinetic term (case 2)

In this case we have separated the really kinetic term,
the one without any dependence of the interaction with
the mesons, from the rest of the symmetry energy. The
expressions in this case read

Skin
NL

(ρ)=Skin
DD

(ρ)=
k2

F

6EF

, (18)

with EF=(k2
F+M

2)1/2, for the kinetic part, and

Spot
NL

(ρ) =
k2

F

6E∗FNL

−
k2

F

6EF

+
g2
ρ

8m∗ρ
2
ρ, (19)

Spot
DD

(ρ) =
k2

F

6E∗FDD

−
k2

F

6EF

+
Γ 2
ρρ

8m2
ρ

−
(Γδ/mδ)

2(M∗

DD
)2ρ

2E∗2F DD

[

1+

(

Γδ
mδ

)2

ADD

] , (20)

for the potential one.

2.3 Short range correlations (case 3)

The idea here is to replace the kinetic part of the sym-
metry energy by that proposed in Ref. [24], where the
authors have considered Skin as composed by a free gas
model term added to a correction term ∆Skin that takes
into account short-range correlations between proton-
neutron pairs in symmetric nuclear matter. Based on
this procedure, we calculate the potential part of the
symmetry energy as follows,

Spot
i (ρ)=Si(ρ)−S

kin
SRC(ρ), (21)

where i = NL, DD. The expressions for the total sym-
metry energy Si(ρ) are given by the sum of Eqs. (12)
and (14) for the NL model, or Eqs. (12) and (15) for
the DD one, by using the formulae of case 1. Exactly
the same expressions are found if case 2 is taken into ac-
count, i. e., if the sum of Eqs. (18) and (19) is performed
for the NL model, or the sum of Eqs. (18) and (20) is
considered for the DD model. Finally, the kinetic part
of the symmetry energy for the present case analysis,
Skin

SRC(ρ), is taken from Ref. [24] as

Skin
SRC(ρ)=

(

22/3−1
) 3k2

F

10M
−∆Skin(ρ), (22)

with

∆Skin(ρ) =
c0k

0
F

2

2Mπ2

[

λ

(

ρ

ρ0

)1/3

−
8

5

(

ρ

ρ0

)2/3

+
3ρ

5λρ0

]

,

(23)

where the parameters c0=4.48 and λ=2.75 are also taken
from Ref. [24].

3 Results

Let’s start by revisiting the analysis of the corre-
lation between the symmetry energy S0 = S(ρ0) and
its slope L0 =L(ρ0), both at saturation density, whose
data are shown respectively in columns 1 and 4 in Ta-
bles 3, 4 and 5 (detail are given later) and are plotted
in Fig. 1, where squares indicate the parametrizations
which also satisfy the macroscopic stellar properties of
1.936Mmax/M¯62.05 from Refs. [3, 4]. This correlation
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Table 3. Symmetry energy and its slope, with the respective kinetic and potential parts, all of them at ρ= ρ0,
obtained from the case 1 analysis for the CRMF parametrizations presenting ∆(ρ)6 15% at a density range of
16ρ/ρ064 (see main text). The meanings of the symbols X and ¤ are also defined in the text.

