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Abstract: This study employs the relativistic mean field theory with the Green's function method to study the single-

particle resonant states. In contrast to our previous work [Phys. Rev. C, 90: 054321 (2014)], the resonant states are

identified by searching for the poles of Green's function or the extremes of the density of states. This new approach is

highly effective for all kinds of resonant states, no matter whether they are broad or narrow. The dependence on the

space size for the resonant energies, widths, and the density distributions in the coordinate space has been checked

and was found to be very stable. Taking S as an example, four new broad resonant states 2g7,2, 289/2, 2h11/2, and

1j13/2 were observed, and the accuracy for the width of the very narrow resonant state 149/, was highly improved to

1x107® MeV. Further, our results are very close to those obtained using the complex momentum representation

method and the complex scaling method.
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1 Introduction

The single-particle resonant states in the continuum
play crucial roles in the formation of halos in exotic nuc-
lei [1]. For example, studies by the relativistic continuum
Hartree-Bogoliubov theory suggested that giant halos can
be formed in the neutron-rich Zr and Ca isotopes if more
than two valence neutrons occupy the resonant states with
low angular momentums [2, 3], and the existence of a
possible deformed halo in ****Mg and 22C is mainly de-
cided by the single-particle states around the Fermi sur-
face, including the resonant states in the continuum [4-7].
Consequently, the exploration of resonant states is be-
coming increasingly important, attracting further atten-
tion.

During the past years, a series of approaches have
been taken or developed in the exploration of the single-
particle resonant states. Some approaches are based on
the conventional scattering theories, such as R-matrix the-
ory [8, 9], K-matrix theory [10], S-matrix theory [11, 12],
Jost function approach [13, 14], and the scattering phase
shift (SPS) method [11, 15, 16]. Further, some tech-
niques that are used for bound states have also been ex-
tended to study the single-particle resonant states, such as
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the complex momentum representation (CMR) method
[17-19], the complex scaling method (CSM) [20-28],
complex-scaled Green's function (CGF) method [29-31],
real stabilization method (RSM) [32], and analytical con-
tinuation of the coupling constant (ACCC) method [33-
45].

The Green's function (GF) method [46-49]is like-
wise a successful candidate for studying resonances, as it
can treat the continuum exactly. With this method, the
single-particle spectrum covering the bound states and the
continuum are treated on the same footing, and exact en-
ergies and widths can be obtained for resonant states of
all kinds. The correct asymptotic behaviors are well
maintained for the density distributions. Further, GF is
highly convenient to combine with nuclear models. Con-
sequently, the GF method has been used extensively in
the study of the nuclear structure and excitations. For ex-
ample, by applying the GF method to the Hartree-Fock-
Bogoliubov (HFB) theory in the coordinate representa-
tion, halos in both spherical and deformed nuclei are effi-
ciently described [50-53]. Besides, the continuum quasi-
particle random-phase approximation (QRPA) formu-
lated with Green's function method [54] is developed to
describe numerous interesting phenomena, such as the
collective excitations [55-61], monopole pair vibrational
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modes and associated two-neutron transfer amplitudes
[62], and neutron capture reactions [63].

The covariant density functional theory (CDFT) [64-
67] has remarkable achievements in describing numerous
systems and interesting phenomena, such as stable and
exotic nuclei [68-71], hypernuclei [72-75], neutron stars
[76, 77], pseudospin symmetries [78-81], and r-process
simulations [82-84]. Thus, in recent years, we applied the
Green's function method to the framework of the covari-
ant density functional theory. In 2014, the relativistic
mean field theory formulated with the Green's function
method (RMF-GF) is developed, and as the first time, it
is successfully applied to study the single-neutron reson-
ant states [85]. It is also confirmed to be effective for the
proton and A-hyperon single-particle resonant states [86,
87]. In 2016, the relativistic continuum Hartree-Bogoli-
ubov theory combining the Green's function method
(RCHB-GF) is developed by containing the pairing cor-
relation, which can describe the halos very well [88].
Very recently, Green's function method is further exten-
ded to study the resonances in deformed nuclei by solv-
ing a coupled-channel Dirac equation with quadrupole-
deformed Woods-Saxon potential [89].

