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Magnetic moment predictions of odd-A nuclei with the Bayesian neural
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Abstract: The Bayesian neural network approach has been employed to improve the nuclear magnetic moment pre-
dictions of odd-4 nuclei. The Schmidt magnetic moment obtained from the extreme single-particle shell model
makes large root-mean-square (rms) deviations from data, i.e., 0.949 un and 1.272 uyn for odd-neutron nuclei and
odd-proton nuclei, respectively. By including the dependence of the nuclear spin and Schmidt magnetic moment, the
machine-learning approach precisely describes the magnetic moments of odd-4 nuclei with rms deviations of 0.036
un for odd-neutron nuclei and 0.061 un for odd-proton nuclei. Furthermore, the evolution of magnetic moments
along isotopic chains, including the staggering and sudden jump trend, which are difficult to describe using nuclear
models, have been well reproduced by the Bayesian neural network (BNN) approach. The magnetic moments of
doubly closed-shell +1 nuclei, for example, isoscalar and isovector magnetic moments, have been well studied and

compared with the corresponding non-relativistic and relativistic calculations.
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I. INTRODUCTION

Magnetic moment, as one fundamental property of
the atomic nucleus, provides rich information and invalu-
able insights for a deeper understanding of nuclear struc-
ture problems, such as shell structure and tensor force.
However, understanding the theoretical description of
nuclear magnetic moments is one of the most frequently
stated challenges for many nuclear physicists. Although
extensive research has been carried out on nuclear struc-
tures in the past decades [1-7], none of the models have
been able to address nuclear magnetic moments. Owing
to its high sensitivity to nuclear wavefunctions, the nucle-
ar magnetic moment serves as a useful tool for the strin-
gent testing of nuclear models and has quickly attracted
the attention of nuclear physicists, particularly regarding
the magnetic moments of odd mass nuclei.

Early investigations involved the application of the
well-known Landé g-factor to the available data of odd-4
nuclei with different proton and neutron magnetic mo-
ments in the 1930s [8, 9]. Since the establishment of the
independent particle shell model in 1949 by Mayer and
Jensen, which explains the magic numbers Z=2,8,

20,28,50, and 82 as well as N =2,8,20,28,50,82, and
126, the magnetic moment of an odd-4 nucleus has been
interpreted as the contribution of the unpaired valence
nucleon. This leads to the well-known Schmidt values,

ps = {(nl) jmlgil; + g8.1(nl) jmyu=;
1
gil+ 78 j=1+1/2
. J (I+1) 1 i=1-1/2
j+1 gl 2g3 ’ .] - )

where [ is the orbital angular momentum of the valence
nucleon, and j is the total angular momentum. g; = 1(0)
and g, =5.586(-3.826) are the orbital and spin g-factors
of the proton (or neutron), respectively. The magnetic
moment in the above equation as a function of spin j res-
ults in the Schmidt lines.

In the early 1950s [10, 11], it was observed that al-
most all nuclear magnetic moments are sandwiched
between two Schmidt lines. Thereafter, significant ef-
forts have been made to explain the deviation of nuclear
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magnetic moments from the Schmidt values, beyond in-
vestigations of single particle properties such as the Ar-
ima-Horie effect [12, 13]. Eventually, it was found that
the deviation is contributed by the effects of a two-body
meson exchange current (MEC, i.e., the exchange of the
charged mesons) and configuration mixing (CM, or core
polarization, i.e., the correlations beyond the mean field
approximation) [7, 14, 15]. With these two corrections,
the magnetic moments of odd-even nuclei around doubly
magic nuclei can be reproduced well in both non-relativ-
istic and relativistic frameworks [7, 16-24]. For odd A4
nuclei far from the magic nuclei, the effective spin and
orbital g factor are usually adopted in different promising
theoretical models [25], and are even applied for certain
specific nuclei. However, there is still a lack of a unified
model or theory to give precise predictions for a wide
range of odd mass nuclei. Therefore, predictions of the
magnetic moments of odd-A4 nuclei are highly anticipated.

Machine learning is a popular technique for dealing
with complex systems owing to its powerful and conveni-
ent inference abilities. In the past decade, the prodigious
development of machine learning applications has im-
pacted many fields such as image recognition [26, 27]
and language translation [28, 29]. It is also a powerful
method to extract underlying features from big data gen-
erated by experiments. Parallel to the rise of machine
learning techniques in daily and industrial applications,
scientists have become increasingly interested in its po-
tential for fundamental research, and physics is not an ex-
ception. Machine learning has been applied to diverse
fields in physics over the past few years, such as particle
physics [30-32], condensed matter physics [33, 34], and
statistical physics [35].

