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Abstract: Expressions of the spectroscopic factors (SFs) corresponding to one-particle transfer reactions have been

established using a schematic definition. These expressions have been derived by taking into account the isovector

neutron-proton (np) pairing correlations and a particle-number projection in the framework of the generalized Sharp-

BCS (SBCS) method. Recently proposed expressions of the projected wave-functions of odd-mass nuclei have been

used for this purpose. The formalism has first been tested using the single-particle energies of the schematic picket-

fence model. It is shown that the np pairing and particle-number fluctuation effects are far from negligible and they

depend on the pairing gap parameter values. Their behavior is not the same when the parent nuclei are even-even or

odd. Predictions dealing with the SFs corresponding to one-proton stripping and one-neutron pick-up reactions in

proton-rich nuclei have then been established within the framework of the realistic Woods-Saxon model. It is shown

that the np pairing effect as well as the particle-number projection effect are important and thus have to be included

in future calculations of the SF corresponding to these kinds of reactions.
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1 Introduction

Spectroscopic factors (SFs) were introduced about
sixty years ago in the theory of nuclear reactions, since
they provide a useful basis of comparison between exper-
iment and the predictions of nuclear models [1–4]. The
study of the SFs has been the subject of many works,
both on the theoretical and experimental sides (see, e.g.
Refs. [5–23]). On the theoretical side, the SF depends
essentially on the wave-function, which must then be rig-
orously chosen. In particular, it must include the pair-
ing correlations, which play a major role in the nuclear
structure. Pairing correlations have been included in the
evaluation of the SF by several authors. Those most
often used are the BCS method (see e.g. Refs. [24–28])
and the pairing-plus-quadrupole model [29]. However, in
these papers, the only type of pairing correlations which
has been taken into account is the pairing between like-
particles. Nevertheless, it is now well established that the
neutron-proton (np) pairing effect must be taken into ac-
count, in addition to the pairing between like-particles,
in nuclei along the N =Z line. Indeed, in this kind of
nucleus, the neutron and proton Fermi levels are close to
each other. Therefore the np pairing correlations are no
longer negligible, as is the case when the neutron excess

is important. The study of the np pairing is thus an ac-
tive area of interest (see e.g. Refs. [30–42]; for reviews,
see Refs. [43, 44]). A common approach to treat pair-
ing in N'Z nuclei is the BCS-type one [45]. However,
it is well known that the standard BCS wave-function
does not conserve the number of particles. The particle-
number fluctuations affect several nuclear observables,
when one takes into account either the like-particle pair-
ing or the np pairing. Among others, let us cite the
energy of the system [46–51], the two-particle separation
energy [52, 53], the moment of inertia [54–57], the nuclear
radii [58, 59], the electric moments [60, 61] and statistical
quantities [62]. The restoration of the particle-number is
therefore essential for an accurate determination of the
nuclear wave-function. Attempts to solve the problems
generated by the use of the BCS wave-function are as old
as the BCS theory itself. They are numerous. One of the
most important is the projection on the good particle
number [63–80]. The projection may be performed be-
fore the variation (methods of FBCS type) [67–72] or af-
ter it (methods of PBCS type) [73–76]. Some of the pro-
jection methods are exact [63, 64] but they present a ma-
jor drawback due to the complexity of the calculations.
This is the reason why some methods that enable one to
approximately conserve the particle-number have been
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proposed, like the Lipkin-Nogami method [77–80]. The
second approach used to overcome the defect of the BCS
wave-function is the inclusion of the interaction which
has been neglected in the independent-quasiparticle ap-
proximation, such as the quasiparticle random phase ap-
proximation (QRPA) and its variants [81–91]. Another
possibility is the higher Tamm-Dancoff approximation
[92–94] as well as the variation after mean-field projec-
tion in realistic model spaces (VAMPIR) [95–97] or the
variational approach [98, 99]. Among other methods, the
present list not being exhaustive, let us also cite the gen-
eralized seniority [100, 101], the density matrix method
[102, 103], the nucleon pair approximation [104–106],
the shell-model-like approach [107–109] and the meth-
ods proposed by Pillet et al. [110] and Molique et al.
[111]. The exact number-conserving solution proposed
by Feng Pan et al. [112] and the exact pairing method
introduced by Volya et al. [113, 114] are also possible
approaches. The method introduced by Zeng et al. [115]
is also an exact particle-number conserving approach in
which a broken pair excited configuration is defined by
blocking the real particles which specify the configura-
tions [116, 117]. In the present paper, we will use the
Sharp-BCS (SBCS) method [73–75]. It is an exact pro-
jection method of PBCS type in which the wave-function
appears as a convergent sequence of states.
In two previous papers, the present authors studied

the particle-number fluctuation effect on the SF corre-
sponding to one-pair like-nucleon transfer reactions when
including [118] or not [119] the isovector pairing correla-
tions. The goal of the present work is to study the effects
of the np pairing correlations and the particle-number
projection on the SF corresponding to one-particle trans-
fer reactions in proton-rich nuclei. Let us note that for
simplicity, we will consider here only the isovector pair-
ing and not the isoscalar pairing.
The paper is organized as follows. The expressions

of the wave-functions before and after projection are re-
called in Section 2. The expressions of the spectroscopic
factors are established in Section 3. The numerical re-
sults are presented and discussed in Section 4. Finally,
the main conclusions are summarized in last section.

2 Hamiltonian diagonalization

Let us start with the following pure isovector pair-
ing Hamiltonian which describes a system of N neutrons
and Z protons if one assumes that the neutrons and the
protons occupy the same energy levels [32, 34]

H=
∑

ν>0,t

ενt(a
+
νtaνt+a

+
ν̃taν̃t)

−1
2

∑

tt′

Gtt′

∑

ν,µ>0

(
a+νta

+
ν̃t′aµ̃t′aµt+a

+
νta

+
ν̃t′aµ̃taµt′

)
. (1)

In this expression, t is the isospin component (t=n,p),
and a+νt and aνt respectively represent the creation and
annihilation operators of a particle in the |νt〉 state, of
energy ενt. The time-reversal of the state |νt〉 is denoted
|ν̃t〉. The pairing-strength Gtt′ is assumed to be constant
and such that Gpn=Gnp.

H is diagonalized using the generalized Bogoliubov-
Valatin transformation [31, 32]

α+ντ=
∑

t=n,p

(uντta
+
νt+vντtaν̃t) , τ=1,2, (2)

in which α+ντ is the creation operator of a quasiparticle
(qp) of τ type.

2.1 BCS wave-functions

The BCS wave-function |ψ〉 is obtained by eliminat-
ing all the qp from the actual vacuum. It is given by
[75]

|ψ〉=
∏

j>0

|ψj〉, (3)

with the notations

|ψj〉=
[
Bj
1A

+
jpA

+
jn+B

j
pA

+
jp+B

j
nA

+
jn

+Bj
4

(
a+
j̃p
a+jn+a

+

j̃n
a+jp

)
+Bj

5

]
|0〉. (4)

The coefficients Bj
i are defined by

Bj
i=b

j
i/K, i=1,p,n,4,5, (5)

with:

bj1 = (vj1pvj2n−vj1nvj2p)2

bjp = v2j1p(uj2pvj2p+uj2nvj2n)

+v2j2p(uj1nvj1n−uj1pvj1p)−2uj1nvj1pvj2pvj2n
bjn = v2j1n(uj2pvj2p+uj2nvj2n)

−v2j2n(uj1nvj1n−uj1pvj1p)−2uj1pvj1nvj2pvj2n
bj4 = vj1nvj1p(uj2pvj2p+uj2nvj2n)

−v2j2nuj1nvj1p−v2j2puj1pvj1n
bj5 = (uj1nvj1n+uj1pvj1p)(uj2pvj2p+uj2nvj2n)

−(uj1nvj2n+uj1pvj2p)2 ,

with K being the normalization constant given by

K=

√(
bj1
)2
+
(
bjp
)2
+(bjn)

2
+2
(
bj4
)2
+
(
bj5
)2
.

