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Anisotropic stellar structures in the f(7T') theory of gravity
with quintessence via embedding approach
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Abstract: This work suggests a new model for anisotropic compact stars with quintessence in f(T) gravity by us-
ing the off-diagonal tetrad and the power-law as f(T) = BT", where T is the scalar torsion and 8 and n are real con-

stants. The acquired field equations incorporating the anisotropic matter source along with the quintessence field, in

f(T) gravity, are investigated by making use of the specific character of the scalar torsion 7 for the observed stars
PSRJ1614 2230, 4U1608 — 52, CenX —3, EXO1785—-248, and S MCX — 1. It is suggested that all the stellar struc-
tures under examination are advantageously independent of any central singularity and are stable. Comprehensive

graphical analysis shows that various physical features which are crucially important for the emergence of the stellar

structures are conferred.
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I. INTRODUCTION

Einstein's General Relativity (GR) has proven to be
the most captivating success of the previous century. Sup-
ported by observations [1], GR enlightens several prob-
lems connected not only to the scale of the solar system
but to cosmological scales as well. Numerous pieces of
observational evidence from Type la supernovae [2, 3],
the high redshifts of supernovae [4], Planck data [5],
large-scale structure [6-10], and so on, indicate an accel-
erating expanding universe. An astonishing and conten-
tious result from GR predicts that a matter-dominated
Universe (or radiation) accelerates negatively due to the
existence of gravitational attraction. The accelerated ex-
pansion of our Universe is due to dark energy (DE) [11],
a mysterious galactic fluid containing a uniform density
distribution, and a negative pressure, which GR cannot
explain. The ambiguous behavior of DE has stimulated
cosmologists to explore its apparent attributes. Modified
theories of gravity are viewed as an attractive possibility
to explain its nature.

DE is understood to be repulsive, exhibiting negative

pressure. The equation of state (EoS) describing DE is
P = wyp, such that w, < 0. The parameter w, denotes the
DE. For an expanding universe, the value of w, must be
restricted to w,<-1/3. If w, attains the bound
-1 <w,;<—-1/3 then it is classified as the quintessence
scalar field. In gravitational physics, quintessence is a
theoretical approach for the explanation of DE. More pre-
cisely, it is a scalar field, hypothesized as a description of
observing the acceleration rate of our expanding Uni-
verse. The dynamical concept of the quintessence is quite
different from the explanation of DE as given by the cos-
mological constant in the Einstein field equations (EFEs),
which is constant by definition, i.e. it does not change
with time. Quintessence can behave as either attractive or
repulsive, depending on the proportions of its kinetic and
potential energy. It is believed that the quintessence
turned repulsive around ten billion years ago, 3.5 billion
years after the Big Bang. To obtain an expanding Uni-
verse, many theories have been structured but GR re-
mains the most successful to date. In addition to its beau-
tiful approach of enlightening diverse epochs of the Uni-
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verse evolution, it has also broadened our emerging con-
cepts of structuring gravity in the cosmos. However, there
still exist some weaknesses in GR which remain unad-
dressed. Buchdal [12] gave the modest concept of repla-
cing the Ricci scalar R by a function f(R) in the EFEs
owing to the emergence of modified theories of gravity.
Some of these are: f(R); f(T), the teleparallel theory of
gravity, T being the torsion scalar; f(R,7), with 7~ as the
trace of the energy-momentum tensor; and f(G) and
f(R,G) gravity, where G represents the Gauss-Bonnet
(GB) invariant [13-17], and has the representation
G = R? + 4R, 05, R**"" — 4R,,R* . These theories have en-
lightened the resolution of tackling the complexities in-
volving quantum gravity and have provided researchers
with various platforms through which the reasons behind
the accelerating expansion of our Universe have been dis-
cussed.

The introduction of advanced experimental tech-
niques has allowed numerous researchers to study the
nature of compact stellar objects by exploring their phys-
ical attributes [18-23]. Typically, it is assumed that these
stellar bodies are made up of some perfect fluid.
However, recent observations confirmed that the fluid
pressure of massive celestial objects such as 4U1820 - 30,
PSRJ1614-2230, and SAXJ1808.4—-3658(SS1) is not
isotropic, but rather behaves anisotropically. Herrera and
Santos [24] have discussed the possible existence of an-
isotropic fluid within the framework of self-gravitation by
taking into consideration the examples of Newtonian the-
ory and also of GR. Herrera [25] has discussed the condi-
tions for the stability of the isotropic pressure in the
framework of collapsing, spherically symmetric, dissipat-
ive fluid distributions. Capozziello et al. [26] have
presented compact stellar structures possessing hydrostat-
ic equilibrium through the Lane-Emden equation formu-
lated for the f(R) theory of gravity. Bowers and Liang
[27] have investigated locally anisotropic relativistic
compact spheres through hydrostatic equilibrium and de-
duced that massive compact structures might be aniso-
tropic in the presence of the fluidity-superconductivity in-
teraction. Capozziello et al. [28], have also studied spher-
ically symmetric solutions using the notion of Noether
symmetries in the f(R) theory of gravity. Abbas et al.
[29] have investigated the dynamical expressions by
modeling anisotropic compact stars in the presence of the
quintessence scalar field, using the Krori-Barua and
Starobinsky model in the f(R) theory of gravity. Bhar
[30] has structured an exclusive model for anisotropic
strange stars in comparison to the Schwarzschild exterior
geometry. Further, he has evaluated the EFEs by includ-
ing the quintessence scalar field. From the implementa-
tion of the Krori-Barua metric he has obtained some ex-
act solutions for compact stellar objects. Capozziello et