In our previous studies [85-87], single-particle reson-
ances were identified by comparing the density of states
(DOS) displayed by nucleons moving in the mean-field
potential with that of free particles. According to the
DOS difference between the nucleons and free particles,
the energy and width of resonant state are given by the
position and the full-width at half-maximum (FWHM) of
the resonant peak, respectively. In this approach, ener-
gies and widths can be obtained easily for narrow reson-
ances with good accuracy. However, the accuracy de-
creases for the wide resonances due to the irregular shape
of resonant peaks. In our recent study [89], a direct but
very effective approach was proposed to investigate the
resonant states by searching for the extremes of the GF in
terms of resonant states that are poles located in the
fourth quadrant of the complex energy plane. In this
study, we applied this new approach with the GF method
to study the single-particle resonances based on the RMF
theory.

The paper is organized as follows. In Sec. 2, the GF
method is briefly described. In Sec. 3, numerical details
are presented. After the results and discussions in Sec. 4,
a brief summary is given in Sec. 5.

2 Theoretical framework

In the RMF-GF theory [85], the GF is applied in the
coordinate space to calculate the densities for nucleons
and the single-particle spectrum of the Dirac equation.
The Dirac equation for nucleons in the RMF theory [64-
66] is

[a-p+V(r)+BM+S(I))n(r) = enfn(r), (1)
with the nucleon mass given by M, the Dirac matrices @
and B, and the scalar and vector potentials S(r) and V(r),
respectively.

A relativistic single-particle Green's function G(r,r’; )
satisfying the following definition needs to be constructed,

le=hOG(r,r';) = 5(r—1"), ©)
with A(r) denoting the Hamiltonian of the Dirac Eq. (1).
Starting from Eq. (2) and taking a complete set of eigen-
states i,(r) and eigenvalues &,, the GF is represented as

Girr's) = an(rwn(r’) o)

e—¢g,

which has the form of a 2 x2 matrix due to the two com-
ponents of the Dirac spinor ¢,(r),

G"(r,r'se) Q“z)(r,r’;S))

¢ rie) 6w | @

G(r.r';e) =(
Notably, the eigenvalues ¢, of Dirac equation are poles
of the Green's function in Eq. (3). Consequently, the ei-
genvalues &, can be obtained by searching for the poles
of the GF. In practice, according to Ref. [49], this can be
done with the help of the density of states (DOS) n(e),

n(e)= ) se—&), ()

which displays similar discrete J-function peaks for
bound states at the eigenvalues ¢ = g, and distributes con-
tinuously in the continuum with peaks for resonances.
DOSs n(e) in a wide energy range is calculated by scan-
ning the single-particle energy . Notably, for the con-
tinuum, energies ¢ are complex ¢ = g, +ig;, and the ener-
gies for the resonant states can be written as g, = E—il'/2
with the resonance energy £ and width T.

Taking the imaginary part of the GF, the DOSs can be
calculated by the integrals in the coordinate r space [85].
For the bound states, this is

n(e) =— }T f drIm[G"V(r,r; & +1€)
+G®(r,r;e+i6)), (6)

33

where “ie” is the introduced positive infinitesimal ima-
ginary part to the single-particle energy &, with which the
é-function shaped DOSs for bound states are simulated
by Lorentzian functions with the FWHM of 2¢. For the
resonant states, the infinitesimal imaginary part “ie” does
not need to be introduced, as the single-particle energy &
is complex. Further, when scanning the imaginary part of
complex energy &; before and after it had crossed the res-
onant states, it is found that the DOSs n(e) differ by a
minus sign. The DOSs for the resonant states can be writ-
ten as
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n(e) =o(e, — E)

—}T f drim[G"V(r,r;8) + GP (1,15 0)],
_ | ifg;>-I/2, R
- fdrlm[g(“)(r, r; s)+g(22)(r, r;e)l,

if &; < -T'/2.