A+
jt is the creation operator of a pair of particles, i.e.,

A+
jt=a

+

j̃t
a+jt, t=n,p. (6)
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The gap equations are given by

∆pp=−Gpp

∑

j>0

(
Bj
1B

j
n+B

j
5B

j
p

)
, (7)

∆nn=−Gnn

∑

j>0

(
Bj
1B

j
p+B

j
5B

j
n

)
, (8)

∆np=−
1

2
Gnp

∑

j>0

(
Bj
1B

j
4−Bj

4B
j
5

)
, (9)

〈ψ|Np |ψ〉=2
∑

j>0

[(
Bj
1

)2
+
(
Bj

p

)2
+
(
Bj
4

)2]
, (10)

〈ψ|Nn |ψ〉=2
∑

j>0

[(
Bj
1

)2
+
(
Bj

n

)2
+
(
Bj
4

)2]
, (11)

∆tt′ (t,t
′=n,p) being the pairing gap parameters and Nt

the particle-number operators.
It may easily be shown that when Gnp=0, the state

(3), as well as the gap parameters ∆tt (t=n,p) and the
particle-number conservation conditions, reduce to their
homologues obtained when only the pairing between like-
particles is considered, respectively given by Eqs. (A16),
(A3) and (A4).
However, the wave-function (3) cannot describe odd

systems. In this kind of system, the wave-function is de-
rived using the blocked-level technique. In the following,
it will be assumed that the odd particle is a proton in
the ν state, i.e., Z=2Pp+1, N=2Pn. One then has [120]

|νP 〉=a+νp(Bν
nA

+
νn+B

ν
5 )
∏
j>0
j 6=ν

|ψj〉, (12)

with |ψj〉 being defined by Eq. (4). For simplicity,
in the expression of |νP 〉 the dependence of the Bj

i

(i=1,p,n,4,5) coefficients on ν has been omitted in the
notations.
The corresponding gap equations are given by

∆νP
nn=−2Gnn

{
Bν

nB
ν
5+
[
(Bν

n)
2
+(Bν

5 )
2
]

×
∑

j>0
j 6=ν

(
Bj
1B

j
p+B

j
nB

j
5

)}
, (13)

∆νP
pp =−2Gpp

[
(Bν

n)
2
+(Bν

5 )
2
]∑

j>0
j 6=ν

(
Bj
1B

j
n+B

j
pB

j
5

)
, (14)

∆νP
np =2Gnp

[
(Bν

n)
2
+(Bν

5 )
2
]∑

j>0
j 6=ν

Bj
4

(
Bj
1−Bj

5

)
, (15)

〈νP |Np |νP 〉=1+2
[
(Bν

n)
2
+(Bν

5 )
2
]

×
∑

j>0
j 6=ν

[(
Bj
1

)2
+
(
Bj

p

)2
+
(
Bj
4

)2]
, (16)

〈νP |Nn |νP 〉=2(Bν
n)

2
+2
[
(Bν

n)
2
+(Bν

5 )
2
]

×
∑

j>0
j 6=ν

[(
Bj
1

)2
+
(
Bj

p

)2
+
(
Bj
4

)2]
. (17)

In order to obtain the ground-state and the gap equations
which correspond to the case where the odd particle is a
neutron, one just has to replace the index p by n in Eqs.
(12)-(17), and vice versa.
Here again, it may be easily shown that, when Gnp=

0, state (12), as well as the gap parameters ∆ν(N,P )
tt

(t = n,p) and the particle-number conservation condi-
tions, reduce to their homologues in the pairing between
like-particles case respectively given by Eqs. (A17),
(A6), (A7) and (A4).
Nevertheless, neither state (3) nor state (12) are

eigenstates of the particle-number operator. This is the
main defect of the BCS approach. A particle-number pro-
jection is thus necessary.

2.2 Projected wave-functions

In the following, we will briefly recall the expres-
sions of the projected wave-functions obtained using the
Sharp-BCS (SBCS) method [75]. For an even-even nu-
cleus, the projected ground-state is given by

|ψmm′〉=Cmm′

{
m+1∑

k=0

m′+1∑

k′=0

ξkξk′z−Pn

k z
−Pp

k′ |ψ(zk,zk′)〉+CC
}
,

(18)

where

|ψ(zk,zk′)〉=
∏

j>0

|ψj (zk,zk′)〉, (19)

with the notations

|ψj (zk,zk′)〉=
[
zkzk′Bj

1A
+
jpA

+
jn+zkB

j
nA

+
jn+zk′Bj

pA
+
jp

+
√
zkzk′Bj

4

(
a+
j̃p
a+jn+a

+

j̃n
a+jp

)
+Bj

5

]
|0〉
(20)

and

ξk=





1

2
if k=0 or k=m+1

1 if 0<k<m+1
, zk=exp

(
ikπ

m+1

)
.

(21)
m,m′ are non-zero integers and respectively refer to the
projection order on the good neutron and proton num-
bers, and CC means the summation over the same terms
where (zk,zk′) is replaced by (zk,zk′), then by (zk,zk′)
and finally by (zk,zk′).
Let us note that state (18) is such that

〈ψmm′ |O|ψmm′〉=4(m+1)(m′+1)Cmm′ 〈ψ|O|ψmm′〉,
(22)

where O is any operator which conserves the particle-
number.
Using this property, the normalization condition of

state (18) then reads
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1=4(m+1)(m′+1)C2
mm′

×
{

m+1∑

k=0

m′+1∑

k′=0

ξkξk′z−Pn

k z
−Pp

k′

∏

j>0

Aj (zk,zk′)+CC
}
, (23)

where we set

Aj (zk,zk′)=zkzk′

(
Bj
1

)2
+zk

(
Bj

n

)2
+zk′

(
Bj

p

)2

+2
√
zkzk′

(
Bj
4

)2
+
(
Bj
5

)2
. (24)

As soon as

2(m+1)>max(Pn,Ω−Pn)

2(m′+1)>max(Pp,Ω−Pp)
, (25)

all the false components are eliminated in the state |ψ〉.
In the case of an odd system, the projected ground-

state is given by [120]:

|(νP )
mm′〉=CνP

mm′

m+1∑
k=0

m′+1∑
k′=0

ξkξk′



z

−Pn

k z
−Pp

k′ a+νp(B
ν
nzkA

+
νn+B

ν
5 )
∏
j>0
j 6=ν

|ψj (zk,zk′)〉+CC



, (26)

when the odd particle is a proton in the ν state. The condition (25) remains valid in this case. C νP
mm′ is the

normalization constant given by

1=4(m+1)(m′+1)
(
CνP

mm′

)2m+1∑
k=0

m′+1∑
k′=0

ξkξk′



z

−Pn

k z
−Pp

k′

[
zk (B

ν
n)

2
+(Bν

5 )
2
] ∏
j>0
j 6=ν

Aj (zk,zk′)+CC



. (27)

One just has to switch the p and n indexes, as well as zk
and zk′ , in Eq. (26) to obtain the wave-function which
corresponds to the case where the odd particle is a neu-
tron.

3 Spectroscopic factors

In the following, the expressions of the SFs will be
derived using a schematic definition similar to the one
proposed by Chasman [121] in the case of the np pair
transfer. In the case of one-particle stripping reactions,
the SF is deduced from the relation

√
SSTRt =

〈
ψf (A+1)

∣∣∣∣∣
∑

l>0

(
a+lt+a

+

l̃t

)
∣∣∣∣∣ψ

i(A)

〉
, t=n,p.

(28)
In the case of one-particle pick-up reactions, it is deduced
from the relation

√
SPICt =

〈
ψf (A−1)

∣∣∣∣∣
∑

l>0

(alt+al̃t)

∣∣∣∣∣ψ
i(A)

〉
, t=n,p, (29)

where |ψi(A)〉 and |ψf (A±1)〉 respectively refer to the
wave-functions of the initial (i) and final (f) states of the
considered nucleus. A corresponds to the total number
of nucleons in the initial state.
In the present work, we consider only even-even or

odd systems, but not odd-odd ones.