al. [31] have worked out gravitational waves in the
f(T,B) theory of gravity, produced by the corresponding
compact objects. To examine a compact stellar object in
the presence of the quintessence field, Kalam et al. [32]
have proposed a relativistic model of compact stellar ob-
ject with anisotropic pressure and normal matter. Nojiri
and Odintsov [33] have established that ultimately any
evolution of the Universe might be recreated for the the-
ories under investigation. Harko and Lobo [34] have ex-
plored the possibility of mixing two different perfect flu-
ids with different four-velocity vectors and some special
parameters. Capozziello and Laurentis [35] have debated
the geometrical explanation of the modified gravity theor-
ies to indicate particular suppositions in GR. It is import-
ant to point out here that f(7) gravity is simpler to under-
stand than f(R) gravity, as its field equations are of
second-order while f(R) gravity field equations are of
fourth-order. However, in Refs. [36, 37] it has been ar-
gued that the Palatini version of f(R) gravity produces a
system of second-order field equations. While comparing
to GR, it is found [38] that f(T) gravity shows an extra
degree freedom under Lorentz transformation and hence
always remains non-variant. Importantly, as f(T) gravity
is invariant under Lorentz transformation, the selection of
good or bad tetrads plays a defining role in this particular
theory. The reality of the strange stellar leftover in tele-
parallel f(T) gravity has been presented by Saha and his
collaborators [39]. They have formulated the equation of
motion by incorporating an anisotropic environment with
Chaplygin gas inside. Atazadeh and Darabi [40] have ex-
plored the viable nature of f(R,G) gravity by imposing
some energy conditions. Sharif and Ikram [41] have stud-
ied the warm inflation scenario in the context of Gauss-
Bonnet f(G) gravity by introducing scalar fields in FRW
spacetime. Maurya and Govender [42] have discussed the
Einstein-Maxwell equations and presented their exact
solutions for spherically symmetric stellar objects.
Shamir and Zia [43] have investigated anisotropic com-
pact structures in the f(R,G) theory of gravity. A viable
approach to deriving the solutions of the field equations
in the background of stellar objects has been discussed,
known as the Karmarkar condition. This condition was
first anticipated by Karmarkar [44], and it is considered a
necessary requirement for a spherically symmetric space-
time to be of embedding class I. It essentially supports us
to combine the gravitational metric components. Maurya
and Mabharaj [45] have obtained an anisotropic embed-
ding solution by employing a spherically symmetric geo-
metry using the Karmarkar condition. Odintsov and
Oikonomou [46] have analysed the evolving inflation and
DE in the f(R,G) theory of gravity.

For the last few years, parallelism as an equivalent
formulation of GR has received much consideration as an
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alternate gravitational theory, well acknowledged as the
teleparallel equivalent of GR (TEGR) [47-49]. This form-
alism corresponds to the generalized manifold which
takes into account a quantity known as torsion. Ferraro
and Fiorini [15, 50] have investigated the TEGR modific-
ations with consideration of cosmology, known as the
f(T) theory of gravity. The fascinating part of f(T) grav-
ity is that it gives second-order field equations, and it is
structured with a generic Lagrangian quite dissimilar to
the f(R) and several other theories of gravity [51, 52]. As
far as theoretical or observational cosmology is con-
cerned, numerous researchers have effectively implemen-
ted f(T) gravity in their research [38, 53-62]. Deliduman
and Yapiskan [63] as well as Wang [64] have employed
f(T) gravity to work out the static and spherically sym-
metric exact solutions describing relativistic compact ob-
jects. Deliduman and Yapiskan [65] have constructed the
standard relativistic conservation equation, indicating that
relativistic compact structures do not exist in the f(7)
theory of gravity. However, Bohmer ef al. [65] have con-
cluded that they actually do exist. In the same line, sever-
al other investigations on f(T) gravity may be found in
Refs. [66-69].

In the present study, we investigate strange compact

stars in the f(T) theory of gravity with quintessence by
incorporating the observational statistics of the stars
PSRJ1614 -2230, 4U1608-52, CenX-3, EXO1785-
248, and S MCX — 1. The rest of this paper is structured as
follows. Section II provides the fundamental concepts of
the f(T) theory of gravity. In Section III, the exclusive
expressions for the physical quantities such as energy
density, pressure terms, and quintessence density are
worked out. Section IV is devoted to the matching condi-
tions through the introduction of the Schwarzschild outer
metric along with the comparison with the interior metric.
In Section V, a detailed analysis of the physical stellar
features is presented. Section VI concludes our work.