models S0/MeV Skin
0 /MeV Spot

0 /MeV L0/MeV Lkin
0 /MeV L

pot
0 /MeV γ1

BKA20 X ¤ 32.24 16.58 15.66 75.38 48.47 26.91 0.57

BKA22 X ¤ 33.17 17.44 15.73 78.79 52.12 26.67 0.57

BKA24 X ¤ 34.19 17.54 16.65 84.80 52.09 32.70 0.65

BSR8 X 31.08 17.47 13.61 60.25 52.78 7.47 0.18

BSR9 X 31.61 17.57 14.05 63.89 52.41 11.49 0.27

BSR10 X 32.72 17.63 15.09 70.83 53.09 17.74 0.39

BSR11 X ¤ 33.69 17.47 16.22 78.78 51.89 26.89 0.55

BSR12 X 34.00 17.47 16.53 77.90 52.30 25.60 0.52

BSR15 30.97 17.33 13.65 61.79 49.34 12.45 0.30

BSR16 31.24 17.35 13.90 62.33 49.41 12.92 0.31

BSR17 31.98 17.38 14.60 67.44 49.50 17.93 0.41

BSR18 32.74 17.39 15.35 72.65 49.48 23.17 0.50

BSR19 ¤ 33.78 17.40 16.38 79.47 49.52 29.96 0.61

BSR20 ¤ 34.54 17.40 17.14 88.03 49.10 38.93 0.76

FSU-IV 31.43 17.45 13.98 52.16 49.72 2.44 0.06

FSUGold 32.56 17.45 15.11 60.44 49.72 10.72 0.24

FSUGold4 31.40 17.37 14.03 51.74 49.43 2.31 0.05

FSUGZ03 X 31.54 17.57 13.98 63.98 52.40 11.58 0.28

FSUGZ06 31.18 17.35 13.83 62.42 49.42 13.00 0.31

IU-FSU X 31.30 17.94 13.36 47.21 54.42 −7.21 −0.18

G2* X ¤ 30.39 16.61 13.77 69.68 46.31 23.37 0.57

Z271s5 31.84 13.82 18.02 53.57 32.55 21.02 0.39

Z271s6 31.20 13.82 17.38 47.81 32.55 15.25 0.29

has already been extensively investigated, for instance,
in Refs. [19, 48–50] and only some of the points in Fig. 1
coincide with the overlap region of Fig. 2 in Ref. [48]
(the gray band in our Fig. 1). This means that the ac-
cepted range of values in Ref. [2] is broader than the
overlap of conditions shown in Ref. [48], namely, the over-
lap among constraints from nuclear masses, neutron skin
thickness of Sn isotopes, dipole polarizability of 208Pb,
giant dipole resonances, isotope diffusion in heavy ion
collisions, astrophysical observations, and neutron mat-
ter constraints.

We next obtain the γ values by using Eq. (10) for
some CRMF parametrizations and then also compare
our values with the ranges proposed in Refs. [24, 25].
In our analysis, we assume that the potential part of the
symmetry energy can be written as in Eq. (8). Here,
not all CRMF parametrizations are analyzed, but in-
stead, only those in which the deviation defined by
∆(ρ)=|Spot

model(ρ)−S
pot
approx.

(ρ)|/Spot
model(ρ) is less than a cer-

tain value, with Spot
approx.

(ρ)=Spot
0 (ρ/ρ0)

γ , see Eq. (8). As
for each case one has different values for γ, the function
Spot

approx.
(ρ) exhibits different density dependences for the

same parametrization. Therefore, each studied case pro-
duces different values of ∆(ρ) for the same parametriza-
tion. Since experimental values of γ were extracted at
suprasaturation density regime, we decided to investigate
the values of ∆(ρ) at a range of 16ρ/ρ064, and define
that only CRMF parametrizations, at this specific den-

sity range, presenting ∆615%, are taken into account in
our study. By considering this analysis, we ensure a good
agreement between the exact potential part of the sym-
metry energy, Spot

exact
(ρ), of the CRMF parametrizations

and the approximate form given in Eq. (8).

δ

Fig. 1. (color online) Slope as a function of the
symmetry energy for the CRMF models (all
points). The gray band was extracted from
Ref. [48]. The squares represent parametriza-
tions which also satisfy the neutron star mass con-
straint of Refs. [3, 4].
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γ

γ

γ

γ

Fig. 2. (color online) γ1 as a function of (a) symmetry energy, and (b) its slope, both at ρ= ρ0, for the models
displayed in Table 3 (all points). Squares represent parametrizations also satisfying the neutron star mass constraint
of 1.936Mmax/M¯62.05 [3, 4]. The solid and dashed lines are fitting curves.

γ

γ

γ

Fig. 3. (color online) γ2 as a function of (a) symmetry energy, and (b) its slope, both at ρ= ρ0, for the models
of Table 4 (all points). Squares represent parametrizations also satisfying the neutron star mass constraint of
1.936Mmax/M¯62.05 [3, 4]. The solid lines are fitting curves.