3.1 Before projection

Within the generalized BCS approach, the SFs de-
fined by Eqs. (28)-(29) read, in the case of the transfer
of one proton from an even-even nucleus to an odd one,

√
SSTR(1)p =F if

n5(ν)
∏

j>0,j 6=ν

Dif
j (ν), (30)

√
SPIC(1)p =F if

np(ν)
∏

j>0,j 6=ν

Dif
j (ν), (31)

where we used the wave-functions defined by Eqs. (3)
and (12). The notation STR refers to the stripping re-
actions whereas PIC refers to pick-up reactions.
In the reciprocal case, the SFs are given by

√
SSTR(2)p =F fi

np(ν)
∏

j>0,j 6=ν

Dfi
j (ν), (32)

√
SPIC(2)p =F fi

n5(ν)
∏

j>0,j 6=ν

Dfi
j (ν), (33)

with the notations

Dif
j (ν)=B

ji
1B

jf
1 (ν)+B

ji
pB

jf
p (ν)+B

ji
nB

jf
n (ν)

+2Bji
4B

jf
4 (ν)+B

ji
5B

jf
5 (ν), (34)

F if
n5(ν)=B

νi
n B

νf
n (ν)+B

νi
5 B

νf
5 (ν), (35)

F if
np(ν)=B

νi
1 B

νf
n (ν)+B

νi
p B

νf
5 (ν). (36)

In the latter expressions, one just has to switch between
the p and n indexes to obtain the SFs SSTR(1,2)n and
SPIC(1,2)n which correspond to one-neutron transfer reac-
tions.
It may be easily shown that when the np pairing ef-

fects vanish, i.e., when the np pairing gap parameters go
to zero, Eqs. (30)-(33) reduce to their homologues when
only the pairing between like-particles is taken into ac-
count, that is, Eqs. (A18)-(A21).

3.2 After projection

After the projection, the SFs are derived using the
states defined by Eqs. (18) and (26). One then has, in
the case of the transfer of one proton from an even-even
nucleus to an odd one,
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√(
SSTR(1)p

)

mm′

=4(m+1)(m′+1)C i
mm′C

(νp)f

mm′

m+1∑

k=0

m′+1∑

k′=0

ξkξk′

[
z
−P f

n

k z
−P f

p

k′ F if
n5(zk)

∏

j 6=ν

Dif
j (zk,zk′)+CC

]
(37)

√(
SPIC(1)p

)

mm′

=4(m+1)(m′+1)C i
mm′C

(νp)f

mm′

m+1∑

k=0

m′+1∑

k′=0

ξkξk′

[
z
−P f

n

k z
−P f

p

k′ F if
np(zk,zk′)

∏

j 6=ν

Dif
j (zk,zk′)+CC

]
. (38)

In the reciprocal case, the SFs are given by

√(
SSTR(2)p

)

mm′

=4(m+1)(m′+1)C(νp)i

mm′ C
f
mm′

m+1∑

k=0

m′+1∑

k′=0

ξkξk′

[
z
−P f

n

k z
−P f

p

k′ F fi
n5(zk,zk′)

∏

j 6=ν

Dfi
j (zk,zk′)+CC

]
, (39)

√(
SPIC(2)p

)

mm′

=4(m+1)(m′+1)C(νp)i

mm′ C
f
mm′

∑

k=0

m′+1∑

k′=0

ξkξk′

[
z
−P f

n

k z
−P f

p

k′ F fi
np(zk)

∏

j 6=ν

Dfi
j (zk,zk′)+CC

]
, (40)

with the notations:

Dif
j (zk,zk′)=zkzk′Bji

1 B
jf
1 (ν)+zk′Bji

p B
jf
p (ν)+zkB

ji
nB

jf
n (ν)

+2
√
zkzk′Bji

4 B
jf
4 (ν)+B

ji
5 B

jf
5 (ν) (41)

F if
n5(zk)=z

2
kB

νi
n B

νf
n (ν)+B

νi
5 B

νf
5 (ν) (42)

F if
np(zk,zk′)=z2kzk′Bνi

1 B
νf
n (ν)+zk′Bνi

p B
νf
5 (ν). (43)

In the latter expressions, one just has to switch the
n and p indexes, as well as zk and zk′ , to obtain the
SFs

(
SSTR(1,2)n

)
mm′

and
(
SPIC(1,2)n

)
mm′

which correspond
to one-neutron transfer reactions. Moreover, one notes a
formal similarity between expressions (30)-(33) (i.e., be-
fore the projection) and expressions (37)-(40) (i.e., after
the projection).
When the np pairing effects vanish, Eqs. (30)-(33)

reduce to their homologues in the pairing between like-
particles case given by Eqs. (A24)-(A27).

4 Numerical results and discussion

The previously described formalism has been used in
order to study numerically the np pairing and projection
effects on the SFs corresponding to one-particle transfer
reactions. With this aim, two models have been used,
the picket-fence schematic model [122] and the realistic
Woods-Saxon one [123]. As was the case in Ref. [118],
the picket-fence model is used here as a toy model since
it does not enable one to obtain the exact values of the
SFs.
The convergence of the SBCS method is very rapid

(see, e.g., Ref. [118]). Indeed, the convergence is reached
as soon as m,m′' 4−5 when one uses the picket-fence
model and as soon as m,m′ ' 5−6 when one uses the
Woods-Saxon model. It is clearly less than the theo-
retical values predicted by condition (25). In all that
follows, we will use the values m=m′ = 10 in order to
ensure convergence.
In the following, SBCS and SSBCS mean respectively

the SFs evaluated before and after the projection in the
pairing between like-particles (i.e., using Eqs. (A18)-
(A21) and (A24)-(A27)), and SBCS−np and SSBCS−np are
their homologues in the isovector np pairing (i.e., using
Eqs. (30)-(33) and (37)-(40)).

4.1 Picket-fence model

In this model, the single-particle levels are equally
spaced, that is, εν=ν, ν=1,2,...,Ω, where Ω is the total
number of levels.
The values of the pairing gap parameters ∆tt′ (t,t

′=
n,p) are chosen arbitrarily. The Gtt′ (t,t

′=n,p) values are
then deduced using Eqs. (7)-(11) in the case of even-even
systems and Eqs. (13)-(17) in the case of odd systems.
Within the picket-fence model, we considered only a

one-proton stripping reaction in the case Z i =N i = 16
(Z i and N i being the proton and neutron numbers in
the initial state), taken as an example for even-even sys-
tems, and Z i=15, N i=16, taken as an example for odd
systems.
As a first step, we have studied the variations of the

SFs as a function of the np pairing gap parameter in the
initial state ∆i

np, the values of the other parameters being
fixed. The values used are ∆i

pp=1.6 MeV, ∆
f
pp=1.4 MeV,

∆f
nn=1.3 MeV, ∆

f
np=0.2 MeV and Ω=18. The vari-

ations of the SFs, evaluated using the previously cited
four approaches, as a function of ∆i

np are shown in Fig.
1 for the system Z i=N i=16 and in Fig. 2 for the system
Z i=15, N i=16, in the case ∆i

nn=1 MeV, chosen as an
example. SBCS and SSBCS are obviously constant as a
function of ∆i

np.
As could be foreseen, Figs. 1 and 2 show that the be-

havior of the SFs is completely different when the initial
state is even-even and when it is odd. In particular, the
minimum which appears in the SBCS−np and SSBCS−np

graphs in Fig. 1 is absent in Fig. 2.
As a second step, we have studied separately the np

pairing and projection effects. The np pairing effect,
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before and after the projection, is evaluated using the
relative discrepancies

δSnp=
SBCS−SBCS−np

SBCS

(44)

Fig. 1. Variations of the spectroscopic factor cor-
responding to a one-proton stripping reaction, in
the case of the system Z i=N i=16, as a function
of the np gap parameter ∆i

np of the initial state,
when ∆i

nn=1 MeV. Solid lines and dashed lines
refer to the pairing between like-particles respec-
tively before and after the projection. Dotted and
dash-dotted lines refer to the np pairing respec-
tively before and after the projection.