In nuclear physics, machine learning has been used to
learn enormous amounts of data and make predictions,
for example, machine leaning with radial basis functions
[36, 37] and neural networks. Compared with traditional
neural networks [38, 39], Bayesian neural networks
(BNN) can automatically solve the overfitting problem by
introducing the prior distribution of parameters, and it can
also avoid ill-inversed regression problems with uncer-
tainty quantifications [40] since all parameters have prob-
ability distributions. Many successful applications of
BNN have been performed in nuclear physics, for ex-
ample, predictions of the nuclear mass [41-43], charge ra-
dius [44], B-decay half-lives [45], and fission product
yields [46]. In this respect, the BNN approach would be
ideal to improve the magnetic moment descriptions of
odd-4 nuclei with the extreme single-particle shell model.
In this study, the basic formulas of the BNN approach are
given in Sec. II, the results of magnetic moments are dis-
cussed in Sec. III, and the summary and perspectives are
presented in Sec. V.

II. BAYESIAN NEURAL NETWORK APPROACH

In the Bayesian approach, the model parameters w are
described probabilistically [42, 45]. The prior distribu-
tion p(w) is a probability distribution over all possible
values of w. When a set of data D={(x, #1),
(x2,12),...,(xN,2y)} 18 given, this distribution will be up-
dated according to Bayes' theorem:

p(D|w)p(w)

p(w|D) =
f p(D|w)p(w)dw

, (1

where x, and t,(n=1,2,...,N) represent inputs and out-
puts, respectively, N is the number of data, p(D|w) con-
tains the information about parameters w derived from
observations, p(w|D) denotes the posterior distribution,
and f p(Dlw)p(w)dw is a normalization constant to en-
sure the integral of the posterior distribution is 1.

For the likelihood function p(D|w), a Gaussian distri-
bution, p(D|w) = exp (—XZ /2), is employed, where the ob-
jective function y? is given by

N 2
2 _ tn— f(X;0)
x-;@ﬁg—j, )
where the standard deviation parameter A, is the associ-
ated noise scale [40-42]. The net function f(x;w) is
defined as

H 1
f(x;w)=a+ijtanh(cj+Zdﬁx,~], 3)

j=1 i=1

where x = {x;} and w = {a,bj,cj,dj,-}, and H and [/ are the
number of hidden layers and the number of input vari-
ables, respectively.

The prior distributions p(w) of the model parameters
are usually adopted as Gaussian distributions with zero
means. The precisions (inverse of variances) of these
Gaussian distributions are set as gamma distributions as
in Refs. [42, 45], so that the precisions can change over a
wide range. Therefore, it enables the BNN approach to
automatically search the optimal values of precisions in
the sampling process.

After specifying the likelihood function p(D|w) and
the prior distribution p(w), the posterior distribution
p(w|D) of the model parameters is obtained according to
Eq. (2). The averaged nuclear magnetic moment predic-
tion of BNN relates to a high-dimensional integral in the
whole parameter space and can be obtained by a hybrid
Markov chain Monte Carlo algorithm [47]:

m=memmmw. 4
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An estimate of uncertainty in theoretical predictions
can be obtained naturally at the same time, which is a cri-
terion for evaluating the reliability of predicted results,
using the following:

Af = (=% ®)

In this study, the BNN approach is used to recon-
struct nuclear magnetic moment residuals between exper-
imental data u®® and the Schmidt values u'" | i.e.,

tn = P (x) — ™ (x). (6)

Since the magnetic moments of odd-4 nuclei have
strong relations with the spin and Schmidt values, the
nuclear spin / and the corresponding Schmidt magnetic
moment value u; have inputs apart from Z and N to ascer-
tain the effect of these two additional inputs. For simpli-
city, we use BNN-I2 and BNN-I4 to represent the BNN
approaches with x =(Z,N) and x = (Z,N, I, u;), respect-
ively. To ensure the number of parameters in the neural
network are the same, the number of neurons in BNN-I2
and BNN-I4 are set as 45 and 30, respectively.