As a further study, we analyse here the effect of the
absence of the scalar interaction in the kinetic parts of
the symmetry energy and its slope in the possible corre-
lations of γ2 with S0 and L0. The results are shown in
Fig. 3.

Our calculations were divided into the three different
cases presented in Section 2. For each case, we construct
a specific table where we use the symbol X to mark those
models in which the constraint 1.936Mmax/M¯62.05
for the maximum neutron star mass is also satisfied,
the symbol ¤ to mark those parametrizations present-
ing the γ parameter in the range γ=0.72±0.19, and
the symbol £ to identify parametrizations for which

γ=0.25±0.05.
We next make a distinction between the two first

cases (1 and 2) and case 3. For the last, one presented in
Section 3.3, we have considered short-range correlations
in the kinetic part of the symmetry energy. For cases 1
and 2 such an effect is not taken into account. For this
reason, we compare in the next subsections the obtained
values for the γ parameter in cases 1 and 2 only with
the experimental range of γ=0.72±0.19, since this range
was obtained without SRC effects, according to Ref. [25].
Furthermore, we name the parameters calculated from
cases 1 and 2 respectively γ1 and γ2.

For case 3, the γ parameter obtained with SRC effects
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is named γ3. It is compared only with the experimental
range γ=0.25±0.05 because this range was proposed in
Ref. [24] with SRC included in the analysis.

3.1 Case 1

The γ values calculated from case 1 (γ1) are presented
in Table 3. From this table we notice only 7 parametriza-
tions with γ1 in the range γ=0.72±0.19. Furthermore,
with data taken from columns 1, 4 and 7, we investigate
possible correlations between γ1 and the isovector quan-
tities at the saturation density. The results are depicted
in Fig. 2.

From Fig. 2(a), we observe a trend of linear correla-
tion between γ1 and S0. A quantitative measurement of
such a finding can be given by calculation of the Pear-
son’s correlation coefficient, defined as in Ref. [51]. Two
different quantities, A and B, are strongly correlated
within a linear relationship the closer the coefficient cor-
relation C(A,B) is to 1, or −1 in the case of a negative
linear dependence. In the case of the S0 dependence of
γ1, we found C(S0,γ1)=0.667.

By performing the same study in the γ1×L0 data,
we noticed a better linear correlation than in the pre-
vious case, since the correlation coefficient resulted in
C(L0,γ1) = 0.892, see Fig. 2(b). Moreover, if we re-

strict our analysis only to the points corresponding to
the models in which the neutron star mass constraint is
satisfied (squares), we see that the linear correlation is
still stronger in comparison to the one exhibited with all
points. The correlation coefficient for the square points
in Fig. 2(b) is C(L0,γ1)=0.956.

3.2 Case 2

The γ2 values calculated here are presented in Ta-
ble 4. Since in this case we have prevented the kinetic
part of the symmetry energy from having any influence
on the effective mass, and as a consequence of the scalar
meson effects, one can see here that Skin

0 =k0
F

2
/(6E0

F) dif-
fers from each parametrization only due to the Fermi
energy E0

F=(k0
F

2
+M 2)1/2 at the saturation point. As

k0
F=(3π2ρ0/2)

1/3, and as for nuclear mean-field models
the saturation density is well established closely around
the value of ρ0 = 0.15 fm−3, it becomes clear that the
parametrizations analyzed according to Eqs. (18)-(20)
present values of Skin

0 in a very narrow band, as one can
see from Table 4. For the same reason, the kinetic part
of the symmetry energy slope, Lkin

0 , is also constrained
to a small range. Also from Table 4, we see that for
the case 2 analysis, a large number of parametrizations,
namely, 20 of them, have γ2 in the range γ=0.72±0.19.