Fig. 2. Variations of the spectroscopic factor cor-
responding to a one-proton stripping reaction, in
the case of the system Z i=15, N i=16, as a func-
tion of the np gap parameter ∆i

np of the initial
state, when ∆i

nn=1 MeV. Solid lines and dashed
lines refer to the pairing between like-particles re-
spectively before and after the projection. Dotted
and dash-dotted lines refer to the np pairing re-
spectively before and after the projection.

and

δSnp−proj=
SSBCS−SSBCS−np

SSBCS

. (45)

In the same way, the projection effect, in the pairing
between like-particles, as well as in the np pairing, will
be evaluated using the relative discrepancies

δSproj=
SBCS−SSBCS

SBCS

(46)

and

δSproj−np=
SBCS−np−SSBCS−np

SBCS−np

. (47)

4.1.1 Neutron-proton pairing effect

The influence of the np pairing effect on the SF has
been studied by evaluating δSnp and δSnp−proj as a func-
tion of the np pairing gap parameter in the initial state
∆i

np, for several values of ∆
i
nn . The corresponding re-

sults are displayed in Fig. 3 for the system Z i=N i=16
and in Fig. 4 for the system Z i=15, N i=16. The ∆i

nn

values are in the range 1.06∆i
nn61.5 MeV.

The behavior of the δS is obviously different when
the initial state is even-even and when it is odd. Indeed,
in the graphs in Fig. 3, i.e. when the initial state is even-
even, one observes a rapid increase of δSnp (i.e. before
the projection) until a maximum and then a decrease.
δSnp is always positive. The np pairing effect thus cor-
responds in this case to a decrease of the SF values.
After the projection, there is also a maximum in the

δSnp−proj values at the same position as the previous one.
These maxima correspond to the minima in the SBCS−np

and SSBCS−np graphs in Fig. 1.
Moreover, δSnp−proj is always negative. The np pair-

ing effect after projection thus corresponds to an increase
of the SF values.
It is worth noticing that, contrary to how it appears

at first glance, δSnp and δSnp−proj are non-zero when
∆i

np =0 (they are of the order of 1%–2% in this case).
The fact that δSnp and δSnp−proj do not vanish when
∆i

np=0 is due to the ∆
f
np value, which remains constant.

One may conclude from Fig. 3 that the np pairing
effect on the SF is important for this kind of reaction
since |δSnp| may reach up to 65%, whereas |δSnp−proj |
may reach up to 30%.
The average values of |δSnp| and |δSnp−proj | over all

the considered values of ∆i
np are reported in Table 1 as

a function of ∆i
nn. It then appears that the np pairing

effect is less important in absolute value after projection
than before it. Moreover, |δSnp| decreases as a function
of ∆i

nn whereas |δSnp−proj | seems to be less sensitive to
the ∆i

nn value.
A similar study has been performed in the case of the

transfer of one pair of like-particles [118]. The difference
in behavior of the curves before or after the projection
was less clear in this latter case.
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Fig. 3. (color online) Variations of the relative discrepancies of the spectroscopic factors (see the text for notations)
corresponding to a one-proton stripping reaction, in the case of the system Z i=N i=16, as a function of the np gap
parameter ∆i

np of the initial state, for several values of the neutron gap parameter of the initial state ∆i
nn (MeV).

Dashed lines show values obtained before the projection and solid lines show those obtained after the projection.
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Fig. 4. (color online) Variations of the relative discrepancies of the spectroscopic factors (see the text for notations)
corresponding to a one-proton stripping reaction, in the case of the system Z i=15, N i=16 as a function of the
np gap parameter ∆i

np of the initial state, for several values of the neutron gap parameter of the initial state
∆i

nn (MeV). Dashed lines show values obtained before the projection and solid lines show those obtained after the
projection.
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When the initial state is odd (see Fig. 4), the graphs
no longer have a maximum, but a somewhat large min-
imum appears. For each value of ∆i

nn, the behavior of
the two graphs is similar: they are quasi-parallel. The
np pairing effect is far from negligible, since it may reach
up to 20% in absolute value, whether before or after the
projection.
In this case also, δSnp and δSnp−proj are non-zero

when ∆i
np=0 because ∆

f
np 6=0.

However, the np pairing effect in absolute value is
clearly more important on average after the projection
than before it (see Table 1). Unlike what happens
when the initial state is even-even, |δSnp| is less than
|δSnp−proj | and is practically independent of ∆i

nn.

Moreover, the |δSnp| values are clearly less important
when Z i=15, N i=16 than when Z i=N i=16. The gap
between the |δSnp−proj | values is less clear between the
upper and the lower part of Table 1.

Table 1. Average values of |δS| (%) as a function of
∆i

nn in the case of one-proton stripping reactions.
Columns 2 and 3 of each part show the np pairing
effect, and columns 4 and 5 show the projection
effect. The gap parameter ∆i

nn values are given
in MeV.

system Zi=16, N i=16

one-proton stripping

∆i
nn |δSnp| |δSnp−proj | |δSproj | |δSproj−np|

1.0 32.84 13.46 19.73 49.21

1.1 32.54 13.96 19.83 51.90

1.2 27.74 15.89 19.87 43.48

1.3 27.14 16.53 19.88 44.76

1.4 20.97 16.60 19.87 35.62

1.5 13.06 14.97 19.85 26.11

System Zi=15, N i=16

One-proton stripping

∆i
nn |δSnp| |δSnp−proj | |δSproj | |δSproj−np|

1.0 6.63 13.08 14.77 33.83

1.1 5.77 12.06 14.62 33.11

1.2 5.19 11.13 14.55 32.59

1.3 5.03 10.23 14.55 32.19

1.4 5.41 9.36 14.56 31.86

1.5 5.86 8.53 14.60 31.58

4.1.2 Projection effect

The projection effect on the SF has been studied by
evaluating δSproj and δSproj−np as a function of the np
pairing gap parameter in the initial state ∆i

np, using the
same parameters as in the previous section. The corre-
sponding results are displayed in Fig. 5 for the system
Z i=N i=16 and in Fig. 6 for the system Z i=15, N i=16.
When only the pairing between like-particles is consid-
ered, the projection effect (and thus δSproj) is obviously

constant as a function of ∆i
np. It has been shown here

solely for the purpose of comparison.
When the initial state is even-even (see Fig. 5), the

projection effect is much more important in the isovec-
tor pairing case than when only the pairing between like-
particles is considered. Indeed, δSproj is of the order of
20%, whereas δSproj−np may reach up to 130% in abso-
lute value. This fact is confirmed in Table 1 where we
reported the average values of |δSproj | and |δSproj−np|
over all the considered values of ∆i

np as a function of
∆i

nn.
The projection effect may correspond either to an

increase or a decrease of the SF values. Moreover a mini-
mum in the δSproj−np values appears at the same position
as in Fig. 3.
When the initial state is odd (see Fig. 6), the pro-

jection effect is also important. When only the pairing
between like-particles is considered, this effect is of the
order of 15% in absolute value for all the considered val-
ues of ∆i

nn. In the isovector pairing case, it may reach up
to 40% in absolute value. However, δSproj and δSproj−np

are both negative and thus correspond to an increase of
the SF values.
Moreover, the behavior of δSproj−np is completely

different from that when the initial state is even-even.
The minimum in Fig. 5 no longer exists. After a sort
of plateau, δSproj−np decreases slowly. Whether in the
pairing between like-particles or in the isovector pairing,
the projection effect is, on average, less important than
when the initial state is even-even (see Table 1).
As a conclusion, both the np pairing and projection

effects on the SFs are important and must be taken into
account. These effects strongly depend on the pairing
gap parameter values. The latter must then be carefully
chosen. Similar results were obtained in the study of the
SFs corresponding to one-pair like-particle transfer reac-
tions [118].

