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Skyrmion stability at finite isospin chemical potential and temperature”
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Abstract: The skyrmion stability at finite isospin chemical potential y; is studied using the Skyrme Lagrangian with

a finite pion mass m,. A critical value u;. = V3/2m, , above which a stable soliton does not exist, is found. We also

explore some properties of the skyrmion as function of yy, i.e., the isoscalar rms radius and the isoscalar magnetic

rms radius. Finally, considering the finite temperature effect on the skyrmion mass, we obtain a critical temperature

T, using the profile function of the skyrmion, above which the skyrmion mass does not have a minimum, which can

be interpreted as the occurrence of the deconfinement phase transition.
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1 Introduction

Physics of the hadronic matter with finite density and
temperature has been a hot topic for a few decades [1-5].
It is now recognized that the phase diagrams of hadronic
matter are much richer than what has been predicted by
the perturbative quantum chromodynamics (QCD), and
that phases of hadronic matter and their respective phase
transitions might be realized in nature in various circum-
stances. There are two prominent topics, the evolution of
the early Universe and the core of neutron stars, where
the knowledge of the phase diagram would provide a
much better understanding of the related phenomena.

There have been considerable developments concern-
ing the phase diagram. The lattice QCD has provided
much information about the finite temperature transitions,
such as the value of the critical temperature and the form
of the equation of state (EOS) [6-9]. However, in a sys-
tem with finite chemical potential, the lattice QCD be-
comes invalid due to the "sign problem" [10].

As a consequence, various alternative effective mod-
els have been used, such as the Nambu-Jona-Lasinio
(NJL) model [11-13]and the Dyson-Schwinger equa-
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tions (DSEs) [14-18]. With these effective models, pro-
gress has been made in the study of the phase diagram.
Furthermore, the phase structure of QCD at finite isospin
chemical potential and zero baryon chemical potential
with two light quarks was considered in Ref. [19]. In ad-
dition to the approaches based on the effective methods
that include quarks as explicit degrees of freedom, effect-
ive field theories with hadronic fields only were also
widely used [20-25].

In this work, we resort to the effective model which is
expressed in terms of mesons and baryons that arise as to-
pological objects — the Skyrme model [26]. This model
has been widely used in the study of nucleons and nucle-
ar matter, as well as in condensed matter physics (see
Refs. [27-29] for reviews). In Ref. [30], Atiyah and Man-
ton showed how to generate Skyrme field configurations
from S U(2) instantons by computing the holonomy along
the lines parallel to the time axis. In Refs. [31, 32], the
construction of Atiyah and Manton was extended, and the
stability of skyrmions at finite temperature and the exist-
ence of a critical temperature 7.were discussed. It was
shown that the skyrmion is no longer stable when 7 > T ,
and that this can be interpreted as the occurrence of the
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deconfinement phase transition. This phenomenon was
also studied in the frame of the so-called hybrid model
[33].

This paper is organized as follows. In Sec. 2, we
study the skyrmion properties as function of isospin
chemical potential at zero temperature. We find a critical
isospin chemical potential pj. ~0.65 above which the
skyrmion breaks, and can therefore be regarded as the
critical value for deconfinement. We also study the iso-
scalar rms radius and the isoscalar magnetic rms radius
considering the effect of (i;. In Sec. 3, we study the effect
of temperature on the skyrmion properties. We find that
the mass of the skyrmion cannot attain a minimum when
the temperature reaches a certain critical value, which can
be interpreted as the deconfinement phase transition. We
give a summary of our work in Sec. 4.

2 Finite isospin chemical potential and the
skyrmion stability

We start from the Skyrme model with the pion mass
term [34]
1
L=—F2Tt[d,Ud"U"]
16
1

+ @Tr[[(ﬁaU)UJr,(apU)UJ']z]

1
+ gm,%F,%(trU—z), (1)

where F, is the pion decay constant, e is a numerical
parameter, m, is the pion mass and U is the S U(2) matrix
which transforms like U — AUB* under SU2)xSU(2).
In this work, instead of their empirical values, we take
F, =108 MeV and e = 4.84 which are obtained by fitting
the nucleon mass and the A mass [34].