II. BASICS OF THE f(T) THEORY OF GRAVITY
The action integral for f(T') theory is [70-72]:

1
I:fdx“e{@f(T)*'L(M)}, (D

where ¢ = det(ef}) = v/—g and k* = 87G = 1. The variation
of the above action results in the general form of the field
equations:

e—mY

. 1
ei®S o frro, T +e ' d,(eei™S o) fr — e,/ T S o™ fr — Ze,-v f=—4ne, T ;, )

e—-mY

where 7 ; is the energy momentum tensor, fr is the de-
rivative of f(T) w.r.t T and f77 is the double derivative
v

e-m¥Y  matter’ qV q .
wrt T, 7,= T ;+7;, and 7, is the energy-mo-
mentum for the quintessence field equations with energy

density p, and equation of state parameter
v

1 q
Wy (—l<wq<—§). Here the components of 7; are defined
as:

gt q7

T,=T, =, 3)

a9 99 GBw,+1
T¢=( q )pq.

Ty= 5 @

The torsion and the super-potential tensors used in
Eq. (2) are given in general as:

T7, = ep'(0ue”, —0ye®)), %)
L1
K" = -5 (1772 = T, = T4"), (6)
1
S = 3 (KH + 33T =67, T™,). (7

The density of the teleparallel Lagrangian is defined
by the torsion scalar as

T =TS " ®)

For the present investigation, the character of the scalar
torsion 7'is of crucial importance.

Due to the flatness of the manifold, the Riemann
curvature tensor turns out to be zero. Containing the two
fragments, one part of the curvature tensor defines the
Levi-Civita connection, while the second part provides
the Weitzenbdck connection. Similarly, the Ricci scalar R
also delivers two dissimilar geometrical entities. Keeping
this in view, the torsion-less Ricci scalar R inthe Ein-
stein- Hilbert action, in the shape of the torsion, which
may be viewed as an expression of 7, as given above, can
be reproduced. It should be noted that the teleparallel the-
ory of gravity has been found similar to GR under the two
separate contexts of local Lorentz transformation and ar-
bitrary transformation coordinates. The first part is non-
trivial to observe, and the second Lorentz part adequately
delivers the geometry in such way that the construction of
the teleparallel action of the GR fluctuates from its met-
ric formulation because of its surface expression. Like-
wise, one can envision that the modified f(R) and f(T)
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theories of gravity display a resemblance to their surface
geometries, which are due to the local Lorentz invariance,
affected by the f(R) theory of gravity.

Here we build stellar structures by taking the spheric-
ally symmetric spacetime

ds? = e"dr? —ePVdr? — 2d6* - P sin?0dg?,  (9)

where a(r) and b(r) solely depend on the radial coordin-
ate . We will deal with these metric potentials using the
Karmarkar condition in the later part of this work. Nicola
and Bohmer [73] have shown some reservations by de-
claring the diagonal tetrad to be an incorrect choice in
torsion based theories of gravity, as this bad tetrad raises
certain solar system limitations. They have also men-
tioned in their study that a good tetrad has no restrictions
on the choice of the model of f(T) being linear or non-
linear, while the diagonal tetrad restricts the f(7') model
to a linear one. The off-diagonal tetrad is a correct choice
due to its boosted and rotated behavior [38]. Here we cal-
ibrate the field equations by using the off-diagonal tetrad
matrix:

pP+pq
T(r) 1 et
Pr Pq=(7—ﬁ— —(l+ra
1 e’ (a ‘o,
Pt 5@wg+ Dpg=— > ;——

+ (e‘b(") (# + (

In the above equations F is the derivative of f with re-
spect to the torsion scalar T(r), and the prime on F again
is the derivative of F with respect to 7(r). The torsion

T(r)=— (2e—b<’>( ¥—1)(e

a@) .

e 0 0 0
o = 0 e sinfcos¢ rcosfcos¢ —rsinfsing
K 0 e+ sinfsing rcosfsing —sinfcosq
0 e cosf —rsinf 0
(10)
Here e is the determinant of e}, given as "2

sinf. The energy momentum tensor for an anisotropic
fluid defining the interior of a compact star is

e—m

y8 = (0 + puyug — pigyg+ (pr—pIvyvg,  (11)

where u, =e:> 6 , Vy = eﬁéi, and p, P, and P, are the en-
ergy density, radlal pressure and tangential pressure re-
spectively.

III. GENERALIZED SOLUTION FOR
COMPACT STARS

Manipulating Eqgs. (2)-(11), we have the following
important expressions:

—b(r)

€2 ; _w 0 [(T(r) 1 e Ff
- (e 2—1)FT—(T——2— (1—rb(r)))5 T

: (12)

)F T

3 Jwo-pon)+ 221 (13)

T(r) and its derivative with respect to the radial coordin-

ate 7 are given as:

Fol-rd (),
() re® -1) 270 -

)b/ () (—ra'(r) +e5 1)

72

2

4e=b" (e? - 1)(—ra'(r) +e - 1)
_ 5

2e~b) (e? - 1)(—ra"(r) —ad(r)+ %e% b'(r))
+ .

72

The diagonal tetrad provides the linear algebraic form of
the f(T) function. The off-diagonal tetrad, however, does

(14)

not result in any parameter which restricts the construc-
tion of a consistent model in f(T) gravity. The following
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extended teleparallel f(T) power law viable model [74]
is given as:

AT =pT", (15)
where 3, and k are any real constants. For the power-law
model, if we put k=1, we get teleparallel gravity. If we
put k> 1, we get generalized teleparallel gravity. In this
study, we take k = 2, which is a well fitted value with the
off-diagonal tetrad choice. For f(T) gravity, the underly-
ing scenario gives realistic solutions for stellar objects
with normal matter except in a particular range of radial
coordinates with observed data.