4.2 Woods-Saxon model

In order to study realistic cases, we used the Woods-
Saxon model [123] using the parameters described in Ref.
[124]. We used a maximal shell number Nmax=10. This
value corresponds to a total level degeneracy Ω = 455.
The ground-state deformation parameters are taken from
the tables in Refs. [125] and [126].
When the np pairing correlations are taken into ac-

count, the choice of the pairing-strength parameters Gtt′

(t,t′ = n,p) is still an open question and has been the
subject of many studies (see e.g. Refs. [31, 34, 35, 121,
127–138]). It has been shown in the previous section
that the SF values are very sensitive to the pairing gap
parameter values and thus to the Gtt′ values. We thus
prefer, in the present work, to avoid the use of fitted val-
ues of the pairing constants. We extract the Gtt′ values
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Fig. 5. (color online) Variations of the relative discrepancies of the spectroscopic factors (see the text for notations)
corresponding to a one-proton stripping reaction, in the case of the system Z i=N i=16, as a function of the np gap
parameter ∆i

np of the initial state, for several values of the neutron gap parameter of the initial state ∆i
nn (MeV).

Solid lines show values obtained in the pairing between like-particles and dashed lines show those obtained in the
np pairing case.
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Fig. 6. (color online) Variations of the relative discrepancies of the spectroscopic factors (see the text for notations)
corresponding to a one-proton stripping reaction, in the case of the system Z i=15, N i=16, as a function of the
np gap parameter ∆i

np of the initial state, for several values of the neutron gap parameter of the initial state ∆i
nn

(MeV). Solid lines show values obtained in the pairing between like-particles and dashed lines show those obtained
in the np pairing case.
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directly from the odd-even mass differences given by [34]:

∆exp
pp =−

1

8
[M (Z+2,N)−4M (Z+1,N)+6M (Z,N)

−4M (Z−1,N)+M (Z−2,N)], (48)

∆exp
nn =−

1

8
[M (Z,N+2)−4M (Z,N+1)+6M (Z,N)

−4M (Z,N−1)+M (Z,N−2)], (49)

∆exp
np =

1

4

{
2[M (Z,N+1)+M (Z,N−1)

+M (Z−1,N)+M (Z+1,N)]−4M (Z,N)
−[M (Z+1,N+1)+M (Z−1,N+1)

+M (Z+1,N−1)+M (Z−1,N−1)]
}
. (50)

In the latter expression, M (Z,N) is the experimental
mass value given in the Atomic Mass Evaluation 2012
(AME 2012) [139].

Gtt′ (t,t
′ = n,p) are then obtained by solving Eqs.

(7)-(11) for even-even systems and Eqs. (13)-(17) for

odd ones.
Since the np pairing effect is supposed to be maxi-

mal in N'Z nuclei, we considered only systems such as
16(N i−Z i)64, of which the pairing gap parameters val-
ues ∆exp

tt′ , t,t
′=n,p, are available in the initial and final

states.
In the present work, we consider two kinds of reac-

tion: one-proton stripping and one-neutron pick-up re-
actions. Note that there is no experimental data dealing
with the SF values corresponding to these reactions in
these kinds of nuclei.

4.2.1 One-proton stripping reactions

The values of the SF corresponding to one-proton
stripping reactions are reported in Table 2. They have
been evaluated using the BCS and SBCS approaches (i.e.
when only the pairing between like-particles is consid-
ered), as well as the BCS-np and SBCS-np approaches
(i.e. when the isovector pairing is taken into account).
The values of the pairing gap parameters of the parent
nucleus ∆i

tt′ (t,t
′=n,p) are given in the same Table.

Table 2. Values of the pairing gap parameters (MeV) in the initial state (columns (2) to (4)) and the SFs cor-
responding to one-proton stripping reactions using the conventional BCS (column (5)) and SBCS (column (6))
approaches, as well as the BCS-np (column (7)) and SBCS-np (column (8)) approaches.

nucleus ∆i
pp ∆i

nn ∆i
np SBCS SSBCS SBCS−np SSBCS−np

34S 1.562 1.818 0.244 0.412 0.303 0.482 0.361
36S 1.522 2.226 0.513 0.584 0.437 0.574 0.397
35Cl 1.929 1.375 0.692 0.256 0.271 0.181 0.219
37Cl 1.535 1.513 0.605 0.584 0.704 0.544 0.655
38Ar 1.441 2.100 0.250 0.440 0.319 0.444 0.320
40Ar 1.776 1.767 0.684 0.398 0.291 0.374 0.282
39K 1.875 1.732 0.489 0.678 0.683 0.495 0.514
41K 1.875 1.189 0.549 0.787 0.746 0.744 0.720
42Ca 2.110 1.676 0.524 0.810 0.667 0.594 0.488
44Ca 2.097 1.702 0.630 0.844 0.689 0.683 0.574
43Sc 2.477 0.887 1.359 0.129 0.174 0.001 0.015
45Sc 2.172 1.081 0.723 0.205 0.283 0.166 0.247
46Ti 2.093 1.878 0.898 0.526 0.385 0.331 0.289
48Ti 1.896 1.564 0.585 0.607 0.432 0.201 0.197
47V 2.131 0.709 1.284 0.294 0.351 0.094 0.164
49V 1.834 0.897 0.695 0.450 0.540 0.387 0.467
50Cr 1.697 1.584 0.526 0.374 0.309 0.304 0.231
52Cr 1.578 1.595 0.336 0.534 0.399 0.530 0.389
51Mn 1.787 1.056 0.737 0.362 0.442 0.238 0.323
53Mn 1.540 1.129 0.488 0.678 0.706 0.411 0.410
54Fe 1.497 1.594 0.259 0.798 0.646 0.455 0.348
56Fe 1.572 1.425 0.336 0.749 0.612 0.415 0.357
55Co 1.809 1.248 0.614 0.300 0.364 0.214 0.274
57Co 1.650 1.098 0.290 0.401 0.514 0.345 0.446
58Ni 1.667 1.349 0.232 0.660 0.566 0.532 0.434
60Ni 1.663 1.537 0.334 0.612 0.485 0.327 0.244
59Cu 1.623 0.924 0.648 0.198 0.260 0.073 0.124

Continued on next page
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Table 2. (Continued)

nucleus ∆i
pp ∆i

nn ∆i
np SBCS SSBCS SBCS−np SSBCS−np

61Cu 1.485 1.164 0.417 0.265 0.342 0.189 0.247
62Zn 1.459 1.617 0.609 0.479 0.360 0.278 0.197
64Zn 1.429 1.699 0.515 0.574 0.420 0.428 0.329
63Ga 1.716 0.725 1.114 0.307 0.353 0.008 0.055
65Ga 1.542 1.143 0.611 0.523 0.582 0.348 0.407
66Ge 1.607 1.799 0.786 0.524 0.464 0.387 0.348
68Ge 1.592 1.876 0.615 0.470 0.357 0.441 0.333
67As 1.862 0.737 1.233 0.156 0.191 0.014 0.044
69As 1.698 1.276 0.625 0.617 0.657 0.523 0.555
70Se 1.755 1.914 0.764 0.622 0.557 0.363 0.314
72Se 1.743 1.982 0.643 0.762 0.661 0.200 0.136
73Br 1.725 1.259 0.568 0.502 0.568 0.198 0.219
75Br 1.810 1.152 0.573 0.502 0.554 0.103 0.094
74Kr 1.580 1.681 0.649 0.353 0.316 0.301 0.279
76Kr 1.715 1.578 0.547 0.687 0.580 0.100 0.050
75Rb 1.572 0.581 0.944 0.145 0.183 0.083 0.117
77Rb 1.538 0.918 0.527 0.177 0.226 0.095 0.133
80Sr 1.742 1.629 0.632 0.335 0.280 0.133 0.130
82Sr 1.841 1.715 0.597 0.471 0.390 0.169 0.162
81Y 1.692 0.999 0.692 0.400 0.431 0.250 0.287
83Y 1.845 1.119 0.636 0.546 0.594 0.303 0.351
82Zr 1.498 1.671 0.336 0.508 0.454 0.384 0.366
84Zr 1.838 1.762 0.664 0.632 0.558 0.375 0.368
85Nb 1.819 1.168 0.693 0.401 0.458 0.331 0.386
87Nb 1.768 1.114 0.504 0.420 0.480 0.287 0.331
86Mo 1.825 1.784 0.711 0.470 0.398 0.368 0.322
88Mo 1.737 1.600 0.531 0.519 0.429 0.350 0.325
90Tc 1.655 1.053 0.532 0.545 0.605 0.429 0.491
91Tc 1.543 1.040 0.406 0.576 0.639 0.302 0.296
90Ru 1.537 1.577 0.456 0.494 0.407 0.432 0.362
92Ru 1.511 1.431 0.463 0.500 0.411 0.323 0.284
93Rh 1.494 0.948 0.502 0.571 0.633 0.501 0.559
94Pd 1.506 1.430 0.452 0.517 0.438 0.488 0.403
96Pd 1.331 1.679 0.257 0.575 0.474 0.587 0.481
97Ag 1.325 1.369 0.334 0.679 0.713 0.620 0.675
100Cd 1.265 1.174 0.200 0.841 0.689 0.620 0.532

