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Abstract: The chiral magnetic effect is concisely derived by employing the Wigner function approach in the chiral

fermion system. Subsequently, the chiral magnetic effect is derived by solving the Landau levels of chiral fermions in

detail. The second quantization and ensemble average leads to the equation of the chiral magnetic effect for righthand

and lefthand fermion systems. The chiral magnetic effect arises uniquely from the contribution of the lowest Landau

level. We carefully analyze the lowest Landau level and find that all righthand (chirality is +1) fermions move along

the direction of the magnetic field, whereas all lefthand (chirality is —1) fermions move in the opposite direction of

the magnetic field. Hence, the chiral magnetic effect can be explained clearly using a microscopic approach.
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1 Introduction

Quark gluon plasma (QGP) is created in high energy
heavy ion collisions, constituting extremely hot and dense
matter. An enormous magnetic field can be generated by
high energy peripheral collisions [1-3]. One of the predic-
tions in QGP is that positively and negatively charged
particles seperate along the direction of the magnetic
field, which is related to chiral magnetic effect (CME) [4-
6]. Numerous efforts have been made to determine the
CME in experiments [7-9]. However, due to background
noise, no definite CME has been revealed to date. Numer-
ous theoretical methods likewise investigated the CME,
such as AdS/CFT [10, 11], hydrodynamics [12-14], fi-
nite temperature field theory [15-18], quantum kinetic
theory [19], lattice method [20], et al.

In this article, we study the CME in detail by determ-
ination of Landau levels. For the massive Dirac fermion
system, several studies on CME addressed Landau levels.
In Ref. [15], Fukushima et al. proposed four methods to
derive the CME. One of these methods made use of
Landau energy levels for the massive Dirac equation with
chemical potential u and chiral chemical potential us in a
homogeneous magnetic background B = Be, to construct
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the thermodynamic potential Q. The macroscopic elec-
tric current j° along the z-axis can be obtained from the
thermodynamic potential Q). Another study on the CME
addressing Landau levels is related to the second quantiz-
ation of the Dirac field. In Ref. [21], the authors determ-
ined the Landau levels and corresponding Landau wave-
functions for the massive Dirac equation in a uniform
magnetic field, likewise with chemical potential 4 and
chiral chemical potential us. Then, they second-quant-
ized the Dirac field and expanded it by these solved
Landau wavefunctions and creation/construction operat-
ors. The density operator p can then be determined from
Hamiltonian /4 and particle number operator N of the
system. Finally, they derived the macroscopic electric
current j* along the z-axis through the trace of density op-
erator p and electric current operator j°, which is simply
the CME equation.

From the study on CME for massive Dirac fermions
through Landau levels, we conclude that the contribution
to CME arises uniquely from the lowest Landau level,
while the contributions from higher Landau levels cancel
each other. However, because of the mass m of the Dirac
fermion, the physical picture of the CME for the massive
Dirac fermion system is not as clear as in the massless
fermion case, as the physical meaning of the chiral chem-
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ical potential us for the massive fermion case is not en-
tirely understood. To address this issue, we list the low-
est Landau level as follows (we set the homogeneous
magnetic background B = Be, along the z-axis and as-
sume eB > 0, which is also appropriate for following sec-
tions),

(2]

1.
i(yk,+zk.) _

—e'V J (A= =1), 1

Foapo |L ( (D)

0

with energy E =1 /m2+kZ, where Fo, = (A y[m2+k2+k,)/m,
and ¢ is the zeroth harmonic oscillator wavefunction
along the x-axis. To simplify the following discussions,
we set k, =0. The z-component of the spin operator for
the single particle is S* = 1diag(c3,03), implying S%yg, =

(+3)Wor. When 2= +1, E = \/m?+k2 >0, then . in Eq.
(1) describes a particle with momentum k, and spin pro-
jection S¢= +%. When 1=-1, E=—./m?+k? <0, then
Yo- in Eq. (1) describes an antiparticle with momentum
—k, and spin projection S¢ = —%. Thus, in the homogen-
eous magnetic background B = Be,, we obtain a picture
for the lowest Landau level (with k, =0): All particles
spin along the (+z)-axis, while all antiparticles spin along
the (—z)-axis; however, the z-component momentum of
particles and anti-particles can be along both the (+z)-ax-
is or the(—z)-axis. A net electric current is difficult to ob-
tain along the magnetic field direction from the point of
view of the lowest Landau level for the massive fermion
case.

