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Abstract: We derive an exact solution for a spherically symmetric Bardeen black hole surrounded by perfect fluid

dark matter (PFDM). By treating the magnetic charge g and dark matter parameter « as thermodynamic variables,

we find that the first law of thermodynamics and the corresponding Smarr formula are satisfied. The thermodynamic
stability of the black hole is also studied. The results show that there exists a critical radius ¢ where the heat capa-

city diverges, suggesting that the black hole is thermodynamically stable in the range 0 < ry < rf. In addition, the

critical radius rf increases with the magnetic charge g and decreases with the dark matter parameter . Applying the

Newman-Janis algorithm, we generalize the spherically symmetric solution to the corresponding rotating black hole.

With the metric at hand, the horizons and ergospheres are studied. It turns out that for a fixed dark matter parameter

a, in a certain range, with the increase of the rotation parameter a and magnetic charge g, the Cauchy horizon radius

increases while the event horizon radius decreases. Finally, we investigate the energy extraction by the Penrose pro-

cess in a rotating Bardeen black hole surrounded by PFDM.
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I. INTRODUCTION

The singularity theorems proved by Penrose and
Hawking state that under the main assumptions of the
strong energy condition holding and the existence of
global hyperbolicity, in the framework of General Re-
lativity, every black hole inevitably contains a singularity
[1]. At a space-time singularity, the curvatures and dens-
ities go to infinity [1, 2] and the predictive power of
physical laws is completely broken down. It is widely be-
lieved that space-time singularities are a reflection of the
incompleteness of General Relativity, and can be solved
in a quantum theory of gravity. Surprisingly, in 1968
Bardeen [3] obtained a black hole solution without a sin-
gularity, which can be interpreted as a gravitationally col-
lapsed magnetic monopole arising in a specific form of
nonlinear electrodynamics [4]. After that, more regular
(non-singular) black holes such as the Ayon-Beato and
Garcia black hole [5], Hayward black hole [6], and Berej-
Matyjasek-Trynieki-Wornowicz black hole [7] were pro-
posed. The spherically symmetric Bardeen black hole is
described by the metric

ds® = —f(rdf* + £ ()~ dr* + r7dQ?,

2

fn=1-—22_ 1)
(2 +g2)

where g and M are the magnetic charge and mass, re-

spectively. It should be noted that the metric behaves like

the Schwarzschild metric at large distances (g/r < 1), and

near the origin it behaves like de Sitter geometry, which

can be realized from

oM
fO=1-"57, E>1. 2)

Equation (2) suggests that the Bardeen black hole avoids
singularities by a de Sitter core, i.e. the pressure is negat-
ive and thus would prevent a singular end-state of the
gravitationally collapsed matter [8, 9]. All regular black
holes (including Bardeen black holes) violate the weak
energy condition. However, the region of violation is al-
ways shielded by the Cauchy horizon [10-13]. In fact, this
violation of classical energy conditions is a natural con-
sequence of the fact that the singularity-free metric might
incorporate some quantum gravity effects [12].

Modern cosmological observations reveal that our
current universe contains mainly of 4.9% baryon matter,
26.8% dark matter, and 68.3% dark energy, according to
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the Standard Model of Cosmology [14]. Therefore, it is
necessary to consider black hole solutions surrounded by
dark matter or dark energy. In recent years, black holes
surrounded by quintessence dark energy have attracted
much attention. For example, Kiselev [15] considered a
Schwarzschild black hole surrounded by quintessence en-
ergy and then Toshmatov and Stuchlik [16] extended it to
the Kerr-like black hole. The quasinormal modes, ther-
modynamics and phase transition from a Bardeen black
hole surrounded by quintessence was discussed by Saleh
and Thomas [17]. Hayward black holes surrounded by
quintessence have been studied in Ref. [18], and in Refs.
[19-24]. On the other hand, as one candidate for dark
matter, perfect fluid dark matter (PFDM) was proposed
by Kiselev [15, 25] and further studied in Ref. [26], offer-
ing a reasonable explanation for the asymptotically flat
rotational velocity in spiral galaxies; see Refs. [27-31] for
more recent research. In this work, following Refs. [16,
18], we generalize the Schwarzschild black hole surroun-
ded by PFDM to the spherically symmetric Bardeen
black hole. Furthermore, by resorting to the Newman-
Janis algorithm, we obtain the rotating Bardeen black
hole in PFDM.

