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Abstract: We investigate a 6D generalized Randall-Sundrum brane world scenario with a bulk cosmological con-

stant. Each stress-energy tensor Tt’;b on the brane is shown to be similar to a constant vacuum energy. This is consist-

ent with the Randall-Sundrum model, in which each 3-brane Lagrangian yielded a constant vacuum energy. By ad-

opting an anisotropic metric ansatz, we obtain the 5D Friedmann-Robertson-Walker field equations. In a slightly later

period, the expansion of the universe is proportional to the square root of time, 7, which is similar to the period of the

radiation-dominated regime. Moreover, we investigate the case with two a(f) and two b(f). In a large range of ¢, we

obtain the 3D effective cosmological constant A.g = —2Q/3 > 0, which is independent of the integral constant. Here,

the scale factor is an exponential expansion, which is consistent with our present observation of the universe. Our res-

ults demonstrate that it is possible to construct a model that solves the dark energy problem, while guaranteeing a

positive brane tension.
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1 Introduction

In the early 1920s, Kaluza and Klein attempted to es-
tablish a more fundamental theory that unifies the forces
of electromagnetism and gravitation by introducing extra
dimension(s) into general relativity [1]. The Kaluza-Klein
(KK) theory attracted a lot of interest to explore extra di-
mensions in various observable phenomena [2—7]. In the
middle of last century, this interest in extra dimensions
has been enhanced because of the emergence of string/M
theory, in which extra-dimensional spaces appear natur-
ally. Inspired by the concept of brane in string theory [8],
the braneworld scenario was proposed. This theory can
efficiently explain some difficult problems in physics,
such as the hierarchy problem (the -electroweak
scale/Higgs mass Mgw ~ 1TeV being significantly differ-
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ent from the Planck scale My ~ 10'TeV) and the cosmo-
logical constant problem [7,9—11].

The most successful resolution of the hierarchy prob-
lem in the above theories is the Randall-Sundrum (RS)
two-brane model [9]. The RS model takes into account
the tension of the brane, which causes curving of the
spacetime outside the brane. It consists of a 5D AdS bulk
with a negative cosmological constant A and a single ex-
tra dimension satisfying S1/Z, orbifold symmetry. In
such a scenario, our universe is described by a 5D metric

ds? = e 20@y,, datdx” + r2dg¢?, (1)

where ¢ is the coordinate for an extra dimension, r, is the
compactification radius, e is the warp factor with
o =kre|pl, and k= \/-A/24M3 with p denoting the 5D
Planck mass. In this model, the weak scale is generated
from the Planck scale through the warp factor, which ori-
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ginates from the background metric. However, the vis-
ible brane in the RS model exhibits negative tension,
which is intrinsically unstable. Furthermore, the visible 3-
brane (four-dimensional spacetime) has a zero cosmolo-
gical constant, which is not consistent with the presently
observed small value [11,12].

This braneworld model has been widely studied. It
was shown that the induced cosmological constant and
the brane tension of the visible brane can be both posit-
ive or negative [13-15]. By replacing 7,, with g,,, a gen-
eralized RS braneworld scenario is achieved [11]. In this
model, the negative brane cosmological constant is ana-
lyzed in detail [16-20]. It shows that N has a minimum
value Npin = 2n(n ~ 16), which leads to an upper bound
for the induced negative cosmological constant. Further-
more, there are two different solutions to the hierarchical
problem for a tiny cosmological constant. One solution
corresponds to both the visible and hidden brane with
positive tension. This is highly interesting, because both
branes are stable. In another case, the induced positive
cosmological constant corresponds to a negative tension
visible brane, which is unstable, and not considered in the
present study.

In the above anti-de Sitter brane region, a large part of
the parameter space corresponds to a positive value for
the visible brane tension. However, our universe is cur-
rently undergoing accelerated expansion, which is indic-
ated by recent observations of type Ia supernovae [21,22]
and measurements of the anisotropies of the cosmic mi-
crowave background [23—-25]. To explain this late-time
epoch of accelerating expansion of the universe, we as-
sume that there is a cosmological constant component in
the 4D Einstein's field equation [26]. The cosmological
constant is a very small value (= 10~'?* in Planck unit),
which is restricted by the above experiments. Thus we
need to cancel the induced negative cosmological con-
stants to be consistent with observations.