In this article, we focus on a massless fermion (also
referred to as the “chiral fermion”) system, where we
show that it is easy to obtain a net electric current along
the magnetic field direction, seen from the picture of the
lowest Landau level. The chiral fermion field can be di-
vided into two independent parts, namely the righthand
and lefthand parts. First, we set up the notation. The elec-
tric charge of a fermion/antifermion is +e. The chemical
potential for righthand/lefthand fermions is ug/r, which
can be employed to express the chiral and ordinary chem-
ical potentials as s = (ug —pur)/2 and p = (ug +pur)/2, re-
spectively. The chemical potential u describes the imbal-
ance of fermions and anti-fermions, while the chiral
chemical potential us describes the imbalance of
righthand and lefthand chirality. Notably, the introduc-
tion of a chemical potential generally corresponds to a
conserved quantity. The conserved quantity correspond-
ing to the ordinary chemical potential u is total electric
charge of the system. However, due to chiral anomaly
[22, 23], there is no conserved quantity corresponding to
the chiral chemical potential us, which is crucial for the
existence of CME [24].

To study the CME in the chiral fermion system, first

Yoalky,kz;x) = coa

we show a succinct derivation of CME employing the
Wigner function approach, which we can use to obtain
the CME as a quantum effect of the first order in the # ex-
pansion. Subsequently, we turn to determine the Landau
levels for the chiral fermion system. Because chiral fer-
mions are massless, the equations of righthand and
lefthand parts of the chiral fermion field decouple with
each other, which allows us to deal with righthand and
lefthand fermion fields independently. Taking the
righthand fermion field as an example, we first solve the
energy eigenvalue equation of the righthand fermion field
in an external uniform magnetic field and obtain a series
of Landau levels. Then, we perform the second quantiza-
tion for righthand fermion field, which can be expanded
by complete wavefunctions of Landau levels. Finally, the
CME can be derived through the ensemble average, ex-
plicitly indicating that the CME uniquely arises from the
lowest Landau level. By analyzing the physical picture
for the lowest Landau level, we conclude that all
righthand (chirality is +1) fermions move along the posit-
ive z-direction, and all lefthand (chirality is -1) fermions
move along the negative z-direction. This is the main res-
ult of this study. This result can qualitatively explain why
a macroscopic electric current occurs along the direction
of the magnetic field in a chiral fermion system, called
the CME. We emphasize that the CME equation is de-
rived by determining Landau levels, without the approx-
imation of a weak magnetic field.

The rest of this article is organized as follows. In Sec.
2, we present a succinct derivation for the CME using
Wigner function approach. In Sec. 3, we determine the
Landau levels for the righthand fermion field. In Secs. 4
and 5, we perform the second quantization of the
righthand fermion system and obtain CME through the
ensemble average. In Sec. 6, we discuss the physical pic-
ture of the lowest Landau level. Finally, we summarize
this study in Sec. 7. Some derivation details are presen-
ted in the appendixes.

Throughout this article, we adopt natural units, where
h=c=kg=1. The convention for the metric tensor is
g =diag(+1,-1,—1,-1). The totally antisymmetric Levi-
Civita tensor is e”?” with €"!23 = +1, which is in agree-
ment with Peskin [25], but not with Bjorken and Drell
[26]. The Greek indices, u,v,p,0, run over 0,1,2,3, or
t,x,y,z, whereas Roman indices, i, j,k, run over 1,2,3 or
x,y,z. We use the Heaviside-Lorentz convention for elec-
tromagnetism.

2 A succinct derivation of CME using Wigner
function approach

We concisely derive the CME using the Wigner func-
tion approach for a chiral fermion system. Our starting

074106-2



Chinese Physics C Vol. 44, No. 7 (2020) 074106

point is the following covariant and gauge invariant
Wigner function,

! e (4 2 y Y
Wonep) = G J e (e SJu(seSa-3)
Y.
<o (v-3)) @
where (: --- :) represents the ensemble average, W(x) is the

Dirac field operator for chiral fermions, «, 8 are Dirac
spinor indices, and U(x+y/2,x—y/2) is the gauge link of
a straight line from (x—y/2) to (x+y/2). This specific
choice for the path in the gauge link in the definition of
the Wigner function was first proposed in Ref. [27],
where the authors argued that this type of gauge link can
create the variable p in the Wigner function “W(x, p) to
represent the kinetic momentum, although in principle the
path in the gauge link is arbitrary. The specific choice of
the two points (x+y/2) in the integrand in Eq. (2) is
based on the consideration of symmetry. We can also re-
place (xxy/2) by (x+sy) and (x—(1-s)y), where s is a
real parameter [28].