Table 4. Symmetry energy and its slope, with the respective kinetic and potential parts, all of them at ρ= ρ0,
obtained from the case 2 analysis for the CRMF parametrizations presenting ∆(ρ)6 15% at a density range of
16ρ/ρ064 (see main text). The meanings of the symbols X and ¤ are also defined in the text.

models S0/MeV Skin
0 /MeV Spot

0 /MeV L0/MeV Lkin
0 /MeV L

pot
0 /MeV γ2

BKA20 X ¤ 32.24 11.15 21.09 75.38 21.53 53.85 0.85

BKA22 X ¤ 33.17 11.21 21.96 78.79 21.64 57.15 0.87

BKA24 X 34.19 11.20 22.99 84.80 21.63 63.17 0.92

BSR8 X ¤ 31.08 11.19 19.88 60.25 21.62 38.64 0.65

BSR9 X ¤ 31.61 11.21 20.40 63.89 21.65 42.24 0.69

BSR10 X ¤ 32.72 11.22 21.50 70.83 21.66 49.17 0.76

BSR11 X ¤ 33.69 11.19 22.50 78.78 21.60 57.18 0.85

BSR12 X ¤ 34.00 11.22 22.78 77.90 21.66 56.24 0.82

BSR15 ¤ 30.97 11.13 19.85 61.79 21.49 40.30 0.68

BSR16 ¤ 31.24 11.13 20.11 62.33 21.50 40.83 0.68

BSR17 ¤ 31.98 11.17 20.81 67.44 21.57 45.87 0.73

BSR18 ¤ 32.74 11.14 21.59 72.65 21.52 51.13 0.79

BSR19 ¤ 33.78 11.19 22.60 79.47 21.60 57.87 0.85

BSR20 34.54 11.15 23.38 88.03 21.54 66.48 0.95

FSU-III ¤ 33.89 11.26 22.64 71.72 21.73 49.99 0.74

FSU-IV 31.43 11.26 20.17 52.16 21.73 30.43 0.50

FSUGold4 31.40 11.22 20.18 51.74 21.66 30.07 0.50

FSUGZ03 X ¤ 31.54 11.21 20.33 63.98 21.65 42.33 0.69

FSUGZ06 ¤ 31.18 11.14 20.04 62.42 21.51 40.92 0.68

G2* X ¤ 30.39 11.52 18.87 69.68 22.22 47.46 0.84

Z271s2 ¤ 34.08 11.27 22.81 76.62 21.75 54.87 0.80

Z271s3 ¤ 33.27 11.27 22.00 67.81 21.75 46.05 0.70

Z271s4 ¤ 32.53 11.27 21.26 60.18 21.75 38.43 0.60

Z271s5 31.84 11.27 20.57 53.57 21.75 31.82 0.52

Z271s6 31.20 11.27 19.93 47.81 21.75 26.05 0.44

DD-MEδ X 32.18 11.44 20.74 51.43 22.08 29.35 0.47
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Table 5. Symmetry energy and its slope, with the respective kinetic and potential parts, all of them at ρ= ρ0,
obtained from the case 3 analysis for the CRMF parametrizations presenting ∆(ρ)6 15% at a density range of
16ρ/ρ064 (see main text). The meanings of the symbols X and £ are also defined in the text.

