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Abstract: We derive the transverse Ward-Takahashi identities (WTI) of N-dimensional quantum electrodynamics by

means of the canonical quantization method and the path integration method, and subsequently attempt to prove that

QED; is solvable based on the transverse and longitudinal WTI, indicating that the full vector and tensor vertices

functions can be expressed in terms of the fermion propagators in QEDs. Further, we discuss the effect of different y

matrix representations on the full vertex function.

Keywords: Ward-Takahashi identities, vertex functions, QED;

DOI: 10.1088/1674-1137/44/7/073105

1 Introduction

The normal (longitudinal) Ward-Takahashi identities
(WTD) [1, 2] play an important role in various problems
in quantum field theory, for example, they provide a con-
sistency condition in the perturbative and non-perturbat-
ive approach of any quantum field theory and the proof of
renormalizability of gauge theories [3]. In the Dyson-
Schwinger equations (DSEs) approach, the fermion-bo-
son vertex function is an important quantity to be spe-
cified. To use DSEs for actual calculations, we must arti-
ficially cut off the coupling of the n-point Green’s and the
higher-order Green’s function to properly close the DSEs.
If one can express the three-point vertices in terms of the
two-point functions, the DSEs that consist of an infinite
set of coupled integral equations will form a closed sys-
tem for the two-point functions. Among the numerous
vertex approximations, the most famous one is the Ball-
Chiu Ansatz [4], except for the bare vertex approxima-
tion. How to properly break through the bare vertex ap-
proximation and the Ball-Chiu Ansatz is a highly challen-
ging problem.

In what follows, we attempt to address this area to de-
termine conditions that can make the DSEs closed. One
possible approach to this problem is to use the WTI to
constrain the form of the vertex function. However, the
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normal WTI only contains the longitudinal part of the
vertex functions, leaving its transverse part undetermined.
To find further constraints on the vertex function, Taka-
hashi derived so called transverse relations [5] relating
Green’s functions of different orders to complement the
normal WTI, which have the potential to determine the
full fermion-boson vertex in terms of the renormalization
functions of the fermion propagator [6]. Subsequently,
He, Takahashi [7, 8], and Kondo [9], efc., found that the
complete set of transverse WTI and longitudinal WTI for
the vector, axial-vector, and tensor vertex functions can
form complete solutions for these vertex functions in
four-dimensions gauge theories. When this ignores the
contribution of the three integral-term involving the
Wilson line and chiral limit m — 0, the full vector vertex
functions are expressed in terms of the two-point func-
tions. Subsequently, Pennington and R. Williams [10-12]
tested the transverse WT identity for the fermion-boson
vertex to the one-loop order.

Several authors also attempted to study this problem
in various ways, such as via constraints [13-19] and dir-
ect numerical solution [20-24]. For instance, Qin efc.,
[25] consider the coupling of a dressed-fermion to an
Abelian gauge boson, and describe a unified treatment
and solution of the longitudinal and transverse WTI. The
vector vertex is discussed by using twelve independent
tensor structures. What we need to emphasize here is that
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although people have made important progress in con-
structing the fermion-boson vertex functions, it is still not
possible to represent the full vector, axial-vector, and
tensor vertex functions in the four-dimensional gauge the-
ory by two-point functions. That is to say, in four-dimen-
sional quantum electrodynamics (QED), one cannot con-
struct a completely closed DSEs by three-point Green’s
functions and two-point Green’s functions.

However, when the dimension of the gauge theory is
reduced, it will change significantly. For example, in the
case of two-dimensional gauge theory, Kondo first poin-
ted out in Ref. [9] that “the transverse together with the
usual (longitudinal) Ward-Takahashi identity are applied
to specify the fermion-boson vertex function. It is espe-
cially shown that in two dimensions, it becomes the ex-
act and closed Schwinger-Dyson equation that can be ex-
actly solved”. Because QED; can be regarded as an ef-
fective theory of high temperature superconductivity or as
a toy model of quantum chromodynamics (QCD), this
makes the research on QED; particularly interesting (re-
lated details can be found in the relevant literature in Ref.
[26]). Thus, a very natural question arises, can people ob-
tain a completely closed DSEs in three-dimensional QED
(QED)?

The main purpose of this work is to attempt to con-
struct a closed DSEs by three-point and two-point Green’
s functions in the case of QEDj;, based on normal and
transverse WTI. In addition, given that there are two dif-
ferent expressions of the y matrix in QED;, we will also
discuss the effect of different y matrix representations on
the full vertex functions.

2 Full vertices functions
2.1 Vertex functions in N-dimensional gauge theory

The longitudinal (normal) WT identity determines its
divergence, i.e., d,I*(x;y,z). The transverse WT identity
[5] specifies the curl of the vertex function
T (x;y,z) — 0"TH(x;y,z), where T*(x;y,z) i1s the fermion-
boson (photon) vertex function. This was derived by
Takahashi in 1986. The transverse Ward-Takahashi iden-
tity can be converted to

FOIT jOW P (2)I0) = IO j )y (MP()I0), (1)
where j(x) is the current operators. The above relation is
valid for both QED and QCD.