The experimental data of nuclear magnetic moments
are taken from the IAEA online database and table of re-
commended nuclear magnetic dipole moments [48, 49].
Only the nuclei whose spin and parity are determined and
can be roughly explained by the extreme single-particle
shell model remain. For example, for the ground state
spin and parity of 70 is 5/2%, the odd neutron occupies
the vld; orbital [50] in the extreme spherical single
particle shell model. Conversely, for ¥Kr, the ground
state spin and parity 3/2" [51] can not be explained by
the odd neutron orbital neighbouring N =53 in the ex-
treme single-particle shell model, and therefore it will not
be considered in the entire set. There are 227 odd-proton
nuclei and 221 odd-neutron nuclei left and their experi-
mental magnetic moments are taken as the training data.
Since the contributions of the unpaired valence neutron
and valence proton to the magnetic moment are different,
the odd-neutron and odd-proton nuclei are studied by the
BNN approach separately.

III. RESULTS AND DISCUSSIONS

Figure 1 shows the nuclear magnetic moment predic-
tions of the BNN-I2 and BNN-I4 approaches for odd-
neutron nuclei and odd-proton nuclei, in comparison with
the Schmidt values given by Eq. (1). It is clearly seen that
the root-mean-square (rms) deviations of the Schmidt val-
ues are very large (0.949 ux and 1.272 un for odd-neut-
ron nuclei and odd-proton nuclei, respectively). After the
BNN approach is included, the corresponding rms devi-
ations are significantly reduced. Compared with BNN-12,
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F XX BNN-2 1272 1
1.2 - [////BNN-4 -
r 0.949 1
—~ 09 - = -
P-4 —
=2 — -
2 ]
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© 06 | — —
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03 | B _
——10.156 1
0.061 E
00 0.036. g
odd neutron nuclei odd proton nuclei
Fig. 1. (color online) Root-mean-square deviations of nucle-

ar magnetic moments for odd-neutron nuclei (left) and odd-
proton nuclei (right) with respect to the experimental data
from the Schmidt magnetic moment and those improved by
the BNN approaches.

the rms deviations of BNN-I4 are further reduced from
0.156 uyn to 0.036 un for odd-neutron nuclei and from
0.327 un to 0.061 uy for odd-proton nuclei, respectively,
which is very precise for the predictions of magnetic mo-
ments. In fact, the nuclear spin is closely related to the
magnetic moment, and the extreme single particle shell
model together with the corresponding Schmidt value is a
useful approximation for odd A4 nuclei. Therefore, the
above results indicate that the BNN approach is a reli-
able way to improve the accuracy of nuclear magnetic
moment predictions based on a theoretical model by in-
cluding known physics effects in the input layer. It should
be noted that different combinations of physical quantit-
ies are tried as inputs, and it is found that the accuracy of
the network is significantly correlated with spin, while
the correlation with parity is relatively weak. Since the
predictions from BNN-I4 are much better than those from
BNN-I2, we are only showing the results based on the
BNN-14 approach.

To further evaluate the prediction ability of the BNN
approach, the entire data set of both odd-proton nuclei
and odd-neutron nuclei are divided into two parts: the
learning set and the validation set. The two learning sets
are obtained by randomly selecting 190 nuclei from each
entire set and the two corresponding validation sets are
built with the remaining nuclei of each entire set (37 odd-
proton nuclei and 31 odd-neutron nuclei). In Figs. 2 and
3, the magnetic moments of odd-neutron and odd-proton
nuclei, obtained from the BNN-I4 approach, are com-
pared with the experimental values in the learning set (a)
and with the Schmidt values and the experimental values
in the validation set (b).

From Figs. 2(a) and 3(a), it is found that almost all
points are on the line y = x, which means that the BNN-14
predictions are very close to the experimental values. Ac-

124107-3



Zilong Yuan, Dachuan Tian, Jian Li et al.

Chin. Phys. C 45, 124107 (2021)

2 lllIllllllllIIIllllIIIIIIIIIIIIIIIIIIIIIII 3 TITTTTTTITTT T TITTITTITITITIrIrTrIrrrrrrrrorToTT
F ©  Magnetic Moment  Learning Set ] £ = Schmidt Value Validation Set 3
3 k F = Experimental Value E
E J 2 E° Predicted Value 3
1F ° pu E E
- 1= E E
:f o f 1= E = [T1] E
s f . 124E i it} 3
2 o E M gaes 3
© - - E =
Sof 1§ ¢ ;!{ 2 } E
s 1s _E 3
g f 1o 0F 3
L E 15 E 50 3
T1F o 42 E a @ is 3
s F o F a5 § al ez ERE
. 18F il A
. 3 E
o ] E 3 n E
2 F o? 3 E E
- "_ L) _" E unmpmn n n N NN pEnonn unnpnn E
E a)] -2F E
1111() E (b) 3

T N T

-2 -1 . 0 1 2 R & K\ N
Experimental Value () Spin |

Fig. 2.