In this study, we focus on a 6D braneworld model,
because there is no special reason to restrict the number
of dimensions to five. For solving the above problem of
the induced cosmological constant when the visible brane
is negative, we consider the 4-brane (a extra dimension
on the brane) in a 6D generalized RS model instead of the
3-brane in 5D generalized RS model. Subsequently, we
obtain the effective induced positive cosmological con-
stant of 4D spacetime with an anisotropic metric ansatz.
At a little later period, the expansion of the 3D scale
factor is as similar as the period of the radiation-domin-
ated regime. Our study is organized as follows: In Sec. 2,
by considering the 4-brane with the matter field Lag-
rangian in a 6D generalized RS model, we obtain a 5D
Einstein field equation. In Sec. 3, we focus on the evolu-
tion of a 4-brane solved from the above field equation
with an anisotropic metric ansatz. Finally, the summary

and conclusion are presented in Sec. 4.
2 6D generalized Randall-Sundrum model

We start with a 6D generalized Randall-Sundrum
model action:

S = Sbulk +S vis + S hid- 2)

The bulk action, visible brane action, and hidden
brane action are respectively given by:

Spuk = [ dxdy V-G(MIR - N), 3)
Syis = fdsx V_gvis(Lvis - Viis)s 4)
Shia = f & x v=gnia(Lhia = Vaia)- (5)

where A is a bulk cosmological constant, Mg denotes the
6D fundamental mass scale, G4 is the 6D metric tensor,
R is the 6D Ricci scalar, Lyis(Lhia) and Vyis(Vhia) are the
matter field Lagrangian and the tension of the visible
(hidden) brane, respectively.

Variation of the above action with respect to the 6D
metric tensor G4p led to Einstein’s equations:

1 1 i
Rap— EGABR =2—Mg{—GABA+Z[TABX5(V_yi)

G S Vib(y —y,»)]}, (©6)

where capital Latin A, B indices ranging over all space-
time dimensions, lowercase Latin a,b = 0, 1, 2, 3, 4 Ry
and TAB are the 6D Ricci and the energy-momentum
tensors respectively, y; represents the position of the i-th
brane in the sixth coordinate, i =hid or vis. The 6D
stress-energy tensor T is assumed to be that of an aniso-
tropic perfect fluid and takes the form

T4 = diag[—pi(0), pir (1), po (D), pi3 (1), pis(),01. (7)

The metric ansatz in the generalized RS scenario, sat-
isfying the 6D Einstein equations is

ds? = G4pdx?dx? = e 240 g, dxdx? + r2dy?, )

where g, is the 5D metric tensor. The corresponding Ein-
stein equations are given by:

R=¢ 24 (ZOA’Z + %J )
6
and
Rup — 1 gaR :guhe_ZA{(4A” -10A"%) - 1 [A
2% 2M}
e 24 )
+ Z Sy _yi)Vi]} + Vg Z T, 00y =),

(10)

where R, and R are the 5D Ricci tensor and Ricci scalar
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respectively, defined with respect to g,,. One side of Eq.
(9) contains the derivatives of A(y), depending on the ex-
tra coordinate y alone, while the other side depends on
the brane coordinates x, alone. Thus, each side is equal to
an arbitrary constant. For convenience, we take this arbit-
rary constant to be 10Q/3. Thus, we obtain from Eq. (9):

A 10
24 ”
20A —|=—Q,
e ( + Mg) 3 (11)
and
~ 1
R= SOQ (12)

Multiplying both sides of Eq. (10) by g, and rearran-
ging the terms, we obtain:

— 2 1
R=-Z2 —2A{4 n_lOA/Z _
3¢\ ey

e—2A6 ;
X [A+Z(5(y—yi)Vi]} 3 ZT oy=y),  (13)

where T" = g*T! . Using Egs. (11) and (12) to cancel A"
and R in Eq. (13), we obtain a simplified expression for
A//’

Q
A=y 8M4Z<5(y y,(, 5). (14)

The left side and the first term of the right side de-
pend on the extra coordinate y alone, while the other term
appears only when the extra coordinate y =y;. Thus, we
obtain T’ =constant. For convenience, we define
T! = 5C;, where the the C; is a constant. Eq. (14) can be
written as:

” Q 2A 1
A = e +8—A/I‘6‘Zi:5(y—)’i)(vi—ci)- (15)