First, one introduces two bilinear covariant current
operators,

1.
VAR (x) =Zw<x>[[yp,cr“VW]w<x) =g " (x) - g (%),
VAR (x) ="7’&w,a*”]w = g™ (x) — g j*(x). )

One needs to calculate the curl of the time-ordered
products of the fermion’s three point functions involving

the vector, axial-vector, and tensor current operators,
namely  j*(x) = g0y Y(x), 7 (x) = P(x)oP(x), and
j’s’(x) = y(x)y*ys(x), respectively. Then the transverse
WTI for fermion’s vertex functions can be obtained by
the curl of the 7 products of the corresponding fermion's
three-point function

a3 COIT V"D o ()i (2)[0)
= L0 "D W (2)I0) = OIT D (MP(2)]0). (3)
For the convenience of the discussion in N-dimen-
sional gauge theory, we only use the relations of gamma
matrices that do not depend on the space—time dimen-

sions and doe not introduce the ys matrix, which can be
expressed as follows

i
Y, ¥ Iv =2¢", z[y”,yv]zv =o',

1
S0y = ilg™y =8 4)

There are two ways to compute the curl of the time-
ordered products of the above three-point functions; one
is the canonical quantization method, and the other is the
path integration method. The derivation is provided in the
Appendix. Through the canonical quantization and path
integration method, we arrive at the transverse WT rela-
tions for the fermion’s vertex functions in N-dimensional
gauge theory in the configuration space,

FOIT 7 (O F(2)]0) — 3 COIT j* (X (¥ (2)|0)
=1im (9 - a;xom/‘/(x')%{yp,o-f”}U(x',x>w(x>w<y>zz<z>|0>
+ict” 6% (x = )OI TY (X (2)|0)
+iOITY () (X)0)* 5 (x — 2)
+2m{0| TP(x) o Y (X)W ()P (2)|0) (5)
and

FOIT " () (F(2)I0) — 0" COIT (X)W () (2)|0)
1 _
=- 5{a*”,y”}64(x—y><0|w<x>w<z>|0>

- 1
HOTWOW 05 ()5 (x=2)

, - 1 -
=@ - OTEE) 5 [ o U w0
= (@' + 3 NOIT P )T UK, (W E()I0).  (6)

2.2 Anomaly

The symmetry of classical theory may be destroyed
by quantum anomaly, and there is a corresponding anom-
alous WT identity [27, 28]; this must be considered in ad-
vance when studying the full vertex functions. In four-di-
mensional gauge theories, by using the perturbative meth-
od and Pauli-Villars regularization and dimensional regu-
larization, Sun, et al., [29] found that there is no trans-
verse anomaly term for both the axial-vector and vector

073105-2



Chinese Physics C Vol. 44, No. 7 (2020) 073105

current. The absence of transverse anomalies for both the
axial-vector current in QED, theory and vector (tensor)
current in QED; theory are also verified [30]. Thus, in the
case of transverse WT identity, one does not need to dis-
cuss the problem of transverse quantum anomalies.
However, the quantum anomaly of longitudinal WTI
draws our attention.

2.3 Representation and full vertices functions

In the above, we established the relationships of trans-
verse WTI (5, 6) using only matrix relations (4), which is
suitable for N—dimensional time-space. As we will see
shortly, the representation of symmetrized part {y”,c*"}
depends on the space—time dimensions. In 3+ 1 dimen-
sions time-space, substituting {y”,0*’} = —2e”*"!y,y5 into
transverse WTI (5, 6), it is easy to find that our results are
exactly the same as those given in Ref. [7]. This can be
seen as a self examination of the transverse WTI (5, 6).

Here, we turn to consider the 2 + 1 dimensional case,
and we choose the following gamma matrices

0 3 1 _ .1
Yy =0, Yy =10,

Vosio?, Slo) =, %)

where o' denotes the Pauli matrix. In this case, we do not
have the freedom to construct additional gamma matrices
that anti-commute with all y* in the 2 x2 representation.
This means that the flavor symmetry of fermions is the
same whether, they have mass or not.