The paper is organized as follows. The next section
gives the derivation of a spherically symmetric Bardeen
black hole surrounded by PFDM. In Sec. III, we discuss
its thermodynamic properties. In Sec. IV, by applying the
Newman-Janis algorithm, we obtain the rotating Bardeen
black hole surrounded by PFDM. The weak energy con-
dition is the subject of Sec. V. In Sec. VI, the horizons
and the ergospheres of a Bardeen black hole surrounded
by PFDM are studied. In Sec. VII, we investigate the en-
ergy extraction by the Penrose process. Discussion and
conclusions are presented in Sec. VIII. Planck units,
h=G =c=kg=1, are used throughout the paper.

II. STATIC AND SPHERICALLY SYMMETRIC
BARDEEN BLACK HOLE IN PERFECT
FLUID DARK MATTER
Given the coupling between gravitational and non-lin-

ear electromagnetic fields, the Einstein-Maxwell equa-
tions should be modified as:

IL(F
G! = 2(%@11?“ - 5;.5) +87T), 3)
v, ((”(,jff ) FV”) o, @
Y, (+F) = 0, (5)

. . 1
Here, F,, =2V[,A,; and L is a function of F = ZFWFW

given by [4]

L(F)

7\
~ 3M[ V282 F ] ’ ©

"1 s y2gF

where g and M are the parameters associated with mag-
netic charge and mass, respectively.

In this work, we consider black holes surrounded by
PFDM, following Kiselev [15, 25] and Li and Yang [26].
The energy-momentum tensor of PFDM in the standard
orthogonal basis is given by T% = diag(—e, p,, pe, Pg), with
the density, radial and tangential pressures of the PFDM
being

a . a
8nr3’ PO=Po= "6

(M

€E=—p,=

To obtain a solution that satisfies Egs. (3)-(5), we as-
sume a spherically symmetric line element,

45 =~ (NP + () 4P + AR, f() =1 - 22
,
®)
and we use the ansatz for a Maxwell field [4]
Fuy = (8567 - 895%) B(r.0). ©)

Next, using Eqgs. (4) and (5), Eq. (9) can be simpli-
fied as

Fuy = (6087 - 6%6%) g sin, (10)

where g is the integration constant. Further, one can get
F = g%/2r*. In order to give a direct physical interpreta-
tion for g, for any 2-sphere S at infinity, we consider the
following integral:

1 g T 2T
- *F:_f f sinfdAdy = g. (11)
4 S 4r 0 0

From Eq. (11), one can confirm that g is the magnetic
monopole charge.

Now, with the help of the above equations, the time
component of Eq. (3) reduces to

_ 2.dm(r) _

6Mg? o
— —. 12
r2 dr + (12)

(P2 +g2): 1

Integrating Eq. (12) from 7 to oo and using

M =1lim,_,o (m(r) + CEyln |—r|), one finally gets
[07
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2Mr? Lo
—+—In—.
(r2+g2): T lal

fn=1- (13)

Note that, in the absence of PFDM, i.e. @ =0, the above
space-time recovers that of the Bardeen black hole; in the
case of g =0 [3, 4], it reduces to the Schwarzschild black
hole surrounded by PFDM [25, 26]; and if a=0 and
g =0, we obtain the Schwarzschild black hole.

As mentioned in the introduction, a Bardeen black
hole (@ = 0) is regular everywhere. To check whether this
characteristic is changed by the presence of PFDM, we
calculate the following curvature scalars:

R 6Mg? (4g2 - r2)

-2, (14)
(g2+r2)5 I

18M2g*(8g* —4g22 +13r%)
(g2+7)
6Mg> (232 + 7r2)a 502

(g2 +72) 216"

R,R* =

(15)

120212 =

|
}"6
- [6MP° (Sg2 - 2r2)
1302 lal|  (g2+r2)"
}’6 76
4aM (-2g* - 372 +10r%)

r(g2+ r2)7/2

7{‘ =RﬂVO_TR/JVU'T =

+

12M? (8g8 - 4g6r2 +47g4r4 - 12gzr6 + 4r8)

+ 7
(g2 +7r?)

(16)

It turns out that a Bardeen black hole surrounded by PF-
DM is singular at r=0. In fact, the future singularity
comes from the dark matter background.