Suppose that the electromagnetic field F#” is homo-
geneous in space and time, then from the dynamical
equation satisfied by W(x), one can obtain the dynamical
equation for ‘W(x, p) as follows,

‘)/K(W(x’p) = O’ (3)

where K, =3V, +p, and V,=0%-eF,,0),. Because
W(x,p) is a 4 x 4 matrix, we can decompose it into 16 in-
dependent I"-matrices,

1 1
W = Z(T’L WP+ YV +y vy Ay + 50””8,”,). 4)

The 16 coefficient functions F,P,V,,A,,S,, are scalar,
pseudoscalar, vector, pseudovector, and tensor, respect-
ively, and they are all real functions because
W =y9W50 Vector current and axial vector current can
be expressed as the four-momentum integration of V*
and A,

T (x) = f d*p Vv, )

Jh(x) = f d*pAH. (6)

By multiplying Eq. (3) by y- K from the lefthand side,
we obtain the quadratic form of Eq. (3) as follows,

(K2 - %a”“"[Kﬂ, KV])W =0. )

From Eq. (7), we can obtain two off mass-shell equations
for Vv, and A, (see Appendix A for details),

1 3
(p2 - thvz)% = —ehF,, A, (8)

1 8
(p2 - thvz)ﬂ# = —ehF, V", ©)

where Fy = $&,,0FP7. We explicitly showed the 7 factor
in Egs. (8), (9) If we expand V* and A* order-by-order
in 7 as

WV = Vi + BV + PV +--, (10)
A = A+ hAG + A+, (11)
then, at order o(1) and o(%1), Egs. (8), (9) become
P*Vig, =0, (12)
pPrAG =0, (13)
P’V = —ehFy A, (14)
PP Ay = —ehF Vi . (15)

The zeroth order solutions V{; and A, canbe de-
rived by directly calculating the Wigner function without
the gauge link through the ensemble average in Eq. (2),
which was already obtained by one of the authors and his

collaborators [29] The results for ‘V’(lo) and ﬂ , are

Y = (2 1o >Z [e(p")—eﬁ(,, T

0
+0(=p )m], (16)
Al = n )3Pu5(l? )Z [9(19 )m
0
+0(=p )m], (17

where 8 =1/T is the inverse temperature of the system,
ursr 1s the chemical potential for righthand/lefthand fer-
mions as mentioned in the introduction, and s = +1 cor-
responds to the chirality of righthand/lefthand fermions.
The zeroth order solutions q/“ and ﬂf(‘o) satisfy Egs. (12),
(13), which indicates that they are both on shell. From
Egs. (14), (15) we directly obtain the first order solutions,

v 2

(V‘Ell) o )3 ———ehF" p, ¢ (p?)
1 1
0 vy
><§ [9(19 ) g Hop )dg(_,]om”l],
(18)
A = 2 ———ehF* p, &' (p?)

(O (2n)3 v

0 1 0 1
* 2| g o g | 09

where we employ &' (p?) = —6(p?)/p*. Egs. (18), (19) are
the same as the second term in Eq. (3) of Ref. [30].
Now, we can calculate J4,v based on Egs. (5) and (6).

Because VEO), () are odd functions of three-momentum

p, the nonzero contribution to J. {,/ A 1

and 5‘((1). We assume that only a uniform magnetic field

arises uniquely from V!
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exists B=Be,, i.e. F12=_F2l = _Band F®3 = _f30-_pB
(other components of F#v, F# are zero), which implies
J¥,. =J,, =0. After integration over the z-components

via = /A
of Egs. (18, 19) we have
I N
T = f d'pVi, =55 B. (20)
si= [(atpae = Mg 1)
A= Py = 52

where s = (ug —pr)/2 and p = (ug +pur)/2. Eq. (20) indic-
ates that if us # 0, a current flows along the magnetic dir-
ection. Becausefi appears in the coefficient of the magnet-
ic field B, an enormous magnetic field is required to pro-
duce a macroscopic current, which may be realized in
high energy heavy ion collisions. Thus far, we derived the
CME in the chiral fermion system using the Wigner func-
tion approach, and we observe that the CME is a first or-
der quantum effect in %. In fact, the Wigner function ap-
proach is a quantum Kkinetic theory, which implies the
presence of quantum effects of a multi-particle system,
such as the CME.

3 Landau levels for righthand fermions

In this and the following sections, we derive the CME
for a chiral fermion system by determining the Landau
levels. The Lagrangian for a chiral fermion field is

L=Y(x)iy-D¥(x), (22)
with the covariant derivative D* = 0" +ieA*, and the elec-
tric charge +e for particles/antiparticles. For a uniform
magnetic field B = Be, along the z-axis, we choose the
gauge potential as A* = (0,0, Bx,0). The equation of mo-
tion for the field W(x) is

iy-D¥(x) = 0, (23)

which can be written in the form of a Schrddinger equation,
ig‘l’(t,x) =ia- D¥(1,x), (24)

with D = -V +ieA, A = (0, Bx,0). In the chiral representa-
tion of Dirac y-matrices, where 7> =diag(-1,1),
@ = diag (-0, 0), we express ¥ in the form ¥ = (¥7,¥5)".
Then, Eq. (24) becomes

.0 [ Wr(t,x) —io - DY (t,x)

15( Pr(t,x) ):( io- D¥R(t,x) ) (25)
which indicates that the two fields ¥, g, which corres-
pond to eigenvalues 1 of the matrix y°, decouple with
each other. The two fields W,z are often referred to as
lefthand/righthand fermion fields, respectively. Lefthand
and righthand fermions are also referred to as chiral fer-
mions.