Substituting relations (7) into Egs. (5), (6), the trans-
verse Ward-Takahashi identity for the vector and the
tensor vertex can be written in momentum space by intro-
ducing the standard definition for the three-point func-
tion,

¢'Ty(p1.p2) — 4Ty (p1,p2)
=—iSE (ot =i S ¢! (p2)
+i€"" (p1p + p2p)ls (p1,P2)
P—y . dgk Ny
=2iml'y (p1,p2) =i | ——52ke€"Ts(p1,p2.k)  (8)
(2m)
and
TR(p1.p2) =4’ T (p1.p2) +¢' T4 (b1, p2)
=¢"'Sp (p1) - ™S E (pa), ©)
where I's,I"), I are the scalar, vector, and tensor vertex
functions, respectively, and g = (p; —k) — (p2 — k). The last
term in Eq. (8) is called the integral-term, involving the
vertex function Is(py, p2;k) with the internal momentum

k of the gauge boson appearing in the Wilson line, which
is defined by the Fourier transformation

f dad &2 x0T PG )Y () U (x', 2)10)-
el(Prx=paxa=(pi=k)x +(p>=k)x)
=(27)’8°(p1 = p2 = @iS F(p)Ts (p1, P2, )iS F(p2)-
The integral-term to one-loop order in four dimensional
gauge theory has been calculated in Ref. [11].
Noting that if one chooses the basic fermion field to

be a four component spinor, the three 4 x 4 y matrices can
be assumed as

03 0 1] o1 0 2 _ .| 02 0
0 -5 |7 o0 o [T 0 o |
(10)

where we can define a 4 x4 matrices y° that anti-com-
mute with all y*

0

0 1
3_.
7"[1 0

This is different from the 2 x 2 representation, where there
is no ys matrix and dynamical chiral symmetry breaking.
Because such differences in symmetry are expected to
equally manifest in the vertices as well as the propagat-
ors, it can be expected that the vertices cannot be equal in
these different representations.

At this point, we have

1 1
S0Py =y, m=[0 2,} a1 = 0.
(12)

Thus in this case, through similar derivation steps, the
above relation Egs. (8), (9) will be modified as follows:

"IV (p1.p2) —¢'T,(p1.p2)
i PHY i &k v
=i (p1p + p2p)Tm(p1,p2) =i Wﬂcpep Cy(p1,p2,k)

—iS 7 (pr)o — i S 7 (p2) = 2imI% (p1.p2) (13)

and

,75=i[ (11 é] (11)

TP, p) =T (p1, p2) + ¢ T (p1, p2)
="' (pryym — ¢ ymS T (p2), (14)
where I'y; denotes the vertex function (O] (x)y () (y)
¥(2)|0) in momentum space. Comparing Eqs. (13), (14),
with Egs. (8), (9), it is found that the full vertex function
does depend on the different y matrix representation we
use.

The above Egs. (9), (8) show that the transverse part
of the vertex function is related to the inverse of the fer-
mion propagator and other vertex functions, namely the
full vertex functions are coupled to each other and form a
set of coupled equations. For instance, Eq. (8) shows that
the transverse part of the vector vertex function is related
to the fermion propagator, the tensor and scalar vertex
functions. Noting that the transverse WT relation for the
tensor vertex functions in four-dimensions has a psudo-
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scalar vertex functions term [7], which is different from
the case of three-dimensions (see Egs. (9) and (14)). The
reason why the result in three-dimensions is quite differ-
ent from that in four-dimensions is due to following facts:

(a) ¥y matrices: The y matrices representation in
QED; is different from that in QED,, and the commutat-
ive relations of y matrices are also different (see the Eq.
(A11), where [yp, {aﬂV,yﬂ}] = 0 in QED;, but not in QED,),
which leads to the transverse Ward-Takahashi identities
in QEDj; for vertex functions to be simpler;

(b) Integral-term involving the vertex function: In
QED,, the transverse Ward-Takahashi identities for the
vector vertex function contain the integral-term in-
volving the axial-vector vertex function, but the axial-
vector vertex function cannot be expressed by the two-
point Green ’s function. However, in QEDj3, the vector
vertex function contains the integral-term involving the
scalar vertex function g, f %kaef’/”l" s(p1,p2,k), while
the scalar vertex function I's can be expressed by two-
point Green’s function (refering to Eq. (18)), due to the
antisymmetry of e’*¥ and o*.

For the above reasons, we do not need to make any
approximation in the current study to obtain completely
closed DSEs in QEDj;, which is the largest difference
between our present and past studies. Now, we begin to
derive the complete expression of the vertex function.

The well-known normal Ward-Takahashi identities

gl (p1.p2) =S 7 (P1) =S 7 (p2)
iqu L (p1.p2) =S E' (p1)Y” +7"S ' (p2)

+2mIY,(p1, p2) + (p] + P s (p1.p2), (15)
denote the longitudinal part of the three-point vertex
function, which along with the transverse WT relation
form a complete set of WT-type constraint relations for
the fermion's three-point vertex functions in QEDj; theor-
ies. Then, by this complete set of constraint relations, one
can obtain complete solutions for these vector and tensor
vertex functions.