Since it was shown, within the framework of the
picket-fence model, that the behavior of the SFs is dif-
ferent when the parent nucleus is even-even and when
it is odd, these cases will be studied separately in the
following.
1) Neutron-proton pairing effect
As a first step, the np pairing effect has been stud-

ied, before and after the projection, using the relative
discrepancies δSnp and δSnp−proj . Their variations, as a
function of the atomic number of the initial state Z i, for
various values of the neutron excess in the initial state
(N i−Z i), are reported in the left-hand part of Fig. 7
when the parent nucleus is even-even and that of Fig. 8
when the parent nucleus is odd. The average absolute
values of the same quantities are reported in Table 3.
It may be seen from Figs. 7 and 8 that the np pairing

effect on the SF values is important whether before or

after the projection. The values of |δSnp| and |δSnp−proj |
may reach up to 90%. It also appears that the np pairing
effect is practically the same before and after the projec-
tion. Indeed, the values of δSnp and δSnp−proj are close
to each other except when (N i−Z i)=1, i.e., when the np
pairing effect is the most important.
From Table 3, one may conclude that the np pairing

effect is, on average, more important when the parent
nucleus is odd. On the other hand, when the parent nu-
cleus is odd, as could be expected, |δSnp| and |δSnp−proj |
clearly decrease as a function of (N i−Z i). Indeed, it is
well established that ∆np, and thus the np pairing effect,
decreases as a function of (N−Z) [31]. The behavior of
|δSnp| and |δSnp−proj | as a function of the neutron excess
in the initial state is more surprising when the parent
nucleus is even-even, since these quantities increase as a
function of (N i−Z i).
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Fig. 7. (color online) np pairing effect (left) and projection effect (right) of the spectroscopic factors corresponding
to one-proton stripping reactions, as a function of Z i, for (N i−Z i)=2,4, when the parent nucleus is even-even. See
the text for notations.

Fig. 8. (color online) np pairing effect (left) and projection effect (right) of the spectroscopic factors corresponding
to one-proton stripping reactions, as a function of Z i, for (N i−Z i)=1,3, when the parent nucleus is odd. See the
text for notations.
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Table 3. Average values of |δS| (%) as a function
of (N i−Z i) in the case of one-proton stripping
reactions. Columns 2 and 3 of each part show
the np pairing effect, and columns 4 and 5 show
the projection effect. The upper part corresponds
to the case when the parent nuclei are even-even,
the lower part corresponds to the case when the
parent nuclei are odd.

even-even parent nuclei

N i−Zi |δSnp| |δSnp−proj | |δSproj | |δSproj−np|

2 23,45 23,25 17,70 17,33

4 33,72 31,95 20,11 19,12

total 28.94 27.88 18.98 18.28

odd parent nuclei

N i−Zi |δSnp| |δSnp−proj | |δSproj | |δSproj−np|

1 47.98 39.21 18.73 61.40

3 23.81 22.07 15.78 18.40

total 28.60 25.02 16.53 24.55

2) Projection effect
As a second step, the projection effect has been stud-

ied when only the pairing between like-particles is consid-
ered and when the isovector pairing is taken into account,
using the relative discrepancies δSproj and δSproj−np.
Their variations as a function of the atomic number of

the initial state Z i for various values of the neutron ex-
cess in the initial state (N i−Z i) are reported in the right-
hand part of Fig. 7 when the parent nucleus is even-even
and that of Fig. 8 when the parent nucleus is odd. The
average absolute values of the same quantities are re-
ported in Table 3.
From Figs. 7 and 8, it may be seen that the projec-

tion effect is far from negligible, since |δS| may reach up
to 50%.
As can be confirmed in Table 3, except when

(N i−Z i)=1, the projection effect is practically the same
in the pairing between like-particles and in the isovec-
tor pairing, whether the initial state is even-even or odd.
Moreover, |δSproj | and |δSproj−np| are quasi-independent
of the value of the neutron excess.
When (N i−Z i)=1, the particle fluctuation effect is

more important in the isovector pairing case.
Finally, one notices that, on average, the np pairing

effect is more important than the projection one, except
when (N i−Z i)=1.

4.2.2 One-neutron pick-up reactions

The values of the SFs corresponding to one-neutron
pick-up reactions are reported in Table 4. The pairing
gap parameters in the initial state are given in the same
table.

Table 4. Values of the pairing gap parameters (MeV) in the initial state (columns (2) to (4)) and the SFs cor-
responding to one-neutron pick-up reactions using the conventional BCS (column (5)) and SBCS (column (6))
approaches, as well as the BCS-np (column (7)) and SBCS-np (column (8)) approaches.

nucleus ∆i
pp ∆i

nn ∆i
np SBCS SSBCS SBCS−np SSBCS−np

33S 1.316 2.048 0.562 0.606 0.614 0.535 0.580
34S 1.562 1.818 0.244 0.555 0.492 0.562 0.404
35S 1.032 1.978 0.495 0.458 0.425 0.548 0.512
36S 1.522 2.226 0.513 0.756 0.342 0.760 0.369
37Ar 1.065 2.226 0.841 0.374 0.427 0.310 0.416
38Ar 1.441 2.100 0.250 0.798 0.697 0.659 0.580
39Ar 1.019 1.944 0.570 0.901 0.731 0.836 0.697
40Ar 1.776 1.767 0.684 0.219 0.111 0.191 0.129
41Ca 1.346 2.132 0.838 0.716 0.672 0.595 0.655
42Ca 2.110 1.676 0.524 0.223 0.138 0.167 0.116
43Ca 1.397 1.708 0.670 0.643 0.484 0.658 0.479
44Ca 2.097 1.702 0.630 0.483 0.314 0.381 0.253
45Ti 0.933 2.299 1.488 0.455 0.423 0.111 0.065
46Ti 2.093 1.878 0.898 0.383 0.311 0.174 0.142
47Ti 1.352 1.661 0.648 0.533 0.458 0.574 0.483
48Ti 1.896 1.564 0.585 0.663 0.347 0.045 0.067
49Cr 1.090 1.791 0.799 0.243 0.262 0.130 0.205
50Cr 1.697 1.584 0.526 0.428 0.289 0.346 0.210
51Cr 1.062 1.674 0.580 0.593 0.502 0.578 0.454
52Cr 1.578 1.595 0.336 0.290 0.180 0.202 0.142
53Fe 0.950 1.873 0.799 0.515 0.538 0.422 0.533
54Fe 1.497 1.594 0.259 0.342 0.275 0.027 0.035