Now we discuss the Karmarkar condition, which is an
integral tool for the current study. The groundwork with
regard to the Karmarkar condition has been established
for class-I space-time. Eisenhart [75] provided a suffi-
cient condition for the symmetric tensor of rank two as
well as the Riemann Christoffel tensor, and it is defined
as

Z(AnBoy = MuyNyy) = Rywnyys

Apysn—Ayy;v=0.
Here, ";" stands for the covariant derivative and X = +1.
These values signify a space-like or time-like manifold,
depending whether the sign is — or +. Now, by taking in-
to account Riemann curvature components, which are
non-zero for the geometry of the space-time and by also
conferring non-zero components of the symmetric tensor
A, which is of order two, we incorporate a relation as
follows. Now the relation for the Karmarkar condition is
defined as:

Ro101R2323 = Rppo2R1313 — R1202R1303, (16)

and we have the following Riemannian non-zero com-
ponents:

1

1
Rotor = = 7e” (= ()b () +a?(r)+2a" (7)),

1
Rozoz = —r*sin’ 6)(1 - e‘b(’)), Roon = -3 rd (r)ed)=bw),
1
Ri313 = —Eb’(r)rsin2 0, Ri2=0, Ry303=0.

(17

Fitting the above values of the Riemannian components
in Eq. (16) gives rise to a differential equation having
form

2d"(r) _ e"Op'(r)
a(r) et —1"

a(r)+

(18)

Embedding class one solutions are obtained from Eq.
(18), as they can be embedded in 5-dimensional Euc-
lidean space. By the integration of Eq. (18), we have

2
RG] :(AJFBfw/eb(r)_ldr) , (19)

b(r) = log(ar’e” *"" +1), (20)

or exclusively

ar?ebr+cr'DawsonF (

2V2 e

2cr2+b] 2
+A

a(r) =log

)

V2 yer
21
where A4 and B are the integration constants. The final ex-

pressions for energy density and pressure components are
calculated as:

X

1
BIiS 2““Kr[
RN

+2V2aB Ve fsre” " (AQ(fi - Dk =2fi + D)+ Byfr(k = Dr(br? +2cr* +1)) +

_;[
(f+Dfs

5 bri+crt

8aB2cre
+

+ V2aB(fi - 1) f5(2x = 3)re” ||

G+ D) (fir- D(V2aBfyrr(fir—1)ebr+er =2 ¢ (2aBriet e — A\[fir (fir—1)))2

[Z(fl - l)r[2c(2an4(K— D 4+ A2 \[f 2(fi—- Dr=2fi + 1))

BEPQ(fi-Di=2fi+1)
r2

VF (br +2cr* + 1) [2Ve (2aBr (i =2k = fi +3)e” " + AN (fi - 1) (2= 3))

_2aBAer? Q(fi = Di—fi— e+

7

; I

(22)
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) B2 8y v fr(k— 1)k
LU (4 D= D(V2aB(fi - 1) firebrer —2 Ve (2aBrebr e - ANF (fi - 1))

X

2c[a?rte 0+er) (A2 \[f + ABr (b + 2 = fi +2) = B\ (i - D)+ A2V
X(=b(fi=Dr* =2c(fi—1)r* =3fi +4)+ AB(fi - 1) (b+2cr”) - B f (fi —1)r2]—2A2\/ﬁ
x(fi—1)|+ V2aB \/Ef3r[2Aeb’2+”4[a2r4ezrz(b+”2) —f(bA=DA+2c(fi-Dr* +3fi -4)-2f

Bf73/2r(—aeb’2+”4 (—2cr4 +fi— 2) +b(fi+fi—-D+2c(fi- 1)72)

a

3/2
_Bzf32 7/

72

+2] +

x| =ar*e ) f(b(fi = D+ 2e(fi- Dt +3fi - 4)+2f, —2]]
K

D (i- 1)(V2aB(fi = 1) fsrebr+er =2 e (2aBrie? ™+ — AF; (fi - 1))

X (ZazBrSezrz(b”’z) + f (A f (2byr2 +4C)/r4 +y+ 1) +ZBr) —A(y-1) \/f_7) + \/Ean3rebrz+"4

Vh (f+ Dify +1] ’

e

(23)

x(f7(2byr2+4cyr4+y+1)—7+1)]+(7+1)/<—(7+1)( P

_ By f2fs2 kr {2(}‘1 -Dr
(y+ D (/= D(V2aB(fi = 1) fyre e =2 \c(2aBrieb+r —ANf (fi- D)) | Vfif3

2c(2aBfi(k— 1)re” " + A2\ 2 (fi = Dk =2fi + 1)) + 2 V2aB Ve fyre” " [A[2(fi - 1)

X

BREPQ(fi-Dk=2fi+1)

><K—2f1+1]+B\/]77(/<—1)r(br2+2cr4+1)]+ 5

I

2aB \/ErZ Q(fi - k- fi - l)ehrzﬂ" \/f_7(br2 +2cr* + 1) .
B - 2+c|2aB —k—fi+3
\/EaBrf3eer+cr” +2A\/E\/]T7 (F+Dp [ \/E[ aBr’ ((fi—2)k—fi+3)

xe! "+ ANF (fi = 1) (2= 3)| + V2aB(fi = 1) f3(2k = 3)re” +" (24)