In the following, we focus on solving the eigenvalue

equation for the righthand fermion field W (similar res-

ults are obtained for the lefthand fermion field ¥;).

To determine the Landau levels, we must solve the ei-
genvalue equation for the righthand fermion field as fol-
lows,

ior- Dy = Eyi, (26)

with D = (-0,,—0, +ieBx,—0;). The details for solving
Eq. (26) are provided in Appendix B. We list the eigen-
functions and eigenvalues in the following : For n=0
Landau level, the wavefunction with energy E = k; is

1.
Wrolky ko) = ( ®o(&) ) 2 ei0k+2k) (27)
0 /L
For n>0 Landau level, the wavefunction with energy
E = AE,(k,) is

iFoonr @ L NG

whered = +1,E,(k,) = [2neB+k2,F,(k,) = [k, — AE,(k.)]/
V2neB, normalized coefficient |c,[*=1/(1+F?2)), and
@n(&€) = pu(VeBx—k,/ VeB) is the n-th order wavefunc-
tion of a harmonic oscillator.

For n > 0 Landau levels, the wavefunctions with ener-
gies E = +E,(k;) correspond to fermions and antifermi-
ons, respectively. For the lowest Landau level, the wave-
function with energy E =k, >0 corresponds to fermions,
whereas that with energy E =k, <0 corresponds to anti-
fermions. The wavefunctions of all Landau levels are or-
thonormal and complete. For the lefthand fermion field,
the eigenfunctions of Landau levels are the same as the
righthand case, but with the sign of the eigenvalues
changed.

1 .
lﬁRn/l (kya kz X ) =Cna ( #n (6) ) _el(yk‘ ¥ek)

4 Second quantization for righthand fermion
field

In this section, we second-quantize the righthand fer-
mion field Wg(x), such that it becomes an operator and
satisfies following anticommutative relations,

{(PR(x), Phx)} =6 (x —x"),
{(Wr(x), Yr(x)} =0. (29)

Because all eigenfunctions for the Hamiltonian of the
righthand fermion field are orthonormal and complete,
we decompose the righthand fermion field operator Wg(x)
by these eigenfunctions as

Wi(x) = ) [0k )ao(ky, k)Wroky, k3 x)
k k.

+ 0=k )by (y ko (ky ke X)]
+ D Ly ks Gy s )

nk,.k.
+ b} (kys kW R (ky k3 )]. (30)
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In contrast to the general Fourier decomposition for the
second quantization, we place two theta functions 0(+k;)
in front of ag(ky,k;) and bg(ky,kz) in the decomposition,
which is very important for the subsequent second quant-
ization procedure. From Eq. (29), we obtain following an-
ticommutative relations,

{0(k:)ao(ky. k2), 0K Yab (K, KD} = 0(k:)6k i St
{0(=k:)bo(ky, k2), O(~K)bG (K}, KL} = O(=k )6k i Sk
{an(ky ko), @ (K KDY = S Otk O
(Bulley k), b (K KDY = S Sk Skke. (31)

s
The two theta functions 6(xk;) are always attached to the
lowest Landau level operators, such as ao,ag,bo,bg. The

Hamiltonian and total particle number of the righthand
fermion system are

H= f &Pl (x)io - DWR(x) = Z[kze(kz)ag(ky,kz)ao(ky,kz)
k, k.

+ (kU= (ky, K bo Ky k) + > En(ke)[a) Ky, ko)
n.k, k.
X an(ky, k) + b} (kys k )by (ky, ko)1,
(32)

N = f &X' (x)PR(x)