Evidently, in four-dimensions space-time, it is ex-
tremely difficult to consider the full contributions of the
above three Wilson integral-terms in Egs. (5), (6). To ob-
tain a set of closed DSEs, He [7, 8] first ignored the con-
tribution of the integral-term involving the vertex func-
tions and observed what follows. However, in three-di-
mensions space-time, we find that the full vertex func-
tion has a very simple expression (no need to ignore the
integral term), which can be expressed in terms of the fer-
mion propagators. Using Egs. (9), (8) and normal Ward-
Takahashi identities Eq. (15), the complete expression in
2 x 2 representation for the vector vertex can be obtained
as follows

m{qﬂ[s Fon=S7 )

+iqv[s (et + oS (Pz)]

I (p1,p2) =

+2m[S 7 () 4987 (o)
+ [2m(pﬁ +ph) =i q,(pip + pzp)]Fs (p1,p2)

[ &k
+lfkapqvepwrs(Pl,pz’k)}- (16)

Herein, the tensor vertex function is
7T (p1.p2) =i{S P oD@y - gV —ige”)
+(@Y =gV +igae™ St (p2)
+2m[g" Ty, (p1.p2) — 4" T (p1. p2)]
\%4

1P+ P - (P + PITs (1 ,Pz)},
(17)

where
P+ POTs (pr. p2) = 2m[s S(p)-S7! (Pz)]

S PO+ 79 S 7 (P2)]~
(18)

It is highly interesting here to examine the possible
kinematic singularities that the dressed vertex function
Egs. (16)—(19) may have. In the case of the chiral limit,
we have

Ts (p1,p2) = m <[s7 pov+rsiien] (19)
there is no singularity for Ts(py,p2) [in the limit
gy — O(which requires both ¢* >0 and p? - p} in
Minkowski metric, it is also a limit in Euclidean space)
and the limit 4> — 0 for p? # p3 in Minkowski metric]. In
the case of the non-Chiral limit, there is also no singular-
ity for Ts(pi,pp) in the limit ¢* —0 for p?#p3 in
Minkowski metric. Thus, the vector vertex function F"’/
does not suffer from singularities in the limit ¢g> — 0 for
p% # p%, due to g, # 0. However, the tensor vertex func-
tion I (p1, p2) always has singularity. This singularity is
worthy of careful consideration.

The full vertex functions depend on the different y
matrix representation we use. If we replace I's with T, in
the above equation (16) we obtain the vector vertex func-
tion in 4 x4 representation. Similarly, by replacing e
with €1y, in the equation (17), subsequently we obtain
the tensor vertex function in 4 x 4 representation. The full
vector and tensor vertex functions in three-dimensional
space-time can be expressed in terms of fermion propag-
ators only, which is different from vertex functions in the
four-dimensional space-time (in four-dimensions gauge
theory, only in the chiral limit, I}, and I, at tree level are
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expressed in terms of the fermion propagators). On the where the full fermion propagator S~!(p)=7y-pA(p?>)+
basis of the above, at this, point the closedness of the  B(p?). As mentioned above, the vector vertex function I',
DSE can be established. does not suffer from singularities in the limit ¢g*> — 0 for
p? # p3 and g, # 0 in Minkowski metric. In this case, sub-
stituting the vector vertex function F‘“, (16) into the

Let us now discuss two important two-point Green's  photon polarization vector (21), then the photon polariza-
functions in QEDj3, namely, the photon propagator and  tion vector IT*(g) is obtained, as shown in Eq. (B1) of the
the fermion propagator. The photon propagator can be Appendix B.

written as The DSE for the fermion propagator of QED; in mo-

2.4 Two-point Green’s function in QED,

v tu ,
D @) =4 gﬂﬁ(%‘ 1)%61 S, Qo) o P
7 _ i
| N 570 === S [ Ep'sim)
where g=p; —p, and [1*”(q) is the photon polarization vector (2m)
NG [ ) XT7(p1, p2:(p1 = p2))Dyu(p1 = p2)- (22)
ny _ v

@)= 50 f EpiTroly" S eIl (P1p)Sr(PIL pipally, substituting Eqs. (20)~(21) into Eq. (22), we ob-

(21) tain the closed DSE for the fermion propagator in QEDj,

2
2B(p3) =TrS 7 (p2) = Tr(p, —m) - f & p1 Tr(y*S (p T (p1, p2; (P1 = P2)IDyu(p1 = pa).

(2 @n)?

P f &p, Doylp1 = p2) { = 120 p1, pas AGDAG) + 204 A DB
(2ny} (g% —4m)[piA2(p}) - BX(p})] :

— 2P, B(pDA(pY)] + iqﬁ(ze”“[ 2(p}) = B (D) + [ip1pp2c MY (p1, p2)APDAP))
+4ip1 (=" + 8" MAPDB(p) — i4pap(88" — "' B(PDA(P)) - 2eﬂ”B(p%>B(p§)])

+2m(2g‘”[p A2(pD) = BX (D] + [4p1,p20- (88" — 88" + "7 8" )A(P)A(p3) — 2ie"” p1,A(p])B(p3)

[2m(p} + py) — i€ ¥ qa(pip + pap)]

—61;4(13}1' +P’;)

+[4p1pp2c (887 — 878" + 8" g VA(PHA(p3) — 2ie p1,A(pT)B(p3) + 2ie"™ pa, B(pA(p3) — 2g*"B(p%>B(p§)1)