(color online) The magnetic moments of odd-neutron nuclei obtained from the BNN-I4 approach, in comparison with the ex-

perimental values in the learning set (a) and with Schmidt values and the experimental values in the validation set (b). Nuclei in panel
(b) are arranged from small to large spin (/), and the repeated spin (/) values are omitted.
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Fig. 3. (color online) Same as Fig. 2, but for odd-proton nuclei.

cording to Figs. 2(b) and 3(b), the BNN predictions are
also satisfactory for the nuclear magnetic moments in the
validation set, although they are not used as the learning
data. It is shown that the experimental data are sand-
wiched between the two Schmidt lines, and the Schmidt
values clearly show large discrepancies from the data.
The BNN-I4 approach remarkably improves the preci-
sion of predictions in the validation set; the deviations for
most validated nuclei are less than 0.1 uy. Although sev-
eral nuclei exhibit relatively large deviations, their exper-
imental values are still contained in the range of predic-
tions and their uncertainties, which demonstrates that the
BNN-I4 approach is a reliable method. Therefore, the in-
terpolation ability of the BNN-I4 approach is also prom-
ising.

Since the interpolation ability of BNN-I4 has been
verified in Figs. 2 and 3, the entire sets are adopted as
learning sets to assess the predictive power of the neural
network for odd-neutron nuclei and odd-proton nuclei, re-
spectively, and the differences in magnetic moments of
odd mass nuclei between the experimental values and the

predictions obtained from the BNN-I4 approach are
shown in Fig. 4. It is clearly seen that BNN-14 performed
well in almost the entire range of both odd-neutron nuc-
lei and odd-proton nuclei. More specifically, the devi-
ations of 153 nuclei out of 227 (181 nuclei out of 221
nuclei) in odd-proton nuclei (odd-neutron nuclei) are
within the range of 0.05 un. The better predictive per-
formance for odd-neutron nuclei is not a surprise because
the Schmidt values of the extreme single-particle model
give a better description of odd-neutron nuclei than those
of odd-proton nuclei.

It is also interesting to examine the predictive power
of the BNN approach along isotope chains. Taking Cd
and Cs isotopes included in the 227 odd-proton nuclei as
examples, the magnetic moment predictions obtained
from the BNN-I4 approach are given in Fig. 5, in com-
parison with Schmidt values and the experimental values.
It is clearly seen that for both chains, containing 14 iso-
topes, the magnetic moment predictions have been
greatly improved by the BNN approach, and the total rms
deviations of the Cd and Cs predictions are only 0.043 uy
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(color online) Magnetic moment predictions obtained from the BNN-I14 approach, in comparison with Schmidt values and the

experimental values for the Cd (a) and Cs (b) isotopes. The shadow region shows the uncertainties of BNN-14.

and 0.07 un, respectively. Specifically, the BNN-14 ap-
proach can learn the evolution tendency for changes in
magnetic moments as the neutron number increases, in-
cluding the staggering at N =61 and the sudden jump at
N =73 for Cd isotopes. It should be noted that the ground
state spin and parity of Cd isotopes are 5/2* for
55<N<63 and 1/2% for 65 <N <71, with correspond-
ing odd-neutron orbitals of vds;; and vs; 2, respectively,
and the same Schmidt value of —1.91uy. Therefore, the
relatively small variations in the experimental magnetic
moments between 55 < N <71 show that they have the
same intrinsic structure, and the extreme single particle
shell model is valid. As the neutron number increases to
N =73, the corresponding ground-state spin becomes
3/2* and the odd-neutron occupies the v2ds3,, orbital. For
Cs isotopes, the complicated evolution tendency has also
been reproduced by considering the BNN approach, such
as the N =66, 76 and 88 isotopes, which further indic-
ates its powerful prediction ability.