II. THERMODYNAMIC PROPERTIES OF
BARDEEN BLACK HOLE IN PFDM

Let us now turn to the thermodynamic properties of a
Bardeen black hole in PFDM. For convenience, we write
here the line element of a spherically symmetric black
hole, obtained in the previous section, as

ds* == f(r)df* + f(r) " dr? +2dQ?,

2
F=1- M e T (17)

(r2+g2)% r

The black hole mass M can be expressed in terms of
event horizon r, as

(18)

which comes from f(r;)=0. According to the Beken-
stein area law, the entropy S of the black hole can be cal-
culated as

A 21
S=7= f f VE2008pd0dy = mr. (19)
o Jo
Making use of this, one can rewrite Eq. (18) as

_(s4n) (| vEa, NS
M= b+¢§mme

(20

Other thermodynamic quantities can be obtained through
thermodynamic identities. For examples, the temperature
T, the magnetic potential ¥, and the conjugate quantity to
the dark matter parameter « are given by

(oM
as ).,
2 +g? (rJr (r%r - 2g2) + a(r%r + gz) -3g%aln l%])
- 47rrz ’
(21
’
oM 3g,/r3+g2(r++alnr;|)
w=(22) = . , 22)
ag T, 2r+
2+ -1+ =
oM * ||
n=(2%) - . . (23)
aa T,g 2r+

Note that here we have treated the dark matter parameter
a as a new thermodynamic variable and IT is its conjug-
ate quantity, as shown in Refs. [32-35]. It is easy to check
that those thermodynamic quantities satisfy the first law
of black hole thermodynamics,

055103-3



He-Xu Zhang, Yuan Chen, Tian-Chi Ma ef al.

Chin. Phys. C 45, 055103 (2021)

dM =TdS +%¥dg +Ide, (24)
and the Smarr formula,
M =2TS +¥g +1le, (25)

which is exactly consistent with the scaling dimensional
argument.

2nr? (r%r + gz) (ri +ar? -2g%r, + g?a—3g%aln r_+)

In what follows, we will investigate the thermody-
namic stability of a Bardeen black hole in PFDM. The
heat capacity at constant volume is defined as

coar®

aS (oT\"
= ( T) . (26)

~ oo,

Plugging Egs. (19) and (21) into Eq. (26), one finally
arrives at

|a]

Cy=-

The behavior of Cy as a function of r, is plotted in Fig. 1
for different values of magnetic charge g and dark matter
parameter «. For given values of parameters a and g,
there is a critical radius r$¢ where heat capacity Cy di-
verges and the second order phase transition occurs.
Figure 1 indicates that the heat capacity is positive and
the black hole is thermodynamically stable in the range
0<r, <r¢. Clearly, the critical radius r¢ increases with
magnetic charge g and decreases with dark matter para-
meter a.

IV. ROTATING BARDEEN BLACK HOLE IN
PERFECT FLUID DARK MATTER

In this section, with the Newman-Janis algorithm
(NJA), we will generalize the spherically symmetric

400

r(r +20) = 8g4 (ry — @) +2g%7% (S = 2r,) — 3g2(5g% +4r2 ) arIn L

27

lor

[
Bardeen black hole solution in PFDM to the Kerr-like ro-
tational black hole solution. The NJA was first proposed
by Newman and Janis in 1965 [36] and has been widely
used in many studies [16, 18, 37-45]. In this work, we ad-
opt the NJA modified by Azreg-Ainou [46, 47], which
can generate rotating regular black hole solutions without
complexification.

Consider the general static and spherically symmetric
metric:

ds® = —f(r)d? +g (™" dr* + h(r)dQ?,

dQ? = d6? + sin® 6dg?. (28)

At the first step of this algorithm, we transform the spher-
ically symmetric space-time metric (28) from the Boyer-

400
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Fig. 1.

re

(color online) Variation of heat capacity with respect to the event horizon r, for a set of values of parameters g and «.
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Lindquist (BL) coordinates (¢,7,6,¢) to the Eddington-
Finkelstein (EF) coordinates (u,r,6,¢) by carrying out the
coordinate transformation

du=dr——9 (29)

NorG)

As the result of this transformation, the line element (28)
takes the form

ds?> =— f(r)du® -2 Moludr
g
+h(r)(d6? +sin® 0dg?). (30)

In terms of the null tetrads satisfying the relations 1,/ =
nt = mym* = [,mt =n,mt =0, [,n* = -m,m* =1, the-
contravariant metric tensor associated with the line ele-
ment (30) can be expressed as

g =-Fn" = I'n" + m'm’ + m"m", (31)

where

pog, e (S0 SO

f 2
M — 1 5/‘ + i 611
2R ¢ \2h(r)sing ©
1 i
= 5 — 5. 32
" V2h() ¢ \2h(P)sing © 2)

Next, we take the critical step of the NJA, which is to
perform complex coordinate transformations in the u—r
plane,

u— u—iacosf, r— r+iacosé. (33)