The isospin chemical potential can be introduced
through the substitution [35, 36]

8,U — DU = aaU—i%[rg, Ulgao Q)

F|1
[+ 7\ 3 : 3 P

Let us now analyze the behavior of the profile func-
tion for large distances. By considering F(co) — 0, one
has sin F(¥) — F(¥) and cos F(7) — 1, so that at large dis-
tances Eq. (8) reduces to the following form

2F (~2 2

2
F' + 1ig? — =0 + q)F =0. 9)
r

3

From this equation one can easily obtain the critical
value for tij. = V3/2ni; ~0.65 (uz. ~ 170 MeV). Eq. (9),

. — . .
2sin’F (1—1;712?2)] N 2F (1_2M1 Sln2F]_ sin2F (1_F12>(1_

where 7 is the third Pauli matrix and gz is the metric
tensor in the Minkowski space.

The Skyrme model including the isospin chemical po-
tential then becomes

L) =L+ il Tr{w?) - iTr{[w, L,V

64 64¢2
. F2 .
+ i wLg) - P TrwLo Lo, Lal), (3)
16 8¢2

where, w =713 -Ur*U* and L, = L, = U*d,U.

To calculate the effect of the isospin chemical poten-
tial on the skyrmion properties, we take the probe approx-
imation of the profile function, that is the following
hedgehog ansatz for the skyrmion solution which is still
valid

U = exp(i?- #F(r)) = cos F(r) +i(Z- #)sin F(r), (€))]
where 7 is the sigma matrix vector and 7 denotes the spa-
tial unitary vector, #2 = 1. The profile function F(r) satis-
fies the boundary conditions

F(0)=m, F(c0)=0. &)

For convenience of calculations, we define the fol-
lowing dimensionless variables

. eF; B 2
r=—_—r, My = —— My,
R (®)
Hr= eF,,ﬂI’ K= eF,’
We then obtain the dimensionless soliton mass as
.4 in’F in*F
W) = =M =dn | &P |F? 4270 (14 F2) + 20
F, 2 7

2 _,.
+2r71,2r(1 —cosF)— §,L¢12s1n4F(1 +F’2)

2_, sin4F]

(7)
where M is the soliton mass. The minimization of M(s;)
leads to the following equation of motion of the skyrmi-
on profile function F(7)

2 _ — .
- §y1272) —m,,2 sinF =0.

®)

1~2~2) sinzFSin2F(
FHT |- 1

[
which describes the behavior of F(7) at large distances, is
a spherical Bessel equation which implies that the usual
criteria for localized finite energy solutions [37] fail to be
satisfied for si; > fije.

We plot in Fig. 1 the solution of the profile function
for a few typical values of ;. The plot clearly shows that
localized solutions exist only for (i < pijc. For gi; > iz, we
can still obtain solutions which behave as spherical
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Fig. 1. (color online) Hedgehog profiles F(7) for various val-
ues of the isospin chemical potential 4i; . The profiles F(7)
are the exact solutions of Eq. (8) except the gray dashed
curve. The red solid curve represents the solution for the
isospin chemical potential ;i; = 0, the blue dot-dashed curve
is for 4 =04, and the yellow dotted curve for
fdr = \3/2ni; =~ 0.65. The gray dashed curve, which behaves
as a spherical Bessel function at large distances, is for
g7 =12, which is larger than the critical isospin chemical
potential (., but is not a soliton solution which has local-
ized finite energy. It is clearly seen that the isospin chemic-

al potential has a distinct influence on the profile F(¥) when
A1 > e

Bessel functions at large distances, but they are not
soliton solutions which have localized finite energy. This
suggests the occurrence of a phase transition — the de-
confinement phase transition.

We also study the soliton mass as a function of the
isospin chemical potential (; for the spherically symmet-
ric hedgehog ansatz, presented in Fig. 2. When (; is lar-
ger than 0.65, the localized finite energy solutions of Eq.
(8) no longer exist, and the soliton mass integral in Eq.
(7) does not exist either.

We study next the relation between the other relevant
physical quantities and the isospin chemical potential. It

160
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Fig. 2. (color online) The soliton mass as a function of the
isospin chemical potential (7; for the spherically symmetric
hedgehog ansatz. For (i <0.1, the soliton mass is almost
stable, while for i; > 0.1 the soliton mass decreases with the
increase of the isospin chemical potential. The curve stops
at uj. ~ 0.65, which is close to uj. = V3/2#iy.

is well know that the Skyrme model allows the existence
of different conserved currents and respective charges,
which can be used to define several effective radii. Thus,
we can study these radii for finite isospin chemical poten-
tials, which give additional information about the behavi-
or close to the phase transition.