In practice, we calculate DOSs for resonances by
scanning the entire complex energy range taking the first
equation in Eq. (7), and they will reverse and become
negative when &; is over the resonant states. According to
those changes, the widths of resonant states I'/2 can be
determined.

In the spherical case, the GF can be expanded as

6r.rie)= > V0.0 Ty 0.0, (®)
rr

where Y,,,(6,) is the spin spherical harmonic, G.(r,7’;€)
denotes the radial GF, and the quantum number « labels
different partial waves, which can provide the values of
the angular momentums / and j,

1
l=k, j=k—=, if k>0,
2 ©)
l=—/<—1,j:—/<—§, if k <O.

Then, the DOS for each partial wave « is

2j+1
T

ne(e) =— drlm [Q;ﬂl D, rie)+ G2 (s 8)] . (10

Practically, we perform the integrals in Eq. (10) in a
finite box and obtain an approximate DOS nR(g) for a
fixed Rpoy.

Finally, a Green's function G,(r,r";&) with angular
momentum x and complex single-particle energy & is
constructed as [47]

Gu(r,r's8) =——|00r =" (r,)g " (7 )

W,(e)
+0( =gy (neygd (8|, (1)

where 6(r—r’) is the step function, ¢\"(r,&) and ¢*(r,&)
are two linearly independent Dirac spinors

gl (re) ]
fPre) )

2)
8¢ (r,€)
22)“’8):( 2re) ] (12

obtained by the Runge-Kutta integrals in the whole r
space from the asymptotic behaviors of the Dirac spinors
at r — 0 and r — oo, respectively, and W,(¢) is the r-inde-
pendent Wronskian funciton defined by

¢ (r,€) =[

Wie) =g ro) P (ne) =gl o) f(rne).  (13)

Exact asymptotic behaviors in the origin and at infin-

ity are taken for the Dirac spinor. In particular, this is reg-
ular at » — 0 and satisfies

Jitkr)
21)(738) — Il ke-V-§ . ) (14)
P Jitkr)

where [ =1+ (-1)/*"1/2 is the angular momentum of the
small component of the Dirac spinor, k=
V(Ee-V-8)e-V+S+2M) isthe single-particle mo-
mentum for all states, and the spherical Bessel function of
the first kind j;(kr) satisfies
(kr)!

Ql+ D1’

The Dirac spinor at r — oo behaves exponentially, de-
caying for the bound states while oscillating outgoing for
the continuum, which can be written uniformly as,

Jitkr) — when r — 0. (15)

rkh" (kr)
22)(7,8) — K rk2 h(l)(k ) ) (16)
K|l e+2M 1 r

with the single-particle momentum k= ve(e+2M) and
the spherical Hankel function of the first kind hﬁl)(kr).

3 Numerical details

In this study, we aimed to compare the results with
those obtained by previous GF calculations [85] and also
those obtained by CMR [18], CSM [25], RSM [32], and
ACCC [39] methods. We take the same nucleus '*Sn as
an example and investigate the single-particle resonant
states for neutrons by taking the GF method based on the
RMF theory. The energies, widths, and the density distri-
butions in coordinate space for resonant states are given
and compared with other methods. Both PK1 [90] and
NL3 [91] parameters are taken in these RMF calculations.

The equations in the RMF-GF theory are solved in the
coordinate space, with different space sizes Rpox and a
step of dr =0.1 fm. In Eq. (6), the infinitesimal imagin-
ary parameter € is taken as 1x 107® MeV when calculat-
ing DOSs for bound states. When calculating the DOSs
nR(g) by scanning energies & in the fourth quadrant of the
complex energy plane, the energy steps de is taken as
1x10™* MeV for both the real and imaginary energy
components in the search for resonances. Consequently,
the energies and widths of the resonant states predicted
by the GF method have an accuracy of 0.1 keV. Further,
significantly higher accuracy can be easily achieved by
taking smaller energy steps de.
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4 Results and discussion

The resonant states are well known as poles located in
the fourth quadrant of the single-particle complex energy
plane. Therefore, in this work, we take a direct approach
to explore for these poles which are also the extremes of
GF according to Eq. (3). In practice, the definition of
density of states in Eq. (7) is applied and a series of DOSs
n®(e) will be calculated by scanning the complex energy
¢ in the fourth quadrant, both in the directions of the real
energy &, axis and the imaginary energy &; axis.