= > 100k )ah (ky, k) (ky., ko) = O~k )by Ky, kDboly, k)]

ok
X Z [ajl(ky’ kz)an(ky’kz)_bj;(ky,kz)bn(kwkz)]a (33)
n.k,.k.
where we omitted the infinite vacuum term. This can be
renormalized in the physics calculation and does not af-
fect our result on the CME coefficient. Evidently,
O(k,)aj (ky, k)ao(ky. k;) and a)(ky,k)ay(ky,k;) are the occu-
pied number operators of particles for different Landau
levels, and 6(—k,)b} (ky,k)bo(ky,k;) and b} (ky,k)ba(ky,k;)
are occupied number operators of antiparticles for differ-
ent Landau levels. Notably, without introduction of the
two theta functions 6(+k;) in front of ag(ky.k;) and
bg(ky,kz) in the decomposition of Wg(x), the second quant-
ization procedure could not be performed successfully.
This is different from the massive case [21], where the
authors determined the Landau levels and corresponding
wavefunctions for the massive Dirac equation in a uni-
form magnetic field with chemical potential x4 and chiral
chemical potential us. The wave functions for the massive
case are in a four-component Dirac form, and the 6 func-
tion is not needed for the second quantization.

5 Chiral magnetic effect

Supposing that the system of the righthand ferimons

within an external uniform magnetic field B = Be; is in
equilibrium with a reservior with temperature 7 and
chemical potential ug, then the density operator p for this
righthand fermion system is

1

— o BH-uxN) 34
Z© , (34)

where 8= 1/T is the inverse temperature, and Z is the
grand canonical partition function,

Z = Tre PH#N), (35)
The expectation value of an operator £ in the equilibri-
um state can be calculated as

G Fy=Tr(pF). (36)
In the Appendix C, we calculated the expectation values
of occupied number operators as

p=

0(k;)
. i N —
¢ e(kz)ao(kya kao(ky, k) 1) = eﬁ(kr‘ﬂ:) 1
0(=k;)
. i N = 2
G Ok B} kb K) ) = s
- 1
. N
<' an(kyskz)an(kyakz) > - eﬁ[Eu(k;)*ﬂR] + 1
1

(: b (ky k)by(ky, k) 2y = (37)

BE )+l 4 1

The macroscopic electric current for the righthand fermi-
on system is

Tr={: P00 Pro - ). (38)

According to the rotational invariance of this system
along the z-axis, Jj = Jy, = 0. In the following, we calcu-
late J3,. Using Eq. (30), we see that

T =(: WH(x) o Wr(x) )
= 3¢ 6eayhy Kaoth k) )
Kk

+(: O(—k)bo(ky, k)b (ks k) :>)

X (ky, Ky X)0 Yo Ky, K3 X)

+ 3" G allkdantky k) Wi, U ke ¥)0™ Y (ks s )
n,k,.k.

+ D balky, k)b Ky, ko) W, (s s X)W Uy e )
nk,.k.

) B-k) |
=2, (eﬁ<k,—ui>+1 = Pl ki) ki
k.

1 ¥ 3 )
' ; mw’*’”(ky ks XY R Ry K )
n’ yoivz

1 .
=Y e U (k)0 UKy ks ).
[E, (k) +tz] Rn—\"y y
= eBlE, (k)+ux] 41

(39

First, we sum over k, for w;o(ky,kz;x)oﬁw]go(ky,kz;x) and
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'/’;n ((ky k23 X)) WRaa(ky, k3 x) in Eq. (39), the results are
> Wk ks X0 o Ky K )
k,

1 I 0 ®o(£)
Ao (] 4%

1 dky[¢o( VeBx —k,/ VeB)?

:27rL oo
eB
"L 40
and

Z lp;-g,m(ky’ kz; x)0-3¢/Rn/1(kys kz;x)

k,
(T ge s 2neBlg )
57 | 3, (k) [ (©) TRy )
_ﬂ 2 B 2neB
- 2nLC"ﬂ(kZ)(1 [k, + AE, (k)12 )
_ B 2 -2 = 2B
_ZﬂLC"’I(kZ)[Z C"/l(kz)]_ZITL En(kz). (41)

Second, we sum over k, in the third equal sign of Eq.
(39),

o(~k,) ) eB

0(k,)
7 < — —_
Tk ‘;(eﬂk:—m 1 k1)L

1 1 eB k.
+§j( + )— :
LI\ PGl 41 PEGI ] +1)27L " E, (k)

_eB [ o(k) 6(=k,)
"1 e Z(eﬁ(k:—#f«)+1 B eﬁ(—k:+ﬂr«)+1)+0

eB
~ahe (42

Combining Eq. (42) and J = J; = 0 yields
E€UR
Jr= 4—7TZB. (43)
From the calculation above, we see that only the lowest
Landau level contributes to Eq. (43). A similar calcula-
tion for the lefthand fermion system shows that
elL
Ju=-13B.
We can also obtain Eq. (44) from Eq. (43) under space in-
version: Jg — —J1, ur — 4z, B— B. If the system is
composed of righthand and lefthand fermions, then the
vector current Jy and axial current J4 are

(44)

Jv=Jg+J =B, (45)
2w
ey
JAzJR_JLzﬁB’ (46)

where us = (ug —pup)/2 is the chiral chemical potential and
i = (ug +p)/2. Thus far, we derived the CME in the chir-
al fermion system by determining Landau levels. We em-
phasize that Egs. (45), (46) are valid for any strength of

magnetic field, in contrast to the weak magnetic field ap-
proximation through Wigner function approach in Sec. 2.