: . L 12
Here, we consider the isoscalar rms radius <r2>170 and

. . Io\12 . .

the magnetic rms radius <r2> , which are defined in

M,I=0
the Skyrme model as

()" = ,U; d7#2pp, (10)
(Ph o= fo A7t (), (11)

where the baryon number density pp and the isoscalar
magnetic moment density py, are

2
ps=—=sin’ F(nF'(r), (12)
v/
2 il
r°F’sin” F
PMI=0= T . (13)
fo drr*F’sin” F

When the isospin chemical potential is turned on, we
find from the Euler-Lagrange equation for the soliton
profile F(7) , Eq. (8), that the profile F(7) also acquires a
dependence on (i;

F(F) = F(7, ). (14)

Therefore, substituting the solution of Eq. (8) into Eq.
(10) and Eq. (11), we obtain the dependence of the
skyrmion radius on the isospin chemical potential.

We plot in Fig. 3 and Fig. 4 the dependence of the
isoscalar rms radius and the isoscalar magnetic rms radi-
us on ;. From these figures we can see that when the
isospin chemical potential exceeds the critical value
e ~0.65, both radii diverge, which suggests the occur-
rence of a phase transition. Furthermore, for (; > 1. loc-
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Fig. 3.

isospin chemical potential (i > 7., the rms radius (the blue

solid curve) diverges, which suggests the occurrence of a
phase transition.

. 2 .
(color online) <72>1li0 as a function of (; . For the
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Fig. 4. (color online) (72);;’:0 as a function of ;i;. For isospin

chemical potential larger than 0.65, the rms radius diverges.

alized finite energy solutions do not exist and the radii
cannot be obtained. However, in order to get some in-
formation about the behavior of the radii for large 1;, we
extend our numerical calculations of Eq. (8), shown as
dashed lines in the figures. Although we cannot formally
prove that the radii diverge at the critical (; = pij., the nu-
merical results support this claim.

Another physical quantity which indicates a phase
transition occurs is the distribution of the baryon number
density pp. In Fig. 5, we plot pp as a function of 7. One
can clearly see that the baryon density is localized for
small isospin chemical potentials, but for [; 2 pij., the
skyrmion spreads in space and loses its identity as a
soliton, although the baryon number remains unchanged.
This transition is naturally considered as a signature of
the decofinement phase transition [38].

We would like to clarify here that, as is known, the
skyrmion is a topological soliton, which is in fact a topo-
logical defect. Above the critical isospin chemical poten-
tial, the stable skyrmion solution cannot exist. This is to
say that the topological defect is not present anymore and
that a deconfinement phase transition occured. Similarly
to the Kosterlitz-Thouless (KT) phase transition [39-42],
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Fig. 5. (color online) The baryon number density pp as a

function of 7 for typical values of the isospin chemical po-
tential. The red solid curve is for the isospin chemical po-
tential (; = 0, the blue dot-dashed curve for 4; = 0.5, and the
purple dashed curve for /i; = 0.65.

which is caused by the topological defect—vortex, this
phase transition cannot be driven by symmetry breaking
(or restoration). Therefore, there is no symmetry break-
ing pattern behind it.

3 Finite temperature effects and the skyrmi-
on stability

The procedure to construct a skyrmion-like configura-
tion from an S U(2) instanton by computing the holonomy
along the lines parallel to the time axis was studied by M.
Atiyah and N. Manton [30]. This ansatz was later gener-
alized to the thermal instanton in Ref. [31], in which the
temperature effect is introduced by means of the skyrmi-
on thermal profile

132 _
Py =1 r+ 3 A%(kcoth(xr)—1/r) ’ 15)

\/ r2+ %Kz/l“ + krA2 coth (kr)

where x = 27T and A is the parameter in the thermal pro-
file.

In terms of the dimensionless quantities given in Eq.
(6), Eq. (15) can be rewritten as

7+ 1 2%(k coth (kF) — 1/7)

F() =n|1- (16)

P2+ AR2T8 + kP12 coth (i)

We plot in Fig. 6 the thermal profile for different tem-
peratures and zero isospin chemical potential. From this
plot, one can clearly see that under the influence of tem-
perature, F(7) does not oscillate at large distances. This is
in stark contrast to the hedgehog profiles F(7) presented
in Fig. 1, where F(7) is shown to oscillate at large dis-
tances when the isospin chemical potential is larger than
the critical value.