As an example, in Fig. 1, we provide the details in de-
termining the single-neutron resonant state 25, in '2Sn.
To explore the pole corresponding to the resonant state,
as shown in Fig. 1(a), the complex energy ¢ in a wide
range containing both the real &, and imaginary & com-
ponents are covered to calculate the DOSs. The PK1 ef-
fective interaction and the coordinate space of Rpox = 20
fm are considered in the RMF-GF calculations. In Fig.
1(b), the calculated DOSs are plotted as functions of &,
for different &;. In particular, with the imaginary energy
g varying from -0.0175 MeV to —0.0475 MeV, the
DOSs alter significantly in the energy range from

g, [MeV]
0.0 0.2 0.4 0.6 0.8 1.0
LN LA LA DL B
-0.006 |- (a)
-0.020 |-
N (0.8705,-0.0325)
57-0.040 [ S
o
E -
«7-0.060 L
600
— 300
>
[
2 o0
=
n:cz
-300
1)
-600 " 1 " 1 E. 1 " 1 "
0.75 0.80 0.85 0.90 0.95 1.00
g, [MeV]
Fig. 1.  (color online) (a) Single-particle complex energy

plane &=¢,+ig; and single-neutron resonant state 2fs;,, in
1208n located in the fourth quadrant. (b) DOSs nf(s) as
functions of the complex energy ¢ including the real part &,
and the imaginary part &;, obtained by the RMF-GF meth-
od by taking the PK1 effective interaction and space size
Rpox =20 fm.

&g =0.75 MeV to 1.00 MeV. With the imaginary energy
g; approaching —0.0325 MeV, the peaks of DOS evolve
to become increasingly sharper and finally reach the ex-
treme. A peak in the shape of the §-function is located at
&, =0.8705 MeV. Further, just after & crossing the en-
ergy —0.0325 MeV, the peak of DOS reverses sharply.
Subsequently, the peak of DOS evolves in an opposite
way and becomes increasingly lower with &; reaching
farther. This indicates a pole located at &=0.8705-
i0.0325 MeV.

In the following, we verify the dependence of the ob-
tained resonance energy and width E —iI'/2 on the space
size, as they must be constant against the changes of the
coordinate space size Rpox. In Fig. 2, DOSs calculated by
taking different coordinate space sizes Rpox =20 (a), 25
(b), and 30 fm (c) are plotted for the single-neutron res-
onant state 2fs;» in '2°Sn. Notably, the shapes of DOSs
for 2fs;, in different Ryox are quite similar, and all of
them reach the extreme at g; = —0.0325 MeV and reverse
immediately at the following energy point —0.0326 MeV.
Further, the peak of DOS in each case is located at the
same energy &, =0.8705 MeV. Accordingly, we con-
clude that the energy and width of the resonant state 2 f5/»
obtained by the RMF-GF method is independent of the
coordinate space size.

The same test plotted in Fig. 2 is also performed for a

— —
- (a)
41 H .
2x10 2f,, { R,,=20fm
o- ....................... .
-2x10*F : -
| 1 1 L
I 1 (b)'
< 2x10*F : - -
% Rbox— 25 fm
=, T e ~
o -2x10*F H -
N 1 L 1 N 1 "
' 1 v T ' 1 N
2x10*F ©)
R,.,= 30 fm
T
: g, [MeV]
2x10°k I -0.0325 | _
SN ERERE -0.0326
1 1 1 1

0.85 0.86 0.87 0.88 0.89
&, [MeV]

Fig. 2. (color online) Comparison of DOSs nf(e) for the res-
onant state 2fs, obtained in different space sizes Rpox =20

(a), 25 (b), and 30 fm (c), respectively.
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wide resonant state. In Fig. 3, the DOSs in different Ryox
are plotted for the resonant state 2g9,, with a width
around 3 MeV. Generally, for a wide resonant state, the
DOS is more sensitive to the changes of imaginary part of
complex energy ¢;. In Fig. 3, although the DOSs do not
have exactly the same shapes as the changes of the space
size Rpox, extremes at the same energy &= 5.4428-
i1.6948 MeV are observed, demonstrating that the same
resonant state with energy E =5.4428 MeV and width
['/2=1.6948 MeV is obtained in different space sizes.
Combing the checks in Figs. 2 and 3, it is shown that the
descriptions of resonant states by the new approach with
the GF method is highly stable when faced the changes of
the space size, even for a resonant state with broad width.