Rearranging Eq. (11), we obtain an expression for
A/Z:
Q

A2 = geZA+k2’ (16)

where k* = -A/20Mg >0 (for Ads bulk i.e. A <0). We
cancel the A’2 and A” in Eq. (10) by Egs. (15) and (16),
then obtain:

— 1 —
Rab - EgabR = qub +—

2M4
XZ< b= 8aCS=y).  (17)

From the above equation, we can see that Téb —g2aCi =0,
and subsequently we obtain
0i = —pit = —pin = —pis = —pis = —C;. Thus, each stress-en-
ergy tensor 7', is similar to a constant vacuum energy.
This is consistent with the RS model [9] in which each 3-
brane Lagrangian separated out a constant vacuum en-
ergy. We define the V; = V;—C;. Thus, we obtain a 5D

Einstein field equation:

- 1 =
Rap — EgabR = _anlu (18)
and the system of equations of A®y)” and A7%:
Q
A = o Vi,
6° 8M4 Z o=

(19)
Qg
6

The above corresponds to the induced cosmological
constant Q) on the visible brane. For the induced brane
cosmological constant Q >0 and Q <0, the brane metric
ga» Mmay correspond to dS-Schwarzschild and AdS-
Schwarzschild spacetimes, respectively [27]. We first
consider the induced negative cosmological constant on
the visible brane, the the following solution for the warp

factor is obtained:

A = —In[wcosh(kly| + C_)], (20)

1= VI—a?
where w = —-Q/6k%, and the constant C_ = In— "¢

for considering the normalization of this factor at t(ﬁe or-

bifold fixed point y =0. In the limit w ~ 0, the RS solu-

tion A = ky can be recovered. This is consistent with the

results in  Ref. [11]. The other solution

C_=In 1+
w

can not be recovered in the w? — 0 limit.

We can obtain the 5D effective theory from the ori-
ginal action Eq. (3). We focus on the curvature term from
which we can derive the scale of gravitational interac-
tions:

is excluded, because the RS solution

Sef D fdsxf_trdy \/—gMgre_SA(k’y)R’, 2D

where we only focus on the coefficient proportional to the
5D Ricci scalar R. The Legendre term [28] is not propor-
tional to R when the metric was substituted inside the ac-
tion. Thus, we do not consider this term here. We can
perform the y integral to obtain a 5D action. Hence, we
obtain

3

Cl —3krr
L -
et

30t n 3wic
+M(e - 1) + T
where ¢; =1+ V1 —w?. We find that if w® <« e 37 then
M5, depends only weakly on r in the large kr limit.
Hence, Eq. (22) can be simplified to
4

2M
3 _ 6
MSpl_ 3k (1

6
w
3 4 e3/<r7r

-1+
spl =M 3
P 12key

(1-e*m)|, (22)

_edum) (23)

Thus, we can obtain M* ~ 2M¢/3k in the large kr lim-
it. In this 4-brane model, the 5D components of the bulk
metric is gVIS = G,y(x%,y = rmr), and we obtain:
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gup = 8ape A, (24)
V—8vis = V _ge—BA(krrr). (25)

From the above equations, we can not determine the
physical masses by properly normalizing the fields, i.e.,
the hierarchy problem cannot be solved in this 4-brane
model.

Taking the second derivative of Eq. (20) with respect
to y, we obtain:

Q - VI—a?
A" =22 ok tanh | kly| + In —
6 w

X (6(y) = 6(y = yvis))- (26)
The orbifold fixed point y,q=0. Comparing the
above equation with Eq. (19), we obtain the tension of the

visible (hidden) Vyis (Viia):
2

eZkrﬂa)_2 -1
C
Viis = 16Mgk| ——— | (27)
eZkﬂrw_2 +1
4
and
P
_ 4 C%
Vhia = 16M2k =l (28)
w
1+ g
Setting e =A™ = 10", we then obtain from Eq. (20):
107N = 4(10™"e ™" —e™2%), (29)

—n
et = 102 [p_r x/1—10—<N-2">], (30)

where x=nkr, w?*=10"". For 1-10*w? >0, we find
w? < 10", which leads to an upper bound for the cosmo-
logical constant (~ 10™V) given by Npi, = 2n. Eq. (30) has
two values of x instead of one, and both values give rise
to the required warping. For (N —2n) > 1, the first solu-
tion of x corresponds to the RS value plus a minute cor-

. C 1 .
rection, which is given by x; = nln10+ ~10"V=2? while
the second solution of x is given by x; = (N —n)In10 +1n4

[11]. Apparently, the x; is greater than the x;. Rewriting
Eq. (27) with n and N, we obtain:

—10V-21[1 £ V1 - 10--2m)]
10¥-20[1 £ VI 10--20]
where the visible brane tension Vs is different from Eq.