6 Physical picture of lowest Landau level

We discuss the physical picture of the lowest Landau
level. The wavefunction and energy of the lowest Land-
au level (n = 0) for the righthand fermion field is

1 ..
zﬁRO(ky,kz;x) = ( %0 )zel(}rk\ﬂk:)’ E=k.. (47)

Setting k, =0 in Eq. (47), we calculate the Hamiltonian,
particle number, z-component of momentum, and z-com-
ponent of the spin angular momentum of the righthand
fermion system for the lowest Landau level as follows,

H = )" [k6c)a(0,k)ao(0, k)
k.

+(=k)B(=k,)b} (0, k,)bo(0,k)1,
N =) [0k} (0, k)ao (0, k.)
k.

+ (= 1DO(=k)b(0,k)bo(0, k)1,
P. = )" [k.00c)a} (0, k)ao (0, k)
k.

+ (=k)B(=ky)b} (0, k,)bo(0,k)1,

1
$:= | 300k 08)

1 .
+ (—5)9(—7&)175(0, k)bo(0,k) |, (48)
where the definitions of P, and S, are
) L0
P, =-i f d3x‘Pl‘e(x)6—Z‘I’R(x),

S, = % f & X¥] ()0 Pr(x). (49)

Thus, we have a picture for the lowest Landau level: The
operator G(kz)ag(o,kz) produces a particle with charge e,
energy k, >0, z-component of momentum k, >0, and z-
component of spin angular momentum +1 (helicity
h=+1); The operator 6(—kz)bg(0,kz) produces a particle
with charge —e, energy —k, >0, z-component of mo-
mentum -k, >0, and z-component of spin angular mo-
mentum —% (helicity & =-1). This picture indicates that
all righthand fermions/antifermions move along the (+z)-
axis, with righthand fermions spinning along the (+z)-ax-
is and righthand antifermions spinning along the —z-axis.
If pug >0, which indicates that there are more righthand
fermions than righthand anti-fermions, a net electric cur-
rent will move along the (+z)-axis, which is referred to as
the CME for the righthand fermion system.

The analogous analysis can be applied to lefthand fer-
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mions. The picture of the lowest Landau level for a
lefthand fermion is: All lefthand fermions/antifermions
move along the (—z)-axis, with left fermions spinning
along the (+z)-axis and lefthand antifermions spinning
along the (—z)-axis. If u; > 0, which indicates that there is
more lefthand fermions than lefthand anti-fermions, a net
electric current will move along the (—z)-axis, which is
referred to as the CME for the lefthand fermion system.

Because the total electric current Jy of the chiral fer-
mion system is the summation of the electric current Jg
of the righthand fermion system and the electric current
Jr of the lefthand fermion system, whether Jy moves
along the (+z)-axis will only depend on the sign of
(ug —pr). Thus, the CME for the chiral fermion system is
described microscopically.

7 Summary

CME arises from the lowest Landau level both for the
massive Dirac fermion system and the chiral fermion sys-
tem. For the massive case, the physical picture of how the
lowest Landau level contributes to CME is not extens-
ively clear. When the Landau levels are determined for

the chiral fermion system in a uniform magnetic field, by
performing the second quantization for the chiral fermi-
on field, expanding the field operator by an eigenfunc-
tion of Landau levels, and calculating the ensemble aver-
age of the vector current operator, we natrually obtain the
equation for the CME. Notably, no approximations were
made for the strength of magnetic field in the calculation.
Further, we introduced two theta functions 6(+k;) in front
of ap(ky,k;) and bg(ky,kz) in the decomposition of Wg(x),
which is crucial for the successful performance of the
subsequent procedure of second quantization. When we
carefully analyze the lowest Landau level, we find that all
righthand (chirality is +1) fermions move along the posit-
ive z-direction, and all lefthand (chirality is -1) fermions
move along the negative z-direction. Thus, the CME is
described microscopically within this picture of the low-
est Landau level.

We are grateful to Hai-Cang Ren and Xin-Li Sheng
for valuable discussions. R.-H. F. thanks for the hospital-
ity of Institute of Frontier and Interdisciplinary Science
at Shandong University (Qingdao) where he is currently
visiting.