Another advantage of the GF method for resonant
states is that it can also describe the density distributions
in the coordinate space. Here, according to Refs. [S0-52],
we use the density p.(r,e) defined at resonance energy
&£ =F to describe the distribution for a resonant state in
the coordinate space, which is calculated by

Qj+1)1
4nr? m

|G V(1 E)+ G2 (13 ).

(17)

In Fig. 4, the density distribution p,(r,&) at the reson-
ance energy &= 0.8705 MeV for the state 2f5/, in '2°Sn
is shown. The space dependence is also verified by per-
forming calculations in different box sizes Rpox = 20, 25,

pK(r’g) =

2x10°F 9, @ -
Y12 . R,,.= 20 fm |
0 y;
1
-2x10°F . . . ]
o~ 2x10° ' " (b) A
%J i R,,.= 25 fm |
= 0 1.
w
©_v [
= 5
-2x10° - . | . \ ) 1
5 v 1 : v ) '
2x10° - : (c) T
- k R,,= 30 fm 4
0 | T € [MeV] | -~
----- -1.6947
I T FEPPS 1.6948
2x10°F | -1.6949| |
N 1 " 1 "
5.42 5.44 5.46 5.48
e [MeV]
Fig. 3. (color online) As Fig. 2, but for the single-neutron

resonant state 2go,» in '20Sn.

and 30 fm. Exactly the same density distribution in the
entire coordinate space is obtained with different space
sizes, demonstrating again the advantage of GF method.
Further, we observe that the density distribution for the
narrow 2f5,; is highly localized, behaving as a bound
state.

According to the above studies, the GF method is ef-
fective and reliable in describing resonant states, no mat-
ter whether it is narrow or broad. Resonance energies
E —iI'/2 can be easily obtained by searching for the poles
of GF or extremes of DOS. In Fig. 5, we plot all the ob-
tained single-neutron resonant states in '?°Sn, identified
by scanning the complex energy ¢ in a wide range for dif-
ferent x blocks and searching for resonant states by ob-
serving extremes. Compared with the results in our previ-
ous study (see Fig. 6 in Ref. [85]) in which the resonant
states were identified by comparing the DOSs for nucle-
ons moving in the mean field potentials with those for
free particles, new resonant states 2g7/2, 2g9/2, 2h11/2, and
1j13/2 with very broad widths ranging from 3 to 13 MeV
are also observed. In Table 1, we list the energies
E —iI'/2 of the single-neutron resonant states obtained by

0.06 . T - T
> 2fy,
= 0.04 i
IE Rbox
™ ——25fm
= =30 fm
< 0.00 . :
0 10 20 30

r [fm]

Fig. 4. (color online) Density distributions p,(r,&) for single-
neutron resonant state 2fs, at resonant energy &= 0.8705
MeV plotted in coordinate space. Calculations are per-

formed with different space sizes Ryox = 20, 25, and 30 fm.
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Fig. 5. (color online) Single-neutron resonant states in '2Sn

obtained by RMF-GF method with PK1 effective interac-

tion.
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Table 1. Energies and widths E —il'/2 (in MeV) of single-neutron resonant states n/; in 12081 obtained by GF-RMF method with PK1 effective inter-

action, compared with results of previous GF calculations [85].