Among all odd-mass nuclei, the doubly closed-shell
+1 nuclei have been paid special attention. In Fig. 6, the
magnetic moments of jj shell +1 nuclei, that is, 207 TI,
20984, 207Pb, and 2Pb included in the 227 odd-proton

nuclei and 221 odd-neutron nuclei obtained from the
BNN-I4 approach, are given and compared with the cor-
responding Schmidt values, the previous relativistic cal-
culations [22], the non-relativistic calculations [15], and
the experimental values. The corresponding uncertainties
are shown in the gray area. Both relativistic and non-re-
lativistic calculations include the configuration mixing
and meson exchange current corrections. It is obvious
that the BNN-I4 approach reproduces the experimental
magnetic moments very well. The overall rms deviations
of the four nuclei with the BNN-14 approach is 0.095 uy,
which is slightly less than 0.119 ux (relativistic) and
0.124 un (non-relativistic). Compared with the relativist-
ic and non-relativistic calculations that consider the
meson exchange flow and configuration mixing effects,
the predictions of BNN-I4 are still competitive.
Furthermore, for LS closed-shell nuclei +1 nucleon
that are also included in the entire sets, the isoscalar and
isovector magnetic moments using the BNN-I4 approach
are shown in Figs. 7 (a) and (b), respectively, in compar-
ison with the relativistic results [7], non-relativistic res-
ults [15], Schmidt values, and corresponding experiment-
al data. It is seen that the BNN approach improves the
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Fig. 6. (color online) The magnetic moments of 29’ T, 2°Bi,

207Pb, and 2*Pb obtained from the BNN-I4 approach with un-
certainties shown in the gray area, in comparison with
Schmidt values, the relativistic mean field (RMF) calculation
results from Ref. [22], the nonrelativistic mean field calcula-
tion results from Ref. [22], and the experimental values.

predictions for all isoscalar magnetic moments, espe-
cially for isovector magnetic moments. Numerically, the
rms deviations of the Schmidt values from the experi-
mental data are 0.042 and 0.198 uyn for isoscalar and
isovector magnetic moments, respectively, and the cor-
responding rms deviations with the BNN approach are
decreased to 0.034 and 0.047 un, respectively. Moreover,
the present BNN results are better than both the relativist-
ic (0.081 and 0.134 uy, respectively, for isoscalar and
isovector magnetic moment) and non-relativistic results
(0.008 and 0.156 un, respectively). It is worth mention-
ing that the BNN approach can effectively reproduce the
isovector magnetic moments of A =41, while there are
still relatively large deviations for both the relativistic and
non-relativistic calculations. Overall, for the nuclei with
doubly closed shells plus or minus one nucleon, BNN-14

can effectively learn the isospin effect in nuclear magnet-
ic moments and provide reasonable predictions.

As the BNN approach can be applied to a wide range
of nuclei and can provide accurate predictions, it is reas-
onable to make predictions for the magnetic moments of
odd-4 nuclei without available experimental data. As it is
extrapolated too far away from the known region, there
might be some new physics effects, which are hidden in
the known region and hence cannot be discovered by
training the neural network using the known data. There-
fore, only the nuclei neighbouring the 227 odd-proton
nuclei and 221 odd-neutron nuclei are considered, whose
magnetic moments, with uncertainties less than 0.5un
predicted by the BNN approach, are given in Table 1.

Taking 23F as an example, the ground-state spin and
parity are 5/2%, and the odd-proton occupies the 71d; or-
bital. BNN predicts a magnetic moment of 4.1 uy with
uncertainty 0.3 un, which is close to 3.9194(12) un, the
magnetic moment of a neighbouring nucleus 2!'F with the
same spin and parity of 5/2*. For **Mo, its ground state
is 5/2%, and the corresponding experimental magnetic
moment has not yet been determined; the present pre-
dicted value is —1.0(1) ux. In comparison, the magnetic
moments of the excited state 21/2* and ground state of a
neighbouring odd mass nuclei °*Mo have been con-
firmed.

It is also interesting to investigate the improvement
by employing effective g factors. As the effective g factor
0.7 g, is widely used in different theoretical models to
better describe nuclear magnetic moments and magnetic
dipole transitions, an effective Schmidt value (uef) is ad-
opted by replacing g, in the Schmidt formula Eq. (1) with
0.7 gs. The rms deviation of the effective Schmidt value
from experimental data is easily obtained as 0.51 un
(0.71 un) for the present 221 odd neutron nuclei (227 odd
proton nuclei), which is much smaller than that of the
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Fig. 7.

(color online) Isoscalar magnetic moments obtained from the BNN-I4 approach with uncertainties shown in the gray area, in

comparison with Schmidt values, the RMF calculation results, the nonrelativistic results, and the experimental values in (a). Similar to

(a), but for the isovector magnetic moments in (b).
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Table 1.
nuclei with estimated uncertainties obtained from the BNN-I4

Extrapolated magnetic moments (ugx:. ) of 23 odd-4

approach. The odd nucleon orbital and the Schmidt values
(us) are given as well. The brackets for /7 mean that the spin
and parity have not yet been confirmed.