Appendix A: Vlasov equation and off mass-shell equation

The quadratic form for the equation of motion of the Wigner
function W(x, p) is

(Kz—%oW[K#,KV])W:O- (ah
Using K2 = p2 - %Vz +ip-V and [KH,KVJ = _ieF/JVs Eq (Al) becomes
(p2 - %Vz +ip-V - %EF#VU'”V)(W =0. »2)

W and o satisfy W ='Wy and o = y0o#7y°, Employing the
Hermi conjugation and subsequently multiplying y° to both sides
of Eq. (A2) yields

(,;2 - %V2 _ip- v)w— %eF#VWa'“" 0. (A3)
Eq. (A2) minus Eq. (A3) yields the Vlasov equation for W,
ip- VW - %eFm,[a"”,(W] =0. (A4)

Eq. (A2) added to Eq. (A3) yields the off mass-shell equation for
w,

2_1 2 _l v _
(p 7V )w JeFila™ W) =0. (AS)

To calculate [¢#”, W] and {o*,W} in Egs. (A4) (AS5), we list the fol-
lowing useful identities,
[0#",1]=0,
[o*.iy’1 =0,
[o#”,77] = =2ighly”),
[0, 7°y"] = =2igthy>y),
[0, 077] = 2ighP g1 — 2i g P, (A6)

{o*, 1} =201,
(o, iy%} = -7 0,
(o ) = 26"y,
(¥} =2e"7y,,
(o, 0Py = 2gH1P g7l 4 21 PT 3 (A7)
Then, all matrices appearing in Eqs. (A4) (A5) are the 16 inde-
pendent r-matrices, whose coefficients must be zero. These coeffi-
cient equations are the Vlasov equations and the off mass-shell
equations for #,P,V,, A, S, The Vlasov equations are
p-VF =0,
p-VP=0,
p-VV,=eF,V,
p-VA, = eFyy A,
P VQuy = eF Qup, (A8)

and the off mass-shell equations are

1 1
(pZ - ZVZ)T = EKF#VQ‘N,

1 1.
(p2 - ZV2)¢> = 5eF@",

2 Vz)% =—eF A,

= &=

P
e Vz)ﬂ# =—eF, V",
P-

(
(
(

= N

vZ)a,N = A~ FP), (A9)

where F, = 16,00 FP7.
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Appendix B: Landau levels for righthand fermion field

We solve following eigenvalue equation in detail,

io - Dyr(x) = Eyr(x), (B1)
with D = (-d,,-0, +ieBx,-0d;). Because the operator io- D is com-
mutative with p, = -idy, p, = —id,, we can choose yr asthe com-
mom eigenstate of io- D, p, and p, as follows
$1() V1 ioyezke)
= — 0k teke B2
V2.2 ( b 16 (B2)

where L is the length of the system in y- and z- directions. The ex-
plicit form of - D is

a'-D:( -0, —0x +i0y +eBx )

9, —idy —eBx P (B3)

Inserting Eq. (B2) (B3) into Eq. (B1), we obtain the group of dif-
ferential equations for ¢,(x) and ¢»(x) as
i(k; — E)p1 + (0x +ky —eBx)o = 0, (B4)

(Bx —ky +eBx)gy — ik, + E)pp = 0. (B5)
From Eq. (BS), we can express ¢, by ¢;, then Eq. (B4) becomes
ko \2
Py +(E2+eB—kf—esz(x—$) )¢. -0, (B6)

which is a typical harmonic oscillator equation. Defining a dimen-
sionless variable & = VeB(x—k,/eB), and ¢(x) = p(£), then (B6) be-
comes

2 E2 -2
d—“’+( : +1—gz)¢:0. (B7)
dg? eB

With the boundary condition ¢ — 0 as ¢ — +co, we must set
E*-k?
S4l=2n+1, (BS)

with n=0,1,2,---. Thus, energy E can only assume the following

discrete values,
E =+E,(k.) = £ 2neB + k2, (B9)

where we define E,(k;) = /2neB+k2. The corresponding normal-
ized solution for equation (B6) is

100 = (&) = Nye " P Hy(0), (B10)
where N, = (eB)¥r #(@"nl) 2, and H,(©) = (-1)'e’ &e € For en-

ergy E = AE,(k;) (1= £1), we can obtain ¢, as
() = YBOAOO© _ ilke = AL, k)]
: ik. +E) VaneB
where we used (g +&)¢u(€) = V2ng,1(&). Defining  F, (k) =
[k, — AE,(k;)1/ V2neB, the eigenfunction with eigenvalue E = AE,(k;)
becomes

@n-1(6), (BI1)