positive parity

present study

previous study

2g1
289

Liyip

Ly

6.3585-13.1052
5.4428-i1.6948

9.8544-i0.6413
3.4786-i0.0024

9.700-i0.636
3.469-10.002

negative parity present work previous work
3pin 0.0504-10.0164 0.031-10.043
2fsn 0.8705-10.0325 0.887-10.032
Lhopy 0.2508-i4x10"* 0.251-i0.0001
210 10.5130-i6.7681
VRS 18.1846-i3.1531
115 12.8929-10.5322 12.956-10.688

Table 2. Energies and widths E —il'/2 (in MeV) of single-neutron resonant states in '2Sn obtained by GF method based on RMF theory, in comparis-
on with results by RMF-CMR, RMF-CSM, RMF-RSM, and RMF-ACCC methods. All calculations are performed with NL3 effective interaction.

nl; GF CMR [18] CSM [25] RSM [32] ACCC [39]

2f50 0.674-i0.015 0.678-i0.015 0.670-10.010 0.674-i0.015 0.685-10.012
liiz 3.263-i0.002 3.267-i0.002 3.266—i0.002 3.266—i0.002 3.262-i0.002
Litiy2 9.601 —i0.607 9.607 —i0.608 9.597 -10.606 9.559-10.602 9.600—i0.555
Ljis/ 12.579-10.496 12.584-10.496 12.577 -10.496 12.564 —i0.486 12.600 —10.450

RMF-GF method and compare them with the results in
the previous GF calculations [85]. The accuracy is highly
improved with the new approach by the GF method, both
for the narrow resonant states and broad ones. For ex-
ample, the uncertainty is well constrained within
1.0x10"® MeV for the extremely narrow resonant state
hyj». Notably, for the very narrow resonant states, the
scanning energy step de for the imaginary part in calcu-
lating DOSs n(e) must be much smaller. It is 1x 1078
MeV for the resonance hyj,, and only with such a small
imaginary energy step, the reverse of DOSs extremes can
be observed.

Finally, to compare our results with those obtained
with CMR [18], CSM [25], RSM [32], and ACCC [39]
methods, we also calculate the resonant states with the
RMF-GF method by taking the NL3 [91] effective inter-
action. The energies E—il'/2 for the single-neutron res-
onant states 2f5/2, lill/z, li13/2, and 1j15/2 by those meth-
ods are listed in Table 2. We find that the results by the
GF method are all consistent with those of other four
methods, particularly the CMR and CSM methods. In
fact, according to our previous study for the resonances in
deformed nuclei [89], it was found that GF method and
CMR can obtain exactly the same energies for most of
the resonant states. One possible reason for the slight dif-
ference in the present results may come from the mean-
field potential obtained in the iteration calculations of
RMF theory. Further, the GF and CMR methods are per-
formed very differently. The GF method is worked in the
coordinate space, where the resonant states are obtained
by searching for its poles corresponding to the eigenval-
ues of the Dirac equation. However, the CMR method is

implemented in the momentum space by diagonalizing
the Dirac Hamiltonian.

5 Summary

Single-particle resonances play crucial roles in the
structures of exotic nuclei. Numerous methods such as
CMR, CSM, RSM, and ACCC have been proposed to
study resonant states. In this work, we applied the Green's
function method to study the single-particle resonances
based on the RMF theory. Instead of searching for reson-
ant states by comparing the density of states for nucleons
in the mean field potentials with those for free particles, a
direct and effective approach that searches for the ex-
tremes of the density of states or the poles of the GF was
implemented for all kinds of resonant states, both narrow
and broad.

Taking '2°Sn as an example, the resonant states are
studied by the RMF-GF method by taking PK1 effective
interaction. The obtained energies and widths are highly
stable with the change of coordinate space size. The dens-
ity distributions for resonant states can also be plotted. In
comparison with our previous study [85], new resonant
states 2g7/2, 2892, 2h112, and 113/, with broad widths
are identified. Furthermore, the accuracy for the very nar-
row resonant state hg; is improved to be 1x10~8 MeV.
Further, to compare our results with those by CMR,
CSM, RSM, and ACCC methods, calculations for '2°Sn
by taking NL3 parameter are also perfromed. It is found
that results obtained by the GF method are highly similar
to those by CMR and CSM, although the methods differ
significantly.
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