models S0/MeV Skin
SRC,0/MeV Spot

0 /MeV L0/MeV Lkin
0 /MeV L

pot
0 /MeV γ3

BKA20 X 32.24 −9.31 41.55 75.38 21.21 54.16 0.43

BKA22 X 33.17 −9.36 42.53 78.79 21.33 57.46 0.45

BKA24 X 34.19 −9.35 43.54 84.80 21.31 63.48 0.49

BSR8 X 31.08 −9.35 40.43 60.25 21.30 38.95 0.32

BSR9 X 31.61 −9.37 40.98 63.89 21.34 42.55 0.35

BSR10 X 32.72 −9.37 42.09 70.83 21.35 49.48 0.39

BSR11 X 33.69 −9.34 43.03 78.78 21.29 57.49 0.44

BSR12 X 34.00 −9.37 43.37 77.90 21.35 56.55 0.43

BSR15 30.97 −9.29 40.26 61.79 21.17 40.62 0.34

BSR16 31.24 −9.30 40.54 62.33 21.18 41.15 0.34

BSR17 31.98 −9.33 41.31 67.44 21.25 46.18 0.37

BSR18 32.74 −9.31 42.04 72.65 21.20 51.45 0.41

BSR19 33.78 −9.34 43.13 79.47 21.29 58.19 0.45

BSR20 34.54 −9.31 43.85 88.03 21.22 66.80 0.51

FSU-III 33.89 −9.40 43.30 71.72 21.43 50.30 0.39

FSU-IV £ 31.43 −9.40 40.83 52.16 21.43 30.73 0.25

FSUGold 32.56 −9.40 41.96 60.44 21.43 39.01 0.31

FSUGold4 £ 31.40 −9.37 40.77 51.74 21.35 30.38 0.25

FSUGZ03 X 31.54 −9.37 40.91 63.98 21.34 42.64 0.35

FSUGZ06 31.18 −9.30 40.48 62.42 21.19 41.24 0.34

IU-FSU X £ 31.30 −9.67 40.97 47.21 22.04 25.17 0.20

G2* X 30.39 −9.63 40.02 69.68 21.94 47.74 0.40

Z271s2 34.08 −9.41 43.49 76.62 21.45 55.18 0.42

Z271s3 33.27 −9.41 42.68 67.81 21.45 46.36 0.36

Z271s4 32.53 −9.41 41.94 60.18 21.45 38.74 0.31

Z271s5 £ 31.84 −9.41 41.25 53.57 21.45 32.12 0.26

Z271s6 £ 31.20 −9.41 40.61 47.81 21.45 26.36 0.22

DD-MEδ X £ 32.18 −9.56 41.75 51.43 21.79 29.64 0.24

From this figure one can see that the trend of linear
correlation between γ2 and S0 is worse when compared
with case 1, since in case 2 one has C(S0,γ2) = 0.639.
However, we see that the linear correlation γ2×L0 is fa-
vored when the kinetic parts of the symmetry energy and
its slope are free from the scalar interaction effects. The
correlation coefficient in this case is C(L0,γ2)=0.977, a
higher value than the corresponding one of the previous
case, namely, C(L0,γ1)=0.892.

3.3 Case 3

The use of Eqs. (21)-(23) along with Eq. (7), all of
them evaluated at ρ = ρ0, allows the calculation of γ3

from the definition given in Eq. (10). The results are
presented in Table 5. In our procedure, only the sum
of the kinetic and potential parts of the symmetry en-
ergy matters. This sum does not change, and we extract
the potential part by subtracting from the total (exact)
value, the kinetic part with SRC included, as indicated
in Eq. (21).

From Table 5 we see that Skin
SRC,0 has a negative value

around −9.3 MeV for all parametrizations. Such a fea-

ture is a direct consequence of the short-range correla-
tions between proton-neutron pairs in symmetric nuclear
matter introduced in Ref. [24], that produced the ex-
pressions presented in Eqs. (22)-(23). Such a negative
value for Skin

0 of the CRMF parametrizations is indeed
consistent with the range of −10±7.5 MeV found by
the authors [24] through the analysis of data from free
proton-to-neutron ratios measured in intermediate en-
ergy nucleus-nucleus collisions.

We also see from Table 5 that the introduction
of short-range correlations produces 6 parametrizations
with γ3 in the range of γ=0.25±0.05.

In Fig. 4, we also investigate the γ3 correlations.
It is clear from this figure that the linear dependence
between γ3 and the isovector bulk parameters is still
more favored when the short-range correlations are in-
cluded in the CRMF parametrizations. The correlation
coefficients obtained in this case are the closest to the
unity, namely, C(S0,γ3)=0.689 and C(L0,γ3)=0.994 in
comparison with the respective quantities regarding the
cases 1 and 2.
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γ

γ

γ

Fig. 4. (color online) γ3 as a function of (a) symmetry energy, and (b) its slope, both at ρ= ρ0, for the models
of Table 5 (all points). Squares represent parametrizations also satisfying the neutron star mass constraint of
1.936Mmax/M¯62.05 [3, 4]. The solid lines are fitting curves.