Continued on next page

084104-15



Chinese Physics C Vol. 42, No. 8 (2018) 084104

Table 4. (Continued)

nucleus ∆i
pp ∆i

nn ∆i
np SBCS SSBCS SBCS−np SSBCS−np

55Fe 1.233 1.429 0.304 0.776 0.656 0.508 0.218
56Fe 1.572 1.425 0.336 0.364 0.250 0.262 0.142
57Ni 1.296 1.694 0.578 0.615 0.562 0.498 0.501
58Ni 1.667 1.349 0.232 0.326 0.262 0.202 0.164
59Ni 1.338 1.445 0.311 0.767 0.666 0.749 0.584
60Ni 1.663 1.537 0.334 0.284 0.240 0.136 0.088
61Zn 0.606 1.731 0.982 0.419 0.385 0.300 0.386
62Zn 1.459 1.617 0.609 0.397 0.351 0.234 0.163
63Zn 0.937 1.643 0.491 0.585 0.542 0.403 0.303
64Zn 1.429 1.699 0.515 0.399 0.346 0.062 0.067
65Ge 0.529 1.905 1.230 0.292 0.318 0.028 0.185
66Ge 1.607 1.799 0.786 0.201 0.225 0.066 0.065
67Ge 0.978 1.852 0.635 0.449 0.409 0.364 0.276
68Ge 1.592 1.876 0.615 0.277 0.209 0.080 0.063
69Se 0.789 2.018 1.207 0.165 0.139 0.557 0.121
70Se 1.755 1.914 0.764 0.159 0.148 0.021 0.018
71Se 1.112 1.956 0.668 0.646 0.577 0.399 0.183
72Se 1.743 1.982 0.643 0.350 0.296 0.004 0.006
73Kr 0.643 1.891 1.213 0.267 0.237 0.152 0.233
74Kr 1.580 1.681 0.649 0.260 0.228 0.129 0.008
75Kr 1.113 1.590 0.532 0.372 0.331 0.269 0.168
76Kr 1.715 1.578 0.547 0.376 0.304 0.005 0.003
78Sr 1.353 1.310 0.212 0.372 0.317 0.018 0.054
79Sr 1.137 1.469 0.381 0.574 0.501 0.282 0.180
80Sr 1.742 1.629 0.632 0.196 0.197 0.010 0.015
82Zr 1.498 1.671 0.336 0.207 0.218 0.132 0.126
83Zr 1.021 1.803 0.662 0.581 0.546 0.438 0.336
84Zr 1.838 1.762 0.664 0.418 0.351 0.181 0.134
86Mo 1.825 1.784 0.711 0.406 0.398 0.271 0.244
87Mo 1.167 1.669 0.611 0.503 0.484 0.413 0.357
88Mo 1.737 1.600 0.531 0.559 0.431 0.285 0.242
90Ru 1.537 1.577 0.456 0.516 0.501 0.349 0.286
91Ru 1.087 1.497 0.418 0.598 0.555 0.710 0.618
92Ru 1.511 1.431 0.463 0.595 0.337 0.109 0.110
94Pd 1.506 1.430 0.452 0.579 0.494 0.458 0.376
95Pd 0.973 1.550 0.443 0.761 0.661 0.738 0.622
96Pd 1.331 1.679 0.257 0.290 0.213 0.202 0.158
98Cd 1.310 1.756 0.290 0.297 0.260 0.215 0.177
99Cd 1.023 1.431 0.292 0.786 0.714 0.780 0.614
100Cd 1.265 1.174 0.200 0.238 0.197 0.242 0.181

1) Neutron-proton pairing effect
In order to study the np pairing effect on the SF cor-

responding to one-neutron pick-up reactions, before and
after the projection, the variations of the relative dis-
crepancies δSnp and δSnp−proj as a function of the atomic
number of the initial state Z i for various values of the
neutron excess in the initial state (N i−Z i) are reported
in the left-hand part of Fig. 9 when the parent nucleus is
even-even and that of Fig. 10 when the parent nucleus is
odd. From Figs. 9 and 10, one may conclude that the np
pairing effect is also important in this kind of reaction,
since |δSnp| and |δSnp−proj | may reach up to 90%. From
the figures, it may be also seen that δSnp and δSnp−proj

behave in a similar way and are somewhat close to each
other, except in the case (N i−Z i)=1.
The average absolute values of the same quantities

are reported in Table 5. It can be then seen that |δSnp|
and |δSnp−proj | are of the same order of magnitude when
the parent nucleus is even-even. Furthermore, contrary to
what could be expected, the np pairing effect increases
as a function of the neutron excess, whether before or
after the projection.
When the parent nucleus is odd, not only do the

|δSnp| and |δSnp−proj | values clearly differ, but their re-
spective behavior as a function of (N i−Z i) is different.
Let us note that these results clearly differ from those
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Fig. 9. (color online) np pairing effect (left) and projection effect (right) of the spectroscopic factors corresponding
to one-neutron pick-up reactions, as a function of Z i, for (N i−Z i)=2,4, when the parent nucleus is even-even. See
the text for notations.

Fig. 10. (color online) np pairing effect (left) and projection effect (right) of the spectroscopic factors corresponding
to one-neutron pick-up reactions, as a function of Z i, for (N i−Z i)=1,3, when the parent nucleus is odd. See the
text for notations.
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obtained in the case of one-proton stripping reactions.
2) Projection effect
In order to study the projection effect on the SF cor-

responding to one-neutron pick-up reactions, when only
the pairing between like-particles is taken into account
and when the isovector pairing is included, δSproj and
δSproj−np have been evaluated as a function of Z

i. Their
variations are shown in the right-hand side of Fig. 9
when the parent nucleus is even-even and in that of Fig.
10 when the parent nucleus is odd. The average absolute
values of the same quantities are reported in Table 5.

Table 5. Average values of |δS| (%) as a function
of (N i−Z i) in the case of one-neutron pick-up re-
actions. Columns 2 and 3 of each part show the
np pairing effect, and columns 4 and 5 show the
projection effect. The upper part corresponds to
the case when the parent nuclei are even-even,
the lower part corresponds to the case when the
parent nuclei are odd.

even-even parent nuclei

N i−Zi |δSnp| |δSnp−proj | |δSproj | |δSproj−np|

2 39.57 43.22 12.50 19.40

4 53.25 52.85 27.65 32.00

total 46.95 49.80 21.32 28.15

odd parent nuclei

N i−Zi |δSnp| |δSnp−proj | |δSproj | |δSproj−np|

1 29.70 14.33 7.51 26.29

3 18.12 27.88 11.71 25.30

total 30.09 22.51 10.36 27.55

From Figs. 9 and 10, it appears that the projection
effect is as important as in the case of one-proton strip-
ping reactions and may also reach up to 50% in absolute
value. However, in this case, the behavior of δSproj is
different from that of δSproj−np. As may be seen in Table
5, the projection effect varies as a function of (N i−Z i),
unlike in the case of one-proton stripping reactions.
Finally, it is worth noticing that, except when

(N i−Z i)= 1, the np pairing effect is, on average, more
important than the projection effect.

5 Conclusion

Expressions of the SFs corresponding to one-
particle transfer reactions have been established using
a schematic definition. These expressions have been de-
rived by taking into account the isovector np pairing cor-
relations and a particle-number projection in the frame-
work of the generalized Sharp-BCS method. Recently
proposed expressions of the projected wave-functions of
odd-mass nuclei [120] have been used.
In order to test the formalism, numerical calculations

have been performed using the single-particle energies of
the schematic picket-fence model. The np pairing effect
has been evaluated by comparing the results of the for-
malism of the present work to that of the conventional
BCS approach. The particle-number fluctuation effect
has been evaluated by comparing the results obtained
before and after the particle-number projection. It was
shown that the np pairing and particle-number fluctua-
tion effects are far from negligible and they depend on
the pairing gap parameter values. It also appears that,
as could be foreseen, the behavior of the np pairing and
projection effects is not the same when the parent nuclei
are even-even or odd.
Predictions dealing with the SF corresponding to

one-proton stripping and one-neutron pick-up reactions
in proton-rich nuclei have then been established. The
single-particle energies and eigen-states used are those of
the realistic Woods-Saxon model. Since the np pairing is
supposed to be maximal in N'Z nuclei, we considered
only nuclei such as the neutron excess in the initial state
is in the range 16(N i−Z i)64. Furthermore, only nuclei
of which the gap parameters may be deduced from the
experimental odd-even mass differences were considered.
The np pairing and projection effects on the SF val-

ues were then studied. It was shown that both effects are
important and thus have to be included in future calcula-
tions of the SFs corresponding to these kinds of reaction.
As was already the case within the picket-fence model,
the results are different when the parent nuclei are even-
even or odd. Finally, except when (N i−Z i)=1, the np
pairing effect is more important, on average, than the
projection effect.