(23) derived in Ref. [11]. The two brane tensions are ap-
proximately given as:

Vyis—1 = —16Mgk, (32)

1
(Vvis = 16Mgk (31)

Vyis—2 = 16Mk. (33)

The visible brane tension in Eq. (33) is greater than
Eq. (23) in Ref. [11], because the denominator of Eq. (31)
is different from that of Eq. (23) in Ref. [11]. We see that
a small negative cosmological constant suffices to render
the tension positive, provided the distance between the
branes is somewhat larger than the value predicted by the
RS model. The tension ‘V,j,_, on the visible brane is in-
consistent with Eq. (25) in Ref. [11]. Because of
w=10"" « 0, we deduce that the hidden brane tension
Vhig 18 always positive.

For Q> 0, the warp factor that satisfies Eq. (19) is
given by:

A = —In[wsinh(=kly| + C,)], (34)

where = Q/6k, C, =ln F Y1+”
value of w? is unbounded, suCLﬁ) that the positive brane
cosmological constant ) can be an arbitrary value. The
solution of krmr provides a single solution instead of two
solutions for Q < 0. Moreover, the above solution is de-
pendent on w? and n. For Q > 0, the visible brane tension
“Vis and the hidden brane tension are always negative and
positive, respectively [11]. The negative tension visible
brane is unstable, and we do not consider this case.

. In this case, the

3 Anisotropic evolution of 4-brane

For Q <0, interestingly one can obtain the upper
bound (~ —107%" in Planck units) of the induced negative
cosmological constant on the visible 4-brane. Meanwhile,
the 4-brane tension can be positive for the second solu-
tion. In this study, we only consider two different spatial
scaling factors a(r) and b(z).

3.1 Casel

First, we investigate the case with three a(f) and one
b(r), which is mostly in line with the presently observed
3D space universe. We choose an anisotropic metric an-
satz of the form g, = diag[—1,a%(t),a(1),a*(t),b*(t)] [26].
We allow the scale factor of the extra dimension on the
visible brane b(r) to evolve at a rate different than that of
the 3D scale factor a(z). This metric describes a flat, ho-
mogeneous, and isotropic 3D space and a flat extra di-
mension of the visible brane. In this case, by adopting the
above metric ansatz, we obtain the 5D Friedmann-
Robertson-Walker (FRW) field equations from the Ein-
stein field equations Eq. (18):

1
H?+H,H, = 59, (35)

. , 1
Ho+2H; = 39, (36)
2H,+Hpy+3H2 + H? + 2H,H, = Q, (37)
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where the dot denotes a time derivative, while H, = da/a
and Hj, = b/b are the Hubble parameters of the 3D space
and extra dimension, respectively. Eq. (36) can thus be
rewritten as:

ﬂ = _2dt
AP (38)
H =20

Upon integration of Eq. (36), we obtain the following
solution for the 3D Hubble parameter:

[ Q [ Q
H,=- —gtan[Z —€t+c), 39)

where ¢ is an arbitrary constant of integration. Perform-
ing the integration of Eq. (39), one finds the solution of
3D space scale factor a(r):

Q 3
005(2,/—€t+c)

where ¢, is likewise an arbitrary constant of integration.
We set that at the initial time 7 =0, a = ag. We can obtain

cq = ap|cosc| ™3, and Eq. (40) may then be rewritten as:

cos(2,/—%t+c} 7

1
|coscl|>

a=c, (40)

>

(41)

a=da

where the scale factor a(f) increases with the increasing

of + when _7_2r <2\/—%t+c<0. For Q <0, the induced

negative cosmological constant is bounded from below
by ~—107%". Assuming that the 3D space factor changes
with time as smoothly as possible, we obtain the second
solution x; ~(N-n)In10+1In4 =172 with n=~50 and
N =~ 124. Here, the above case n ~ 50 and N = 124 is satis-
fied in both conditions N—n <0 from w® < e 7" and
(N-2n)>> 1. In this case of Q~—-10"12* we obtain that