+2ie" prB(pPDA(p3) - 2gWB(p%>B(p§)1) + [qr(zgf" [P{A* (D) = BX ()]

—2m[—2ieﬂp”p1ppzaA<p%>A<p§)+2p‘;A<p%>B(p§>—%B(p%)A(p%)]]

&% )
+1 (27)32]([7(],16'0 g

1 ot o T T g
i (PP T - A DAGY
M 2

+4p1pPac (8P g™ — 78" + 8" ¢ NA(PDA(P]) — 126 p1,A(pDB(p3) + 26" p3, B(pDA(P3) — 28" B(p}) B(p3)
= 2i"" p1,A(p)B(p}) + 2ie"™ pap B(PDA(p3) — 28" B(p1)B(p;)] + 2m[—i2€"7 p1, p3-A(PDA(P3) + 2P A(p})B(p3)

—2P4 B(pHA(P3) + 2i¢"” p1,pacA(pDA(P) — 2PF AP B(p3) + 2p’:B(p%)A<pi>])},

(23)
and
2
205A(P3) =TS 7 (p2) = Tr(y Py A(p3) + V" B(p3)) = 295 — (;;)3 f & p1y VS (PO (P, P23 (p1 = p2)) Dy (p1 = p2)
AT iez 3 DVﬂ(pl_pZ) v 2 42002y p2e 2N b} T v 2 2
=205 oy | P e (1 P A D~ B pipa o piOAGDAG)
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—2i€™ p1,A(pT)B(p3) + 2i€™ pr, B(p))A(p3) — 2g”ﬂB<p%)B(p§>]] +ig, [4i<—g"”g“ + g g ptA*(ph) - B*(pD)]

+[i4p1pp2e E™ T A(PHA(PS) +ip1, 0 A(pT) B(p3) — ipap M™ Y B(pA(p3) — 4i(—g™ g + g ") B(p}) B(p3)]

+2m

= 2i€™ [pIA%(p]) — BE(pD]+ [P1pp2e M A(PDA(D3) +4p1,(8™ 8" — g7 8" + &7 g")A(pD)B(p3)

~Apay g™ — g + g g BDAG) + 2™ BpDBA|

| 2mpy+py) - i€ qa(pip+ pap)]
—-qv(p\ +p3)

[ ( 25 A% () — BA(pD)] + [p1pp2e M A(PHA(PY)

+4p1,(ghg” — g7 g™ + gV g VAP B(p3) — 4pap(ghg” — &7 8" + & " )B(pA(p3) + Zié’””B(p?)B(pi)])

+ 228 P (PD) ~ B~ 4™ p1 2~ T + PEPDADAD) - 2i€™ pr, A DB

2kaq/3€‘”’ﬁ

+ 20 o, BRDA() =26 B B(p3)]) ]*’f @ny’

_qv(pl + pz 2kv)

[qv([plppaaM””"‘”A(pf)A(pi)

+4p1,(gH " — g7 g + g gAY B(p3) — 4p3p (8™ g — g ¢ + &7 8" B(p1A(p3) + 2™ B(p1)B(p3)]
+[P1pPac M™P"T A(PDA(PY) +4p1,(g™ 8" — g7 8" + ™ " YA(PDB(p3) — 4p2p(g™ g — g™ 8" + &7 ") B(pD)A(p})

+ 2157r,uvB(p1)B(p4)]) + 2m([4(g””p]p3 - plp’l +p3p”)A(p1 )A(p3) 216””‘0]71[,14([)%)3(1)3) + 21€”“pp3pB(p%)A(p3)

—2¢™B(p})B(p3)] — [4(g™ p1ps — PT P, + PiPDAPDAWD) — 2i€™ p1,A(p})B(p3)

#2077y, BpDAGE) - 28" B B @4)
where
E™Pe =%[Tr()/77"7'° YY) =Tr" Y yYy'y' vl = 48" 8"~ g"8") - g% (88" = g"'¢")
+ g™ (g g — g g7 + gl gy — g (g 8" — g g + ' g")
+ g’“’( g™ +g"g™),
gt = [Tr(u/’ PVYY)-Trey Yy y'y)l = (M’W“ M™OV) = —2ig e + 2ig™ ™ — ig™ e

+ 126" (g g, — 8 g+ Eng™) + ig™ 6"‘” — 126" (8" g5, — 8" g + g™,
l (MO _ iy = v, (25)

Based on the coupled equations satisfied by A(p?) and
B(p?) above, in principle we can strictly solve the com-
plete fermion propagator by the numerical iterative meth-
od, after which the chiral symmetry spontaneous break-
ing and confinement characteristics of QED; can be ana-
lytically analyzed. However, importantly, the coupled in-
tegral equations Eqgs. (23), (24) are extremely complex,
which is a significant challenge for the rigorous numeric-
al solutions. We will address this problem in future work.