8‘,1B2C.I.Selvrz+cr4 :|
o St

72

_2/<74ﬁf:S
pr= v+1

=6(wy + D(y + 1) +k[6(wy+ D(y+1)

417
+
(F+ D (fi = 1)(V2aBe 7 (fi = 1) f3 = 2 Ve (2aBeer 713 = ANJF; (fi = 1))
+D(y + 1)1 + 3wy + 2y + Bwg +y + 2)fs + 3]+ A (2cr* + b7 + 1) Bwgy — ) | Ve + aBe™
X (2er* +br7 + 1) Gwgy - 1) V23]

[Z[Br[2cr4 +2cyr?

3 16r(k—1)
(fr+ D (fi = D2 fo( V2aBee+07 r(fi = 1) f3 - 2 e (2aBer b7 13 — A[F (fi - 1))
X P (y+ 1) = ANF (i = D(Gwg +2)y + D] = V2aBe ™7 r (fi = 1) (Bwy + 2y + D]

B2 (=2 (P 0) 4 L 2 fy 4 (20 (fi = D) +b(fi = 1) P2+ 311 —4) fr = 2) f21£1
B (-d’ P 2fi+ (2e(fi- D+ b(fi- )P +3f-4) f1-2) £21; 2

[2 \/E[aBecr“H)rz

X

72

x (VHA?+Br(2er* + b* = fi +2) A= B \f; (i = D)) * =242 VF (fi = 1) + [AB(2¢7 +b)
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X(fi= P =B Nf (- D7+ A2 f (<2 (- Dr* =b(fi- Dr* =3fi +4) | 1] + aBr V2 Ve

[Br(Zc(fl — 1) —ae " (<2t + fi = 2)+b(fi + fr- D) £
X
a

7 + 2Aecr“+brZ [a262r2 (cr+b) 7‘4

C i (26 Ch =D + b~ P + 3 4) =25 2] f3” 2AGw,+ 1)(}2%7+(7+ 1)f7)/<f2] 25)
A=pi=pr, (26)
where
2cr’ +b
fi= A+l H=2AVer+ 2B\ffs, fi= F( ) fa=Ab? +2Acr* + A- BA[for,
2V2+/fc
(=D(V2aB(fi = 1) fire’ " ~2Ne(2aBre" " — AN (fi - 1)))]K
i V1) for ’
fo= (- Dr(V2aB(fi = 1) fyre” " =24c(2aBre ™" - ANF (Ai- 1)), fr=are .
IV. MATCHING CONDITIONS =g & =g 08, _ 8u (28)

No matter what remains of the geometrical structure
of the star, whether exterior or from the interior, the in-
ner boundary metric does not change. This requires that
the metric components remain continuous along the en-
tire boundary. In GR, the Schwarzschild solution associ-
ated with the stellar remnants is understood to be the top
choice from all the available options for the matching
conditions. Any suitable choice when working with the-
ories of modified gravity must consider the non-zero
pressure and the energy density. Several researchers [76-
77] have produced significant work on the boundary con-
ditions. Goswami et al. [78] worked out the matching
conditions while investigating modified gravity by incor-
porating some special limitations to stellar compact struc-
tures along with the thermodynamically associated prop-
erties. Many researchers [79-82] have effectively em-
ployed Schwarzschild geometry while working out the di-
verse stellar solutions. To obtain the expressions for the
field equations, a few restrictions are applied at the
boundary r =R, that is p,(r=R)=0. Here, we also in-
tend to match the Schwarzschild exterior geometry with
the interior geometry:

oM ]
d,2=—(1——)dz2+(—)d 2
’ r 1-2M/r d

+ rz(dﬁz + sin29d¢2), @7)

where M represents the total stellar mass and R is the total
radius of the star. Taking into account the metric poten-
tials, the following relations are employed at the bound-
ary r=R:

or or

The signatures of the intrinsic geometry and extrinsic
geometry are taken as (-,+,+,+) and (+,-,-,-), respectively.
The desired restrictions are achieved by comparing the
interior and exterior geometry as they are, and working
out the following:

1 oM
A:_ﬁlOge(l_T)’
M M\
B=—ploe(1-77)
DM\ M 2My\!
c=10g3(1——)——(1——) . (29)
r R r

The approximate values of the mass M and the radius R
of the stellar objects PSRJ1614-2230, 4U1608-52,
CenX -3, EXO1785-248, and SMCX —1 are considered
to determine the unknowns as given in Table 1.

V. PHYSICAL ANALYSIS

This section is dedicated to the exploration of some
critical properties connected to the compact stars. These
comprise the energy density p, radial pressure p,, the tan-
gential pressure p,, and the discussions on the quint-
essence field along with their physical interpretation un-
der f(T). This discussion also includes the energy condi-
tions, anisotropic pressure, compactness factor, and the
speed of sound in the star with reference to the radial and
tangential components. The smooth and regular behavior
of the metric components is plotted in Fig. 1.

045102-7



Allah Ditta, Mushtaq Ahmad, Ibrar Hussain ef al.