Appendices A: Pairing between like-particles case

Wave-functions

Before projection

Let us consider a system constituted by an even number
of paired particles (neutrons or protons). If only the pairing
between like-particles is considered, the BCS ground-state is

given by [140]

|BCS〉t=
∏

j>0

(
ujt+vjta

+
jta

+

j̃t

)
|0〉 , t=n,p. (A1)
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a+jt is the creation operator of a particle in the state |jt〉
of energy εjt. ujt and vjt respectively represent the inoc-
cupation and occupation probability amplitudes of the
state |jt〉. They are given by

u2jt
v2jt

}
=
1

2



1±

εjt−λt√
(εjt−λt)2+∆2

t



 t=n,p , (A2)

∆t=Gt

∑

j>0

vjtujt t=n,p (A3)

being the pairing gap parameter and λt the energy of the
Fermi-level.
The particle-number conservation condition reads, in

this case,

Nt=2
∑

j>0

v2jt t=n,p. (A4)

When the particle-number is odd, the BCS ground-state
is defined using the blocked-level technique. It is then
given by [140]

|νt〉=a†νt
∏

j>0

j 6=ν

(
ujt(ν)+vjt(ν)a

+
jta

+

j̃t

)
|0〉 , t=n,p, (A5)

where ν refers to the blocked level and vjt(ν) et ujt(ν)
are the inoccupation and occupation probability ampli-
tudes of the single-particle state |jt〉. The pairing gap
parameter reads, in this case,

∆ν
t =Gt

∑

j>0
j 6=ν

vjt(ν)ujt(ν) t=n,p. (A6)

The particle-number conservation condition is given by

Nν
t =1+2

∑

j>0
j 6=ν

v2jt(ν) t=n,p. (A7)

After projection

After projection, the ground-state is given, when the
particle-number is even, by [73]

|ψm〉t=Cmt

{
m+1∑

k=0

ξkz
−Pt

k |ψ(zk)〉t+cc
}

, t=n,p (A8)

where Pt is the number of paired pairs, ξk and zk are
defined by Eq. (21), m is a non-zero integer, cc means
the complex conjugate with respect to zk, and

|ψ(zk)〉t=
∏

j>0

(
ujt+zkvjta

+
jta

+

j̃t

)
|0〉. (A9)

The normalization constant Cmt is given by

1=2(m+1)C2
mt

{
m+1∑

k=0

ξkz
−Pt

k

∏

j

(
u2jt+zkv

2
jt

)
+cc

}
.

(A10)

A property similar to the one given by Eq. (22) has been
used to derive the latter expression, that is

t〈ψm|O|ψm〉t=2(m+1)Cmt t〈BCS|O|ψm〉t , (A11)

where O is any operator which conserves the particle
number.
As soon as

2(m+1)>max(Pt,Ωt−Pt) , t=n,p , (A12)

all the false components in the state |ψm〉t are eliminated,
Ωt being the total degeneracy of states.
When the particle-number is odd, the projected

ground-state is given by

|(νt)
m
〉=Cν

mt

{
m+1∑

k=0

ξkz
−Pt

k a†νt |(νt(zk))〉+cc
}

(A13)

where we set

|(νt(zk))〉=
∏

j>0

j 6=ν

(
ujt(ν)+zkvjt(ν)A

†
jt

)
|0〉. (A14)

In this expression, Pt is the number of paired pairs. Us-
ing the property (A11), the normalization Cν

mt is given
by

1=2(m+1)(Cν
mt)

2

×
{

m+1∑

k=0

ξkz
−Pt

k

∏

j 6=ν

(
u2jt(ν)+zkv

2
jt(ν)

)
+cc

}
. (A15)

Spectroscopic factors

As in this case, the proton and neutron systems are
considered separately, the wave-function which describes
the total system is defined as the product of the neutron
and proton system wave-functions. In the following, it
will be assumed that the transfer of one neutron or one
proton does not affect the proton or neutron system.

Before projection

When the nucleus considered is even-even, the wave-
function of the total system is given by

∣∣ψi(f)
〉
=
∣∣BCSi(f)

〉
n

∣∣BCSi(f)
〉
p
, (A16)

where |BCS〉
t
(t=n,p) is given by Eq. (A1).

When the considered nucleus is odd, the total wave-
function is given by

∣∣ψi(f)
〉
=
∣∣BCSi(f)

〉
t

∣∣νt′i(f)
〉
, t,t′=n,p, t 6=t′ (A17)

where |BCS〉
t
(t=n,p) is given by Eq. (A1) and |νt′〉 is

given by Eq. (A5).
The SFs corresponding to one-particle transfer reac-

tions starting from an even-even nucleus, defined by Eqs.
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(28) and (29), then become [141]

√
sSTR(1)t =uiνt

∏

j>0,j 6=ν

(
vijtv

f
jt(ν)+u

i
jtu

f
jt(ν)

)
, (A18)

√
sPIC(1)t =viνt

∏

j>0,j 6=ν

(
vijtv

f
jt(ν)+u

i
jtu

f
jt(ν)

)
. (A19)

When the parent nucleus is odd, they are given by

√
sSTR(2)t =vfνt

∏

j>0,j 6=ν

(
vijt(ν)v

f
jt+u

i
jt(ν)u

f
jt

)
, (A20)

√
sPIC(2)t =ufνt

∏

j>0,j 6=ν

(
vijt(ν)v

f
jt+u

i
jt(ν)u

f
jt

)
. (A21)

After projection

After projection, the total wave-function of an even-
even system is given by

∣∣ψi(f)m

〉
=
∣∣ψi(f)m

〉
n

∣∣ψi(f)m

〉
p
, (A22)

where |ψm〉t is defined by Eq. (A8).
When the considered nucleus is odd, the total wave-

function is given by
∣∣ψi(f)m

〉
=
∣∣ψi(f)m

〉
t
|(νt′)

m
〉, t,t′=n,p , t′ 6=t. (A23)

In the latter expression, |ψm〉t is defined by Eq. (A8)
and |(νt′)

m
〉 is given by Eq. (A13).

The SFs corresponding to one-particle transfer reac-
tions, starting from an even-even nucleus, are then given
by

√(
sSTR(1)t

)

m

=2(m+1)C i
mtC

νf
mt

{
m+1∑

k=0

ξkz
−P f

t

k uiνt
∏

j>0,j 6=ν

(
uijtu

f
jt(ν)+zkv

i
jtv

f
jt(ν)

)
+cc

}
, (A24)

√(
sPIC(1)t

)

m

=2(m+1)C i
mtC

νf
mt

{
m+1∑

k=0

ξkz
−P f

t

k viνt
∏

j>0,j 6=ν

(
uijtu

f
jt(ν)+zkv

i
jtv

f
jt(ν)

)
+cc

}
. (A25)

When the parent nucleus is odd, they are given by
√(

sSTR(2)t

)

m

=2(m+1)C i
mtC

f
mt

{
m+1∑

k=0

ξkz
−P f

t

k vfνt
∏

j>0,j 6=ν

(
uijt(ν)u

f
jt+zkv

i
jt(ν)v

f
jt

)
+cc

}
, (A26)

√(
sPIC(2)t

)

m

=2(m+1)C i
mtC

f
mt

{
m+1∑

k=0

ξkz
−P f

t

k ufνt
∏

j>0,j 6=ν

(
uijt(ν)u

f
jt+zkv

i
jt(ν)v

f
jt

)
+cc

}
. (A27)

It has been assumed here that convergence is reached
for the same valuem of the extraction degrees of the false
components of the wave-function in the initial and final
states.

One may note a formal similarity between expres-
sions of the various SFs obtained before and after the
projection.
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