3 Summary and conclusion

To summarize, we first derive the transverse WTI of
N-dimensional gauge theory by means of the canonical
quantization method and the path integration method, and

[
subsequently, using the characteristics of the y matrix
representation in three-dimensional gauge theory, it is
shown that the normal (longitudinal) WTI together with
the transverse WTI form a complete set of Ward-Taka-
hashi type constraint relations for the fermion-boson ver-
tex functions in QED; theory. By solving this complete
set, the full scalar, vector, and tensor vertex functions
(Ts,I,,I) can be expressed in terms of the fermion's
two-point functions, which is completely different from
the situation in four-dimensions gauge theory (where only
in the chiral limit, I, and I, at tree level are expressed in
terms of the fermion propagators). It is found that the full
tensor vertex function in 4 x4 representation is different
from that in 2 x2 representation. This means that when
we study the dynamic behavior of three-dimensional
gauge theory related to the tensor vertex function, we
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must specify the y matrix representation in advance. Fur-
thermore, we examine the possible kinematic singularit-
ies that the dressed vertex function may have, and find
that the vector vertex function I "‘, does not suffer from
singularities in the limit g - 0 for p? # p3,¢, #0 in the
Minkowski metric. Then, substituting the vector vertex
function into the DSEs for the fermion and photon
propagators, finally we obtain the closed DSE in QED;.
Based on this set of closed coupled nonlinear integral
equations, in principle we can numerically solve the two-
point Green functions and three-point Green functions by
a numerical iteration method to analyze the mechanism of
the chiral symmetry spontaneous breaking and confine-
ment in QED;.

Finally, we need to emphasize that low-dimensional
gauge theory has a very wide range of applications in
condensed matter physics. In particular, QED; was sug-
gested to be the effective low-energy field theory for the
anomalous normal state of high-7, cuprate superconduct-

Appendix A

First, we introduce two bilinear covariant current operators,

1._
V) =2 00| 7Ly oo = g 7 = g o,

VAR (x) :%’&w, Y = g (x) - g (). (A1)

In the canonical quantization method, we note here the general
identity [3]

FUOITVH @ OO ..Y(x)F(3n)|0)
= Z6ﬂo<0|T{VW‘”<x>,w(xn]a(x“ — X W)
i=1

YDV @0, G )16 ~ y?)}

XY PG - PP Y (x)F(a)I0)

+OIT AV O NP () - YT )I0), (A2)
where the delimiter r , term above denotes its omission. The last
term in above equation leads to a similar situation of
OITFEIN(E™ + 3 WONH)I0), normally, where N is matrix with
an anti-communication relation. This means that the transverse WT
identity exhibits a different appearance, depending on the dimen-
sionality of space-time, because the anti-communication relation
depends on the space-time dimension.

Substituting the relations (A1) into Egs. (A2), there are
FpOIT VA (O ()b (2)10)
=" OIT J" () P(2)I0) = 8" (OIT j* (X)) ()I0)

=6 =y 10 Y HOTU (D0

+ <0|Tw<y)&<x)|0>§[a”,yolyoé3<x—z>
+{0IT 3, VA O (F(2)I0) (A3)

ors [31-33]. It also provides a promising field-theoretic
description for such exotic quantum many-body state as
U(1) quantum spin liquid [34]. When massless Dirac fer-
mions are coupled to U(1) gauge boson, they acquire a fi-
nite anomalous dimension due to the strong gauge inter-
action [31-33, 35]. This may lead to intriguing Luttinger-
like behaviors, which has been used to understand the ab-
sence of well-defined quasiparticle peaks in the normal
state of high-T, cuprate superconductors [31-33, 35]. To
reveal the nature of these Luttinger-like behaviors, one
needs to compute certain types of Green’s function very
carefully. The gauge invariance must be preserved dur-
ing the analytical calculations [36—40]. In principle, these
Green ’s functions can be self-consistently obtained by
solving a close set of DSEs. We expect that the generic
WTI obtained in this work would be utilized to calculate
the gauge invariant Green’s functions by means of DSEs.

We thank Prof. Guo-Zhu Liu for very helpful discus-
sions.

and

Bp(OIT VA ()yr() i (2)10)
=0T " (W OPRI0) = " OIT * (W (P (2)I0)

1 _
=95 [P 1 ot e wxoiTuiI0)

_ 1
+<0|Tw(y)w<x>|0>1[[y‘),om,y”]y%“(x—z)
+(0IT 3, VP (g ()F()I0). (A4)
To relate the last term in the above equation to a definite
Green’s function and to make the equations above more concise,
here one needs to consider two conditions. First, the equation of
motion for fermions with mass &(i(p—+ m) = O,(iﬁ) —m)y = 0s is intro-
duced to make the last term more concise. Thus the term y#3,y(x)
and d,J(x)y* need to be shown in the equations as
(01T, VP (x)p(y)(2)10)
=(0lig(x)a*" Y Do COP (P (2)10)
= {01id, (x)y° " (X)) (2)I0)
HOWCOZ ™ )T = B WCROIFI0) (AS)
and