Chin. Phys. C 45, 045102 (2021)

Table 1. Values of constants of compact stars by fixing k =2, b =0.000015, y = 0.333, w, = —=1.00009, ¢ = 0.000015 and g = —4.
Star name Observed mass (M,) Predicted radius (Rkm) a A B
PSRJ1614-2230 1.97 12.182 0.0023099 0.734147 0.0233421
4U 1608-52 1.74 11.751 0.00228432 0.758428 0.0231551
CenX-3 1.49 11.224 0.00225723 0.785203 0.0229539
EXO01785-248 1.3 10.775 0.00223401 0.80602 0.0227945
SMCX-1 1.04 10.067 0.00219944 0.835374 0.0225762
10[ ] A. Energy density, quintessence density,
: and pressure profiles
- °of PSS The most important stellar environment responsible
'fug‘: 0l ] for the emergence of the compact stars comprises the cor-
s responding profiles of the energy density along with the
£ ol 1 radial and tangential pressures. We have investigated the
=0 profiles of the energy density, quintessence density and
06l 1 pressure terms. It is apparent from the plots, as shown in
i ] Figs. 2 and 3, that the energy density acquires its highest
0 2 T 6 8 10 12 value at the center of the star, indicating the ultra-dense
r nature of the star. The tangential and radial pressure
Fig. 1. (color online) Evolution of metric potentials versus 7. terms are positive and acquire their maximum values at

Here we fix k=2, »=0.000015 y=0.333, w,=-1.00009,

¢=0.000015 and B = —4.
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the surface of the compact stars. The profiles of the stars
also indicate the presence of an anisotropic matter config-
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uration free from any singularities for our model under
f(T) gravity.

B. Energy conditions

The role of the energy constraints, among the other
physical features in describing the existence of anisotrop-
ic compact stars, has been widely acknowledged in the
literature, as they allow analysis of the environment to
obtain the matter distribution. Moreover, the energy con-
straints also allow analysis of the distribution of normal
and exotic matter contained within the core of the stellar
structure. Several fruitful conclusions have been ob-
tained due to these energy constraints. The expressions
corresponding to the null energy constraints (NEC),
strong energy constraints (SEC), dominant energy con-
straints (DEC), and weak energy constraints (WEC) are:

NEC:p+p, 20, p+p; >0,
WEC:p20, p+p, 20, p+p; >0,
SEC:p+p, >0, p+p; 20, p+p,+2p; >0,

DEC:p>|p/l, p>|pil. (30)

The evolutions of the energy constraints are plotted in
Fig. 4. It is clear from the positive profiles of the energy
conditions for all the stars, PSRJ1614-2230,

" psR 1418~ 2730 (Black)

0.00005

0.00004

0.00003

0.00002

Energy Conditions

0.00001

Forces

Fig. 4.

T T
PSR .J 1416 - 2230 (Black)
[ 4 U1608 - 52 (Green)

5.x107

4.x107 |4

3.x107 |

Anisotropy (A)

2.x107 |

1.x107 ¢

Gradients

Fig. 5.

4U1608 -52, CenX -3, EXO1785-248, and SMCX -1,
that our obtained solutions are physically favorable un-
der f(T) gravity.

C. Anisotropic constraints
dp dp,

T ar and d—lit denote the total de-
rivatives of the energy density, the radial pressure, and
the tangential pressure, respectively, with respect to the
radius » of the compact star. The graphical description of
these radial derivatives is provided in the right-hand plots
of Fig. 5, which suggest that the first order derivative

gives a negatively increasing evolution:

The expressions

dp dp,
— —_— . 1
" <0, & <0 (31)
dp dp,
It may be noted that ™ and ) at the core, r =0, of the
r r
star are:
dp dp,
£ -0, 1
dr dr

This confirms the maximum bound of the radial pressure
pr along with the central density p. Hence, the maximal
value is attained at r =0 by p and p,.

T
[ PSR J 1416 - 2230 (Black)
4 U1608 - 52 (Green)

6.x1077

Cen X -3 (Blue)

4.x 107 [ £x0 1785 - 248 (Reg)

SMCX - 1 {Magenta)
2.x107
O L

-2.x107

-4.x107 |

(color online) Evolution of energy conditions (left) and forces (right).
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0 2

(color online) Evolution of anisotropy A (left) and gradients (right).
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D. Equilibrium under various forces

The generalized TOV equation in anisotropic matter
distribution is given as

dp, alp+p) 2pi=p) _

03
dr 2 r

(32)

where Eq. (32) provides important information about the
stellar hydrostatic-equilibrium under the total effect of
three different forces, namely the anisotropic force F,,
the hydrostatic force Fy, and the gravitational force F.
The null effect of the combined forces depicts the equilib-
rium condition such that

Fo+Fp+F,=0,
with
, 2
Fg:_a (p+Pr)’ th_%» F,= (p: pr). (33)
2 dr r

From the right plot-hand of Fig. 4, it may be deduced that
under the combined effect of the forces F,, Fy and F,,
hydrostatic compact equilibrium can be achieved. It is
pertinent to mention here that if p, = p, then the force F,
vanishes, which simply conveys that the equilibrium
turns independent of the anisotropic force F,.