3.4 Comments about the results

Regarding the correlations found mainly between γ
and L0, we remark that such a result is not trivial, and
the reason can be given from an analysis of Eq. (10).
From such an equation we can write:

γ=αL0+β, (24)

with α = 1/(3Spot
0 ) and β = −Lkin

0 /(3Spot
0 ), i. e., a

linear correlation between γ and L0 is obtained if α
and β are (ideally) constant numbers. In our study,
we investigate whether Lkin

0 and Spot
0 are close enough

to constants for the sets of parametrization studied in
each case. If this is the case, the variations ∆α and
∆β are close to zero. Since for each case studied we
have the highest and lowest values of Spot

0 and Lkin
0 , it

is possible to calculate ∆α = 1

3(S
pot
0

)high

− 1

3(S
pot
0

)low
, and

∆β=−
(Lkin

0 )high

3(S
pot
0

)high

+
(Lkin

0 )low

3(S
pot
0

)low
. The absolute values of such

calculations are shown in Table 6, and as one can see,
∆α and ∆β are decreasing quantities if we analyse such
numbers from case 1 to 3. These behaviors explain the
increasing coefficient correlation shown in Figs. 2 to 4.

Table 6. Absolute values of∆α and∆β, calculated
for the three different cases analyzed.

case |∆α|/MeV−1 |∆β|

1 0.0064 0.756

2 0.0034 0.085

3 0.0007 0.022

This result is a consequence of the data previously
presented in Tables 3, 4 and 5. From these tables, one
can see that the values of Lkin

0 and Spot
0 are closer to a

constant value in case 3 than in case 2. Also, these val-
ues are closer to a certain constant value in case 2 than
in case 1.

One can see from such a table that the closer results
are obtained for the cases in which the scalar attractive
interaction is not taken into account in the kinetic part
of the symmetry energy, i. e., cases 2 and 3, the latter
being the case in which ∆α and ∆β are closer to zero.

As a direct application of this specific correlation, we
also investigate whether γ1, γ2, and γ3 obtained from the
CRMF parametrizations in the three different cases stud-
ied and always calculated for symmetric nuclear matter,
also correlate with neutron star radii. The motivation
for such a study comes from the results presented in
Ref. [52], in which the authors found that for a class of 42
relativistic and Skyrme parametrizations, L0 linearly de-
pends on R1.0 and R1.4, namely, the radii of neutron stars
presentingMstar=M¯ and 1.4M¯, respectively. The R1.0

and R1.4 dependence of γ1, γ2, γ3 related to those CRMF
parametrizations analyzed here is shown in Fig. 5. In or-
der to obtain stellar macroscopic properties, the same
CRMF parametrizations are used, but now the models
are subject to matter neutrality and β-equilibrium.

In order to generate the neutron star radii, we
have joined the hadronic matter EoS from the CRMF
parametrizations with those for electrons and muons. Af-
ter that, the conditions of charge neutrality and chemi-
cal equilibrium were taken into account and the Baym-
Pethick-Sutherland (BPS) equation of state [53] for low
densities was added to the EoS for hadrons and leptons.
The resulting EoS was used as input to the Tolman-
Oppenheimer-Volkoff equations [54]. We refer the reader
to Ref. [55], for instance, for details regarding such cal-
culations.
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γ

γ

γ γ

γ

γ

γ

γ

γ

Fig. 5. (color online) γ1, γ2, and γ3 as a function of the R1.0 and R1.4 neutron star radii for the CRMF parametriza-
tions (all points). Squares represent parametrizations also satisfying the constraint of 1.936Mmax/M¯62.05 [3, 4].