We study the effect of temperature on the skyrmion
mass by substituting the profile F(7) into Eq. (7). For a
fixed isospin chemical potential, we increase the value of
the temperature, and when the temperature reaches a cer-
tain value T, where M(A,4;,T) as a function of A no
longer has a minimum, one can conclude that this temper-
ature is the critical temperature corresponding to the fixed
isospin chemical potential. Then, for varying isospin
chemical potentials, we can use the same method to get
the corresponding critical temperature. We plot in
Fig. 7 the skyrmion mass #7 as a function of A for a fixed
isospin chemical potential (; = 0.5 and different temperat-
ures. This figure shows that among the three skyrmion
mass curves, the dashed dot line for k. = 4.77, which cor-
responds to the critical temperature T, = «./2x, does not
have a minimum. In other words, localized finite energy
solutions do not exist. This phenomenon is interpreted as
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Fig. 6.
function of # at finite temperature and zero isospin chemic-

(color online) The skyrmion thermal profile F as a

al potential. The red solid curve is for the temperature & =0,
the blue dashed curve for ¥=2.0, and the purple dotted
curve for k = 6.625. Note that & = 6.625 is the critical temper-
ature when the isospin chemical potential is zero.

—_— k=1
i ——- k=25
2604 \ —- R=ke

Fig. 7. (color online) The soliton mass M(A,;,T) as a func-
tion of A in the spherically symmetric hedgehog ansatz and
for 47 =0.5. The blue solid curve is the soliton mass for
k=10 (k=2612 MeV), the minimum M =150.8 (M =841
MeV) is at 1=1.4. The orange dashed curve is for x=2.5
(k=653 MeV) with the minimum M = 159.6 at 1=2.0. The
green dot-dashed line is for the critical temperature &, = 4.8
(k=1254 MeV) where the minimum does not exist.

the occurrence of the deconfining phase transition.

In Fig. 8 , we show the (i; dependence of T,. It can be
seen that T. decreases as (i; increases. When (i 2 ., we
could not find a soliton solution, i.c. a solution with a loc-
alized finite energy and finite temperature. Thus, we con-
clude that both the isospin chemical potential and the
temperature contribute to the occurrence of instabilities in
the skyrmion solution.

We would like to point out that the deconfinement
phase transition in the skyrmion model cannot be de-
scribed by the Landau symmetry breaking theory. Thus,
the order of deconfinement phase transition cannot be in-
vestigated by the traditional Landau phase theory, which
is different from the Polyakov loop. It is well known that
although the center symmetry is explicitly broken by
quarks in the fundamental representation, the Polyakov

0 T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

I
(color online) The dependence of the critical temper-

Fig. 8.
ature & on the isospin chemical potential 4; in the spheric-
ally symmetric hedgehog ansatz.

loop is still used to study the deconfinement phase trans-
ition in the Polyakov loop extended NJL model, which is
similar to the chiral phase transition with explicitly
broken term for finite current quark mass. Furthermore,
the deconfinement phase transition is described in this
study by the topological defect, so that the order of the
phase transition cannot be defined.

4 Summary and conclusions

In this work, we have studied the behavior of skyrmi-
on properties on the isospin chemical potential ;. After
analyzing the behavior of the profile function F(7) for
large distances, and of the numerical skyrmion mass evol-
ution and soliton solutions, we found that there is a critic-
al value i above which the localized finite energy solu-
tions no longer exist, with 1ij. = v3/2ni, in the spheric-
ally symmetric hedgehog ansatz. We also presented the

. . . 1/2 .
behavior of the isoscalar rms radius (?2>1_ , and the iso-

\1/2

scalar magnetic rms radius <r >MI—0 for several isospin

chemical potentials, and found that for isospin chemical
potential above the critical value . = 0.65 both radii are
divergent, as shown in Fig. 3 and Fig. 4. We have also
considered the effect of the finite temperature following
M. Atiyah and N. Manton, and found a critical temperat-
ure which minimizes the skyrmion mass in terms of T
and A that can be interpreted as the deconfining phase
transition. In Fig 7, it was shown that for a particular value
f; =0.5 the minimum of the skyrmion mass increases
with temperature, and that there exists a critical temperat-
ure above which the minimum disappears. The depend-
ence of the critical temperature 7. on (; was shown in
Fig. 8. In our study, we considered the skyrmion solution
as a topological defect, which is the result of quantum
fluctuations of the ground state. As the isospin chemical
potential increases, quantum fluctuations are enhanced.
For large isospin chemical potentials, the quantum fluctu-
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ations are strong enough to break the stability of the topo-
logical defects, and the skyrmion solutions no longer ex-
ist leading to the deconfinement phase transition. As the
reason behind the skyrmion approach is to have an effect-
ive representation of baryons, the existence of such a
phase transition is quite interesting.

We would like to thank Zhu-Fang Cui and Yong-Li-

ang Ma for their constructive comments and reading
through the manuscript. Z.-F.C. also helped to conceive
the idea.
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