(OIT 3, V" () (»)d(2)|0)
1 _
=5 O ™y + Y Y DO EWEI0)

1 _ _
+ 200,07y T 4y ™ WO WOII0)
~ (T YD PO, (A6)

To further simplify the calculations, here we need to use the fol-

lowing relations to the first item of Eq. (A6).
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1 _
10 [P Ty + oy P WO GWI0)

1 _
=5 P (0 oy Y OPU(2)I0)
1
+ 5Oy Y O WP ()I0)

— QWA GE T OW0), (A7)

where we have defined 1[y”,c*"y] = A*"4. In a similar procedure,

we derive the second (A6), and define
Py o] = B

Second, we must move the derivative operators out of the 7-
product. To this end, we can write the form (0|7 (x)Ny(x)y(y)(2)0)
as (0|7 (x" )Ny () (y)(z)|0) and then take x — x. The above new ex-
pression including the nonlocal current is not gauge invariant. It

needs to introduce a Wilson line U(x,x’) = Pexp[-ig L o dy?A, (],

item of Eq.

joining the two space-time points (x,x’) to ensure that the current
operators are locally gauge invariant. The comprehensive use of the
Wilson line, the Eq. (A2) and the equation of motion for fermions,
there eventually are two relations
(5}‘,/ +OOITG MUK, g (W (P)I0)
= OITFHOMP G + G OFI0)
=6* =)y M¥HOITY(0)d(2)10)
+OITYF@IMH 5" (x~2) (A8)
and
(5i/ = INOITGYMP UK, (WP R)I0)
—OITFHOMP (G~ G OFI0)
=8 (x=y)y" M* X OIT Y (x)d(2)|0)
—(OITYFRNM* 08 (x~2)0
= 2igAp(OITF(OM* YW () ()I0), (A9)
where p7e#v2 denotes a matrix.

Taking into account the above equations, substituting relations
(A7, A8, A9) into relations (A3, A4, A5, A6), we arrive at the
transverse WT relations for the fermion’s vertex functions in gauge
theories in configuration space

FOIT J CHWOFI0) — 3 OIT F (O )E)I0)
= 1im (@ ~G)OT I 30,0 UG W)}

+i0# 6% (x = YOI Y(x)P(2)|0)
+IOITY NP0 * (x - 2)
+ 2O TP YW GNP (2)I0) (A10)

and
FOIT " (W GB()I0) — 8 (OIT LX) (y)d(2)[0)
=- %{ow,y‘ 6% (x = OITY(x)P(2)|0)
+<0|Tw(y>&<x>|0>%{W,y*}a‘%x—z)
- @ ~opOraeyg [y o U uewminaio
= (@) + P INOITI ) UK (W (G)FH)I0). (A1)

In the path integration method [9], in the Abelian case, there is the
identity

(Y [0y — ieAu ()W (x) — my(x) +n(x))s = 0

(Wi [(19_# +ieAu ()] +mip(x) = 7(x))y = 0. (A12)
Hence, one needs only to pay attention to the fermionic part
L = iyH (0 — iAW —dmp + 7y + . (26)

If one identifies A, in Lr as A, = A;T* with the generator 7 of the
gauge group G, the following relations also hold for the non-Abeli-
an case, irrespective of the gauge part. Then, one can multiply Eq.
(A12) by the matrix S from the left (right), where S may be a mat-
rix of spinor, flavors, and colors spaces. Operating the differential
operator %( %) to the resulting equation, an then adding or sub-
tracting, subsequently taking derivatives of both side with respect
to % and % and setting all the source terms to zero, we obtain
the transverse WT identity

OIS P WO W)

= <«z(x)§[s,f1<3p = D P ONFD)e
— (TS, Y A W) WP ())e
+(GOOLS, MY (x); Y E(D))e
+WOW))S 6 (x = 2) + S WP (x—y) (Al4)

and

OIS 1S Y WO WO

== F5(8.7)(F, = TIRUOIE)e

= YOS, Y AW (), Y (NP(2))e

PO, M (x); Y (D)

—WOW0)eS 8 (x=2) = S (WP(R)ed! (x ). (A15)
LetS =5,®5;®S, be a direct product of operators within the space
of spinor, flavor and color. If choose S =I;®If®I. is chosen, we
obtain the normal WT identity. Fnally, the transverse WT identity
for vector current is obtained from Eq. (Al4) by choosing
S=0,y®Ir®I.