γ γ

δ

Fig. 6. (color online) Slope as a function of the symmetry energy for the models that produce the (a) lower and (b)
higher γ ranges discussed in the last section. The gray band was extracted from Ref. [48]. Orange points represent
those parametrizations in which the neutron star mass constraint of 1.936Mmax/M¯62.05 [3, 4] is verified.
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From Fig. 5, we can conclude that the CRMF
parametrizations also present a linear behavior concern-
ing γ1, γ2, γ3 and the neutron star radii. This result
is entirely compatible with the findings of Ref. [52]. In
that paper, a linear correlation between L0 and the radii
was found, and since in our study we have found a linear
dependence for γ1, γ2, γ3 and L0, according to Eq. (24),
a direct consequence is the linear behavior described in
Fig. 5. Also as in Ref. [52], the correlations are stronger
for the R1.0 neutron star radius as the correlation coef-
ficients C(R1.0,γ) point out. Finally, as observed in all
the investigations, the linear dependence is intensified in
cases 2 and 3, in which the effects of the scalar interac-
tion are absent from the kinetic part of the symmetry
energy.

Another point concerns the gray band in Fig. 1 for the
CRMF models in the different cases studied. We start
by redrawing, as shown in Fig. 6, such a figure for the
different models that reproduce γ=0.25±0.05 (Fig. 6(a))
and γ=0.72±0.19 (Fig. 6(b)).

The CRMF parametrizations for which we have ob-
tained the γ parameters from case 3 are more compat-
ible with the gray band proposed in Ref. [48], i. e.,
the short-range correlations effects induce the CRMF
parametrizations to present the γ parameter inside the
range of γ=0.25±0.05, simultaneously being consis-
tent with the overlap conditions of Ref. [48] obtained
from many experimental and observational data. For
such a case, 6 parametrizations are inside the overlap
band, namely, IU-FSU, FSU-IV, FSUGold4, Z271s5,
Z271s6, and DD-MEδ, with 2 of them, IU-FSU and
DD-MEδ, also satisfying the neutron star mass con-
straint of 1.936Mmax/M¯62.05 [3, 4] and two of them,
Z271s5 and Z271s6 yielding critical parameters close to
the existing proposition of experimental values, accord-
ing to the findings of Ref. [5].

4 Summary

In summary, our calculations have shown that, in-
dependently of the choice made to obtain the γ values
(case 1, 2 or 3) for the CRMF models, a trend of linear
correlation is observed between γ1, γ2, γ3 and S0, and a

clearer linear relationship is established regarding γ1, γ2,
γ3 and the slope of the symmetry energy at the satura-
tion density, L0. In cases 2 and 3, the last correlation is
still more pronounced. Such an effect arises due to the
absence of the attractive interaction in the kinetic part of
the symmetry energy. Furthermore, the short-range cor-
relations introduced in the case 3 analysis intensify the
linear L0 dependence of γ3, as seen in Fig. 4(b). These
results can be used to determine other linear correla-
tions of γ1, γ2, γ3 and the neutron star radii of R1.0

and R1.4, as displayed in Fig. 5. Finally, specifically for
case 3, two specific parametrizations, namely, IU-FSU
and DD-MEδ are shown to be compatible with the range
of γ=0.25±0.05 [24], and simultaneously consistent with
the neutron star mass constraint of Refs. [3, 4], and
other two, Z271s5 and Z271s6, simultaneously compati-
ble with the range of γ=0.25±0.05 [24] and with proba-
ble critical parameters experimental values [5]. The four
parametrizations are consistent with the overlap band
for the L0×S0 region described in Ref. [48], see Fig. 6.

As a final remark, we remind the reader that we have
only analyzed symmetric matter in this study for the
calculation of the γ values, but the potential differ-
ence for neutrons and protons in neutron-rich matter
and their density dependence, for instance, can also be
calculated. However, the results cannot be compared
with the existing γ values. Furthermore, if we also want
to investigate the momentum dependence in asymmetric
matter, single particle potentials, which are different for
neutrons and protons, have to be taken into account,
see Ref. [56, 57]. To obtain this kind of dependence,
one would need either a theory that uses non-local in-
teractions or a Thomas-Fermi calculation, and both
approaches are out of the scope of the present work.
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