E. Stability analysis

The stability is constituted by the speed of sound as-
sociated with the radial and transverse components, de-

noted v2, and V2, respectively. They must satisfy the con-

straints 0<v% <1 and 0<v2 <1 [83], such that
d d .

=2 =L and 2 = % A comprehensive study of the

stability 'gf anisotropic spheres has been done by Chan
and his coauthors [84]. They have discussed Newtonian
and post-Newtonian approximations in the background of
anisotropy distribution. The corresponding plots of the
speeds of sound as depicted in Fig. 6 confirm that the
evolution of the radial and transverse speed of sound for

T T
0.360 [PSR 1416 - 2230 {Black)
401608

52 (Green)
Can X~ 3 (Blus)
0.355 [-Exo 1785 - 2

SMC X - 1 (Magenta)

0.350

Wi
0.345
0.340 -
0.335
0 2 4 s 8 0 12
r
Fig. 6. (color online) Evolution of EoS w;.
the strange star candidates = PSRJ1614—2230,

4U1608-52, CenX —3, EXO1785-248, and SMCX -1
remain within the desired constraints of stability as dis-
cussed. For all the strange star candidates the bounds of
both the radial and the transverse speeds of sound are jus-
tified. Within the anisotropic matter distribution, the ap-
proximation of the theoretically stable and unstable
epochs may be obtained from the modifications of the
propagation of the speed of sound, which has the expres-
sion v -2, satisfying the constraint 0 <[y —v2|<1.
One may confirm this from Fig. 7. Therefore, the total
stability may be obtained for compact stars modelled un-
der f(T) gravity.

F. EoS parameter and anisotropy measurement

For the case of anisotropic matter distribution, the
EoS parameter incorporating radial and transverse com-
ponents may be expressed as

_DPr 4
W, =—, w;=—.

P p

(34

The analysis of the EoS parameters with respect to the in-
creasing stellar radius is graphically represented in Fig. 8
which clearly demonstrates that for all strange star can-
didates PSRJ1614-2230, 4U1608-52, CenX-3,
EXO01785-248, and SMCX —1, the conditions 0 < w, < 1

0333)

Y

0.333)

0.333)

0333 »},7 —]

t 03sf

Er T
[ PSR 1416 - 2230 (Biack)

0507 L1608
0.45}

0.40f

0.30F

0.25F

Fig. 7.

(color online) Evolution of speeds of sound v? (left) and v? (right).
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T
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4y ]

0.15

0.10

vi-v?

0.05

0.00

-0.05

r

vZ—vZ and
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-0.15

Fig. 8. (color online) Evolution of |vZ-v?|.

and 0<w; <1 have been obtained. Hence, our stellar
model in f(T) gravity is truly viable. Now, the aniso-
tropy here is expressed by the symbol A, and is meas-
ured as

2
A= ;(pz - Dr) (35)

which provides the information regarding the anisotropic
conduct of the model under discussion. The term A has to
be positive if p; > p,, showing that the anisotropy is go-

ing outward, and when p, > p;, A becomes negative,
showing that it will be directed inward. For our model in-
corporating all the stars PSRJ1614 —2230, 4U1608 —52,
CenX -3, EXO1785-248, and SMCX -1, the evolution
of A when plotted against radius » shows positive increas-
ing behavior (as shown in the left-hand plot of Fig. 5),
suggesting some repelling anisotropic force followed by a
high-density matter source.

G. Mass-radius relation, compactness,
and redshift analysis

The stellar mass as a function of radius r is defined by
the following integral:

m(r) = 4 f nr2pdF. (36)
0

It is evident from the mass-radius graph as shown in Fig.
9 that the mass is directly proportional to the radius r
such that as r — 0, m(r) — 0, showing that mass function
remains continuous at the core of the star. Also, the mass-

. . . 2M 8 .
radius ratio must remain — < 5 as determined by Buch-

-
dahl [85], which in our case is within the desired range.

gSR J1416- 2230‘ (Black)
4 L1608 - 52 (Green)

" CenX -3 (Blue)
EXO 1785 - 248 (Red)

SMC X = 1 (Magenta)

Fig. 9.

Now, the following integral defines the compactness
wu(r) (plotted in Fig. 9) of the stellar structure as

u(r) = if ﬂr/zpdf. (37)
rJo
The redshift function Zg is
Zs+1=[1-2ur]>. (38)

The graphical representation is provided in Fig. 10. The
numerical estimate of Zg remains within the desired con-
dition of Zg < 2, indicating the viability of our model.

Compactness (u)

—
[ PSR J 1418 - 2230 (Black)
"4 U1608 - 52 (Green)

[ CenXx- 3 (Blue)

0.15

12

(color online) Evolution of mass function (left) and compactness parameter (right).

T T
[ PSR J 1416 - 2230 (Black)
[ 4 U1608 - 52 (Green)

[ CenX- 3 (Blue)

: EX0 1785 - 248 (Red)

[ SMC X - 1 (Magenta)

0.20

0.15

RedShift (z5)

Fig. 10. (color online) Evolution of redshift function.
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VI. CONCLUSION

As an equivalent structuring of GR, the notion of par-
allelism has been raised in the last few years as an attract-
ive alternate theory of gravity, and has been well acknow-
ledged as the teleparallel equivalent of GR (TEGR). The
concept behind this is the existence of an even more
standard manifold which takes into account the curvature,
besides a quantity called torsion. A large number of
scholars have explored the modifications of TEGR with
reference to cosmology, the f(T) theory of gravity. The
most attractive aspects of f(T) gravity is that it has
second-order field equations dissimilar to those of f(R)
gravity, and it is built with a comprehensive Lagrangian.