Q . .
2 -5l < 1 when ¢ is not very large (to date, # ~ 10% in

Planck units). We set the constants ¢ in Eq. (41) equal to
—r/2 plus a small positive constant y to make sure that
the scale factor a(r) is increasing from 7 = 0 to the present
t ~ 10%°. Then, the scale factor a(7) can be written:

cos|2 —Qt—ﬂ+
Ve 27X

1
2

a=ay ,

(-5
cos|—=

5 tX
. [ Q

sinz(Z —gt+)(]

=ao : : (42)

sin? y

The Hubble parameter H, is rewritten as:

H,=- —QtanZ —Qt—ﬂ+
““"\ 7% Ve 27X
= Qcot2 Qt+
V6 V7' X

Q .
When / —gt<< x < 1, the Hubble parameter H, is ob-
tained:

. (43)

b~ [ 8]
a — g;{
Here, H, is a constant leading to an exponential ex-
pansion of the 3D scale factor. Comparing with the FRW
equation in which the Gaussian curvature K = 0, and with
only the cosmological constant, we obtain the 4D effect-
ive cosmological constant A.g = —Q/2y>>0. However,

the above period is so short that the 3D space scale factor

(44)

. [-Q
only increases from ag to ap|1+ ﬁt . After that, we

obtain the Hubble parameter H, and)ghe 3D scale factor

Q
a(t) when y < —€t<< I:
1
H,~—, 45
% (45)
20\,
a(t)zao(—y) . (46)

where a(r) is proportional to ¢:, which is as similar as the
period of the radiation-dominated regime. The decelera-
tion parameter ¢ = —da/a* = 1-Q/3H? > 1. This is unsat-
isfactory, because the aforementioned deceleration para-
meter is not consistent with the currently undergoing ac-
celerated expansion.

Using Egs. (35) and (43), the extra dimension Hubble
parameter Hp, is given by:

Q Q

" _H =
3H, “ ; [Q 5 [Q

—gCOt —gl‘-ﬁ-){

- —900t2 —9t+

s V76 X

When H, >0, we obtain H, <0, and vice versa. Per-
forming the integration of Eq. (47), one finds the solu-
tion of the extra dimension scale factor b(z):

- ( [ Q )
sin2 y cos|2 —gt+)(

. ( [Q )
cosysinz |2 —€t+X

where we considered the initial conditions at time ¢ =0,
b=by. Form Eqgs. (41) and (48), it is apparent that the
scale factor a(r) and b(r) are impossible to increase or re-
duce at the same time. When the scale factor a(r) in-

Hy, =

. 47)

b= by

(48)
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creases, b(r) decreases, and vice versa. Hence, the de-
crease of b(r) provides a driving force for the increasing
of a(?).

The above investigation is the case of the increasing
3D scale factor a(r). In the following, we investigate the
case where the scale factor a(f) decreases with the in-

. . | Q .
creasing of time ¢ when 0 <2 —€t+c < g in Eq. (41).

The analysis is similar to the previous one, as we substi-
tute a small positive constant ¢ into the constants ¢ in Eq.
(41). The Hubble parameter H, and H, are rewritten as:

H, :_1/_%@(2,/—%”@, 49)

Q Q
Hy=— —H, =

3H, T [a [a
—gtan(z —gt+¢)
Q Q
—w/—gtan(2w/—gt+¢/]. (50)

Hence, we obtain the scale factors a(r) and b():

HEN Q
COSs?2 _€t+¢’ (s1)

b}

a=dap 1
cos: Yy

[ [ Q
cosu,bsm(z —gt+¢/)
. o, [ @ '
smwcos:(z —gt+¢/]

Q Q
When, /—gt <y < 1,theHubbleparameterH, ~ — —gw
is a negative constant. The Hubble parameter H), is ob-

tained:
Q1
~ _e 53
Hy =2/ 60 (53)

Then we obtain the Hubble parameter H, and b(z)

Q
when ¥ < /—€t<< 1:
1

Hh ) z" (54)

2Q )\
b~ bo(—3—l//2) 1, (35)
where b(r) is proportional to ¢, which is faster than a(z) in
the case of increasing a(f). Because the decreasing of
three dimensions instead of one provides dynamic. In
Case I, the decreasing of scale factor(s) on the brane does
(do) not provide sufficient impetus for the other scale
factor(s) to expand exponentially.

b=by

(52)