From the derivation of the above formula, the transverse WT
identity exhibits different appearance depending on the dimension-
ality of space—time. However, it is not easy to calculate the trans-
verse WT identity for tensor current. To use the above relations
(A4, A15), we need to slightly modify the bilinear covariant cur-
rent operators (Al):

1.
V) =2 00| Dy o = 7 = g o
_ 1 _
=53 [ ) - g o) (A16)

Through the above relations (A14, A16), the transverse WTI for
fermion's vertex functions can be obtained by

AOIT VA () (y)ir(2)|0)
=002 (8. WOV
= PP Y Y I(D))e
=0 OIT " W OPDI0) = FOIT PRI, (A17)
where § = S {o#”,91}. Then it can be verified that the the transverse

WT identity (A10, A11) are obtained by the path integration meth-
od (Al4, A15).
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As shown above, the transverse and longitudinal WT identities
in the four-dimensional gauge theory do not specify the vertex
function with a two-point Green’s function, thus forming a closed
DSEs. However, in the case of low-dimension gauge theory, such
as QED;, the basic situation changed significantly. In QED; theory,
we find that a set of transverse WT relations (for the vector and

Appendix B

tensor vertex function) are coupled to each other, and the trans-
verse relations together with the longitudinal WT identities would
lead to a complete set of WT-type constraint relations for the three-
point functions. Then, the complete expressions for three vertex
functions can be deduced by solving this complete set of WT rela-
tions.

As mentioned above, substituting the vector vertex function I, (16) into the photon polarization vector (21), the photon polarization vec-

tor is obtained as follows

iNse?

1Y () =
@) =50

2p,A(p3)

f &Ep1Trply*S F(pOEY (p1.p2)S F(p2)]-

2p4 AP} J

iNfe2 fd3 1 T { V[
= p] g _
@n) (> —4m?) p3A2(pH)-B2(p))  pIA2(p)) - B2 (pY)

(i4p[g"g" — g g IA(p) — 26 B(py)  idpiol-g"g” + g g 1A(p]) — 2¢” B(pY)
+lq,{( + )

P3A%(p3) = BX(p3)

—2payePA(p3) — 28" B(p)

PIAX(p)) ~ BX(p})

+ Zm[
PA2(p3) - B2(p3)

—i2e"" p1,A(p?) - 28" B(p?) ]
PIA2(p?) - B2(p?)

| i+ p) - i€ qa(p1p+ pap)] ( [ —i2p2p €™ A(p3) - 28" B(p3)
T mae)-Bo)

—-q-(p] + p3)

[ 205A0p)  200AGD)
P3A () = BX(p3)  piA%(p)) - B(p}

—i26" p1,A(pT) — 28" B(p?) ]
PIA% ()~ BX(p)

Pk avp 4 [C* (3, p1, p2) + OM7 (pa, p1, p2)1 + 2mlF* (p3, p1, p2) — F*(pa, p1,p2)
+i kanqﬁe >

Bl
—-qo (P +py o

where we used this relationship ¢ = p; — p2,p3 = p1 —k, ps = p» —k, and the relations of CH(p3), OF7(p4), F*(p3), M¥P™ are defined as follows:

1

CH™(p3, p1.p2) =Try"S p(pDSF (p1 = k)Y S p(p2) =

[P2A2(p}) - B2(pD)[p2A%(p3) — BX(p3)]

X [P1pp3ep2a M A(PDAPDHAPS)

+4p1op2o (878 — 8" + 8" g NAWDAP)B(PS) — 4p3ppac (88T — 88" + g ¢ HB(PDA(PA(PS)
+2i€"™ pop B(PDA(P3)B(P3) —4p1op P30 (887 — 847 8 + 8" 8P )A(PD B(PDA(P3) + 21 p1,A(pD)B(p3)B(p3)

- 2ie"" p1, B(p)B(p)A(p3)+28" B(pH B(pD)B(p3)], (B2)

1

O*(pa, p1,p2) =Try*S r(p)Y'S B (pa)S p(p2) =

[PTA2(pD) - B2 (pDIp3A%(p3) - BX(pD)]

X | p1opac paMPTT A APDAPDAPY) +4p1ppac (8087 — 84787 + g7 8 A(PTA(P3)B(p3)

—4pappro (878" — 8™ + 8" gP)B(PDA(PDAPS) + 2ie"™ prp B(PDA(pI)B(pS)

—4p1opac(8 g™ — 88" + 8" g AP B(P)A(PY) + 2 p1,A(p])B(p3)B(p])

—2i€"™ pa, B(p])B(p3)A(p3) + 28" B(pD)B(p3)B(p3) |, (B3)

1

Fr(p3, p1,p2) =Try*S p(pDS 7 (p3)S p(p2) =

[P2AX(pY) - B2(pD)1[p3A%(p3) - B2(pD)]

X [4p1ppac p2a(g 87" = g7 ¢t + @ P TIAMPDAPIAD) — 2i” piyp prr A(PDAWPHB(p3) +2ip3ppac e BIrHA(PDA(P3)

=204 B(PDA(PD)B(P3) + 2ip1,pas € A(pDB(pDA(PI) - 21 A(p})B(p3) B(p3) + 2P B(pD B(PDA(p3)] (B4)

M;tvp‘r/l — Tr(yy,yvyp,y‘r,y/l) — _Ziguvep‘rl + Zig,upEV‘rA _ 2l-gu76vp/l + i4€y/lm(gvpg;rn _gvrgl’;l +g;gp‘r). (BS)
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