In our present work, we have employed a general
model for the possible existence of static and anisotropic
compact structures in the spherically symmetric metric
and by using a power law model in the framework of
f(T)-modified gravity. To the best of our knowledge, this
is the first attempt to study stellar objects in the f(7') the-
ory of gravity with quintessence via an embedding ap-
proach. Our theoretical calculations support realistic
models of the stars PSRJ1614-2230, 4U1608-52,
CenX -3, EXO1785-248, and SMCX-1. The stability
and singularity-free nature of these realistic models is
physically important, and our results are in good agree-
ment in this scenario. Moreover, through some manipula-
tions, the corresponding field equations are solved for the
compact stars. We have established our calculations un-
der the assumptions of the statistics corresponding to the
PSRJ1614 -2230, 4U1608—-52, CenX-3, EXOI1785-
248, and SMCX -1, as strange star candidates with ap-
propriate choice of the values of the parameter n. Our
work here applies the investigation of the possible exist-
ence of quintessence to compact stars with an anisotropic
nature due to the extremely dense structure in the frame-
work of the f(T) theory of gravity. For the evolving Uni-
verse in different epochs, gravitational stellar collapse has
been explored by incorporating the spacetime symmet-
ries along with exclusive matching of the Schwarzschild
vacuum solution. Graphical illustrations of some exclus-
ive features of the quintessence stellar structures in f(7')
gravity have been presented. The energy density p, the
transverse pressure p;, the radial pressure p,, anisotropy
limitations and the quintessence energy density p, have
been analysed in the context of f(T') gravity by using the
off-diagonal tetrad and power law given as f(T)=pBT".
Here are some of the key features which we have found
during our investigation, with our focus on the energy
density, radial and tangential pressures and the quint-
essence field, along with their physical interpretation un-
der f(T) gravity. Other interesting features include the
energy restrictions, anisotropy, compactness and the
speed of sound of the stellar remnants in terms of both ra-
dial and tangential components.

e The crucial physical aspects for the existence of
stellar structures comprise the energy density and the ra-
dial and tangential pressures. It is clear from the respect-
ive plots in Figs. 2 and 3 that the energy density at the
stellar core attains the highest value, showing the highly
dense character of the star. Also, the tangential and radial
pressure terms are positive and attain their maximum val-
ues at the star surface. These profiles also offer the exist-
ence of anisotropic matter distribution independent of sin-
gularities for the f(7') model under investigation. Further-
more, the profiles of the quintessence density p, show
negative behavior, favoring our stellar f(7T) gravity mod-
el.

e The role of the energy constraints is quite obvious
in the literature on compact stellar remnants. The plots of
the corresponding energy conditions have been presented
in Fig. 4. It is evident from the positive profiles for all the
stars,  PSRJ1614-2230, 4U1608-52, CenX -3,
EXO01785-248, and SMCX - 1, that our acquired solu-
tions are physically viable in f(T) gravity.

f d_p, dpr and dpi

e The profiles o , the total derivat-

ives of p, p,, and p, writh réspect to rthe stellar radius 7,
respectively, have been provided in Fig. 5. This indicates
that the first derivative shows negatively accelerating
evolution. This validates the highest bound of the radial
pressure p, with the central density p. Therefore, the
highest value is achieved by p and p, at r=0.

e For the hydrostatic equilibrium, it is evident from
the right-hand panel of Fig. 4 that under the total effect of
the forces Fy, Fy and F,, stellar equilibrium is achieved.
It is worth mentioning that in certain situation like
pr = pr, the force F, vanishes, hinting that the equilibri-
um is free of the effect of anisotropic force F,.

e The corresponding plots of the speeds of sound,
shown in Fig. 6, suggest that the radial and transverse
speeds of sound for all the stars, PSRJ1614—-2230,
4U1608 —52, CenX —3, EXO1785-248, and SMCX -1,
are bounded within the desired constraints of stability.
One may confirm from Fig. 7 that the constraint
0<[v%—1v2|<1 for the stability of the compact star is
achieved. Therefore, overall stability may be obtained for
compact stars modeled under f(T) gravity.

e The constraint parameter EoS is expressed by
0 <w; <1 and is plotted in Fig. 8. It is easy to see that it
favors the corresponding matter distribution under f(7')
gravity.

e For the stars PSRJ1614-2230, 4U1608-52,
CenX -3, EXO1785-248, and S MCX — 1, the anisotropy
A with respect to » gives positive increasing behavior (as
shown in the left-hand plot of Fig. 5), suggesting re-
pelling anisotropic forces incorporated by a high-density
matter source.

e Figure 10 provides graphical representation of the
red-shift function. The approximate value of Zg falls
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within the desired condition of Zg <2, supporting our
model.

It is worth mentioning here that the solutions we have

obtained in this study represent denser stellar structures
than those in past related works on compact objects in ex-
tended theories of gravity [29, 86-88].
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