3.2 Casell

Similarly to Case I, we investigate the case with two

a(t) and two b(t). We choose an anisotropic metric ansatz
of the form gy, = diag[—1,a%(t),a*(t),b*(1),b*(#)]. The 5D
FRW field equations are of the form:

H2+4H,H,+H?} = Q, (56)
H,+2H,+H; +3H} +2H,Hy, = Q, (57)
Hy+2H, + H} +3H? +2H,H), = Q. (58)

where H, and H, are symmetric. Setting H, positive and
H, negative, we obtain the following solutions for the
Hubble parameters H, and H,, respectively:

H——w/_Qt 2\/_2Qt+
W= G an 3 c

-3 sec(z,/?wcz) , (59)
H, _Q[tan[Z _29t+c]
=" N6 V3 7%
+V3 sec(2w/?t+c2] . (60)

As shown in Fig. 1, the Hubble parameter H, is close
to a constant H=~2 in a large region
—0.8 <2v-2Q/3t+c; < 1.2. This is very different from
the Case I, in which the Hubble parameter H, is a con-

stant in a very tiny interval _Et < y < 1. Considering

the constraints in Eqs. (59) and (60) as in Case I,

2Q .
2 4 /—Tt changes slowly with r when we set the second

solution x» ~(N—n)In10+1In4 ~ 172 with n=50 and
N =~ 124. We obtain the 3D effective cosmological con-
stant A = —2Q/3 > 0, which is independent of the integ-
ral constant. This important result indicates that we can

—0/6

H,/

15 -1 -05 0 05 1 1.5
222073t + ¢
Fig. 1. (color online) Hubble parameter H, (solid curve) var-
ies as a function of 2vV=2Q/3t+c, in Case II. The dashed
curve depicts a constant ff ~ 2
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obtain an exponential expansion solution, which is con-
sistent with our presently observed universe when we
start from induced negative cosmological constants on the
brane. Nevertheless, it is unsatisfactory, because the num-
bers of the expansion scale factor is two. However, this
problem should be solved in a higher dimensional brane.

Finally, we consider an isotropic metric ansatz of the
form g, = diag[—1,a%(t),a*(1),a*(t),a*(#)] in the 5D Ein-
stein field equations Eq. (18), then we obtain the time-
time component of 5D FRW field equations:

1

=20 (61)

Here, no solution exists for the above equation, be-
cause Q < 0.

4 Summary and conclusion

In this study, we investigate a 6D theory with a 4-
brane to solve the cosmological fine-tuning problem. We
find that each stress-energy tensor 7!, on the brane is
similar to a constant vacuum energy. The hierarchy prob-
lem cannot be solved efficiently in this model, which is
consistent with the RS model [9], where each 3-brane
Lagrangian yields a constant vacuum energy. The visible
brane tension obtained in our study is greater than the res-
ult in Ref. [11]. For Q <0, the induced negative cosmolo-
gical constant on the visible 4-brane has an upper bound
(~ —107%? in Planck units), and the 4-brane tension is pos-

itive for the second solution.

In above case, we obtain the 5D FRW field equations
from the Einstein field equations by adopting an aniso-
tropic metric ansatz. In Case I, we find that the 3D space
scale factor is increasing from ¢ = 0 to the present ¢ ~ 10,
The constant Hubble parameter resulted in an exponen-
tial expansion of the 3D scale factor slightly after the ini-
tial time 7 = 0. However, the period is so short that the 3D
space scale factor only increases from ap to

[-Q / Q
a0(1+ @t) When y < _Et« 1, the 3D space

scale factor a(f) is proportional to 73, which is similar to
the period of the radiation-dominated regime.

In Case II, we investigate the case with two a(r) and
two b(zr). In a large range of 7, we obtain the 3D effective
cosmological constant A.g = —2Q/3 >0, which is inde-
pendent of the integral constant. Here, the scale factor is
an exponential expansion, which is consistent with our
presently observed universe. It is shown that the expan-
sion rate of the scale factor is not directly related to the
numbers of the scale factor of decrease. This is unsatis-
factory, because there is two numbers for the expansion
scale factor. However, this problem should be solved in a
higher dimensional brane. Presently, it will be interesting
to study whether the extra dimensions on the brane in this
kind of generalized RS model with higher dimensions
(e.g., 10D spacetime, as required by superstring theory)
would provide enough impetus for 3D space exponential
expansion. We hope to report these in future studies.
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