Wrna(ky kzix) = ( en(&) ) 1 iokyrck) B12)

iFpatk)pn-16) ) L

This is very subtle when n=0 in Eq. (B11). When n=0,E = k;, the
first equal sign of Eq. (B11) indicates ¢, =0 due to (¢ +&)go(£) = 0.
Then, the corresponding eigenfunction becomes

wrolky k3 x) = ( éﬁo(gf) ) %ei(yky+zk;). (B13)

When n =0,E = -k, the denominator of the first equal sign of Eq.
(B11) becomes zero, in which case we must directly deal with Egs.
(B4) (BS). In this case, Egs. (B4) (B5) become

2ik;¢1 + (Ox + ky —eBx)ps =0, (B14)

(Ox —ky +eBx)p1 = 0. (B15)
Eq. (B15) gives ¢;(x) ~ exp[—%esz + xky], then Eq. (B14) becomes
2ik, exp ( - %esz + xky) (@, +ky — eBx)py = 0. (B16)
When x — +o0, Eq. (B16) tends to
(0x —eBx)ps =0, (B17)

whose solution is ¢, ~ exp(%eBxZ), which is divergent as x — +co.
Thus, there is no physical solution when n = 0,E = —k;.

Thus far, we obtain the eigenfunctions and eigenvalues of the
Hamiltonian of the righthand fermion field as follows:

For n =0 Landau level, the wavefunction with energy E = k; is

. %0 I ky +2zk;
Wro(ky, kz;x) :( 0 )Zel() y+aks) (B18)
For n >0 Landau level, the wavefunction with energy E = AE,(k;) is
) — Pn l i(yky+2kz)
Urnalky,kz;3x) = Ln/l( ot )Le y ¥, (B19)

where A=z1, E,(k.)= +/2neB+k2, Fu(k;) = [k.— AE,(k.)]/ V2neB,
lenal? = 1/(1+F2)).

Appendix C: Expectation value of occupied number operators

We calculate the expectation values of particle number operat-
ors. From the expression of the Hamiltonian and the total particle
number operator in Egs. (32, 33), we easily obtain following com-
mutative relations,

[N, 60k, a (ky k)] = 60k, )a (ky k)
[N, 60(~k)b] (ky k)] = —6(=k )b (Ky k)
[N, ayky, k)] = g (ky k)
[N, by (kys ko)l = =b(ky ko), cn

[H, 0k, ) (ky, k)] = kO(kz)ab (ky, k)
LH, 0(~k)b} (Ky k2)] = (—k:)0(—k:)b} (ky. k)
(H, a}(ky. k)] = Ep(k)af (ky. k;)
(H. b (ky. k)] = En(ko)bh(ky. ko). (€2)

where we employ [AB,C] = A{B,C} - {A,C}B. Defining

Ok, (ky ks ) = e PR Yaf (ky k)N
(k)b hy s B) = € PHHEN Gl b ey k)P 1N
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ah(ky,kz3 B) = e PHHRN) f (ke yePH1RN)

bh(ky. ki) = e PHHRN ] ey ke )ePHHRN), (€3)
For 6(k.)a (ky.k; ), we obtain
d

351003k K1 = ~[H = e, 0k by ks )

= —e PHHRNH — g N, 0k, Ja (ky, k) 1R
= —e PHIRN[(k — pg)o(k.)a (ky k)P HHEN)

= —(k: — uR)LO(k: ) (ky. k3 B),
(C4)

with the boundary condition 6(k;)a] (ky.k.;0) = 6(k.)a(ky.k;), which
implies
O(k:)ay (ky ko3 B) = Ok ) (ky, ke PEHR). (C3)
Similarly, we obtain
O(—k)b] (ky k23 B) = O(—k)b} (ky, ko )e P He#0)
@l (ky k1 8) = ) (ky. k;)ePLENK) 1)
bl (ky, k3 B) = b (ky, ke )e PLERKHR], (C6)

We calculate the expectation value of (: H(kz)ag(ky,kz)ao(ky,kz) ). We

see that
(- Ok )a (ky. kdao (ky. k) o)
=Tr[pO(kz)a (ky. k)ao(ky. k)]
1
= T (00 )ay by ks p)e P50y k)
=%Tr(e<kz>ao(k,,~,kaag(ky,kz;me"*(”‘*‘km)
=(: 0(k)ao(ky, k;)ag (ky k3 8) 1)
=(: 0(k:)ao (ky., k:)ag (ky. k) e Ps0)
=0(k;)e PR — (- (k)af (ky. k:)ao(ky. ko) e Ph ) (CT)

thus, we obtain
4]

<9(kz)ag(ky»kz)a0(k_v,kz)) = m (CB)
Similar calculations obtain
Bk B hy kYo hy k) = )
e A T
B _ 1
(an(hy, kdan(hy ko)) = s
. 1
(b ky k)b ky, ko)) = (€9)

Bkl 41
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