Nuclei Orbital I Hs MExt.
Bp rldy ; 479 4.103)
5 +
g vids (E) -1.91 ~0.93)

3 vlf: i - -
g 1 : 1.91 1.4(3)
950 7lfy (% ) 579 5.6(4)
3+
5K rld (5 ) 0.13 0.9(3)
+
P vid; % 115 11(5)
53 Co nlf; (% ) 5.79 5.0(4)
61 Co xlfg ; 5.79 4.8(1)
-
9Cu ﬂlf% (E ) 0.86 1.7(1)
597 v2p; % -1.91 -0.5(3)
+
81 Ge vigy (g ) -1.91 -1.002)
5+
BMo VZd% 5 -1.91 -1.0(1)
+

9BRu vlg% (%) -1.91 -0.9(2)
5+

97pq VZd% (E ) -1.91 —-0.8(1)

P1n ﬂlg%a g+h 6.79 6.5(4)
+

1031, rlgy (g) 6.79 6.0(5)
"

1291 nlg% (% ) 6.79 5.9(5)
5+

101 gy v2d% (5 ) -1.91 -1.0(3)
N

3gp n2ds % 479 3.7(1)
7+

135gy ﬂlg% 3 1.72 3.1(2)
1+

1817 7T3S% (5 ) 2.79 1.8(3)
o-

197 i nlh% 3 2.63 4.7(2)
o-

2154 nlh% 2 2.63 4.1(4)

* Suggested odd proton orbital of ground state.
b . .
Suggested ground state spin and parity.

Schmidt value 0.949 ux (1.272 uy) for odd-neutron nuc-
lei (odd-proton nuclei). When the Schmidt values are re-
placed with p.g in the neural network using the same
parameters, the rms deviations improved by the BNN are

0.038 un and 0.076 un for odd-neutron nuclei and odd-
proton nuclei, respectively. These do not show signific-
ant improvements compared with the results from the
Schmidt values (0.036 un for odd-neutron nuclei and
0.061 ux for odd-proton nuclei) as well as the interpola-
tion ability for the validation set. This means that the ex-
treme single particle shell model with free g factors is a
good and useful theoretical model for describing the mag-
netic moments of odd nuclei.

IV. SUMMARY AND PROSPECTIVE

In summary, we have employed the Bayesian neural
network approach to improve nuclear magnetic moment
predictions of the extreme single-particle shell model.
Nuclear magnetic dipole moments of 227 odd-proton
nuclei and 221 odd-neutron nuclei, taken from the IAEA
online database, have been studied. The Schmidt magnet-
ic moment obtained from the extreme single-particle shell
model makes large rms deviations from data (0.949 un
and 1.272 un for odd-neutron nuclei and odd-proton nuc-
lei, respectively). This further indicates that only valence
nucleon approximation cannot effectively explain the ex-
perimental magnetic moments of odd-4 nuclei. By in-
cluding the nuclear spin and Schmidt magnetic moment
in the input layer, the machine-learning approach can pre-
cisely describe the magnetic moments of odd-4 nuclei
(0.036 un for odd-neutron nuclei and 0.061 uy for odd-
proton nuclei). The extrapolation ability of the BNN has
been verified by satisfactory predictions of nuclear mag-
netic moments in the validation set. The evolution of
magnetic moments along isotopic chains, including the
staggering and sudden jump trend which are difficult to
describe using nuclear models, have been well repro-
duced by the BNN approach. The magnetic moments of
doubly closed-shell +1 nuclei, including isoscalar and
isovector magnetic moments have been well studied, and
corresponding comparisons with non-relativistic and re-
lativistic calculations have been performed. Finally, mag-
netic moments of 20 odd-4 nuclei from light to heavy
mass regions without any available experimental magnet-
ic moments, were extrapolated by the BNN approach.

The theoretical description of nuclear magnetic mo-
ments is one of the longest-standing subjects. It's diffi-
cult to effectively describe nuclear magnetic moments in
the nuclide chart, especially with high precision.
However, machine learning provides a good opportunity.
In the future, more attention should be paid to the optim-
ization of the neural network and improving the Schmidt
magnetic moment formula to obtain a better description
and a more reasonable extrapolation. The uniform de-
scription of quantities such as magnetic moment and
mass are also highly expected with the same neural net-
work.
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