At the same time, we assume that as a result of these
transformations, the metric functions also turn into a new
form: f(r)— F(r,a,0), g(r) > G(r,a,0), and h(r) > X =

r* +a®cos?6 [46, 47]. Furthermore, the null tetrads also
take new forms,

|G 1
F =6, n'= =8 -=F&,
r n F 0 2 r

1 o i
m* :E ((5’9‘ +1asm0(6’5 —6’,’) + sine(sg)’
| :
it == (5/(; —iasing (& — o)) - —Si; 05’;). (34

Then by means of Eq. (31), the contravariant compon-
ents of the metric g*” can be obtained as:
2

u _ 4

) )
sin 9, gr,:G+a251n 6’7
z z
99_1 g<p<p= 1

z’ Tsin?@’

g =g = — /g a a®sin’ 6
F T

up _opou — 4 re _ ger - _4 35
g% =g s 87 =8 ok (35)

Accordingly, the rotating metric in the EF coordinates of
(u,1,0,¢) reads

[F [F
ds? == Fdu® =2 \[ =dudr +2a| F — 1| = |sin? 8dudy
G G
2 L2, [F
+Xd6” +2asin“ 0 Edrdtp
2 F : 2 2
X+a|2 E_F sin“ 0|dg”. (36)

The last step of the NJA is to bring Eq. (36) to BL co-
ordinates by using the following coordinate transforma-
tions:

+sin@

du=dt+A(rdr, dp=dp+y(r)dr, (37
where the functions A(r) and y (r) can be found using the
requirement that all the nondiagonal components of the

metric tensor, except the coefficient g, (g4¢), are equal to
zero [46, 47]. Thus,

B k(r)+a2 _

1o YO oo Y

with
_ s

k(r) = f(r)h(r), (39)

and
h+a?cos?0)x 2 o2
P SECOSOE L shrdeoss

(k2 + a2 cos? §)’

Here, for convenience, we omit the variables of f(r),
g(), h(r) and k(r).
Finally, the rotating solution corresponding to the
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spherically symmetric metric (28) can therefore be ob-
tained as

(gh +a?cos? 9) >
—dr®
(k+a?cos?6)
—gh
(k+a? cos? 0)*
2k — gh+a*cos* 0

(k+ a2 cos? 0)*

ds? =— dr?

+
gh+a?

-2a sinZG[ }2d¢dr+2d92

+2sin?0|1+a*sin?0

}dq&z. (41)

In the case of Bardeen black holes in PFDM, compar-
ing the line elements (17) with (28), one can find

2
F=gn=1-—" 2

. . h()=k@r)=r>
(r2+g2): T lal

(42)

Substituting the above expressions into Eq. (41), we
obtain the metric of rotating Bardeen black holes in PF-
DM in the form

2 z 4 in20
dsz=—(1—%r)dt2+A—dr2+2d92——apr;m drdg

2a2prsinZ 6
Q(P_)d¢

X
(43)
with
2M7?
20 :—r] —aln—,
(2 +g%): ||
Y =r* +a®cos? 6, (44)
2Mr*
A= +a* - —r! +a/r1nL.
P+t M

Now, we come to consider the energy-momentum
tensor. With the help of the Mathematica package, from
the metric (43), the nonvanishing components of the Ein-
stein tensor G, are given by:

2 (r4 +a*r? = 2r3p —a*sin* fcos? 9)9’ a’rsin® gp”

Gy = 33 32 s
2asin®6 [(r2 + a2) (a2 cos? 6 — r2) + 2r3p]p’
Gy = =3
arsin’ 6 (r2 + az) o’
+ >

2

G 2r2p’ 24 cos’ 6p’ .
==, = —7] .
rr ZAr 60 > 1Y
a*sin? 9(r2 + az) [a2 + <2r2 + a2) cos 26’]
G¢¢ =- 23
2
4a’Psin*Gpp’ T sin’ 0(32 +r 2) P’
- - RNCE)
>3 2

in which the prime ’ denotes the derivative with respect
tor.

In order to obtain the components of the energy-mo-
mentum tensor, as shown in Refs. [16, 18], we introduce
the standard orthonormal basis of the rotating Bardeen
black hole in PFDM:

—

_ 2 2
e‘(‘t)_ A,Z(r +a ,0,0,a),
A,
¢y =5 (0.1.0.0).
e = 1 0,0,1,0
) _E( sUs Ly )’

o 1
@ VX sin?6

Combining Egs. (45), (46), and the Einstein field
equation Gy, = 87T, the components of the energy-mo-
mentum tensor can be obtained as:

(asin’6,0,0,1). (46)

1 1 7
€==pr =T = g€y 0w = - 57
1 y 20" +rp”
Po=py =Tw)® = gel(lwe(e)Guv =e-— > (7

From Eq. (47), it is easy to find that €, p,, pg, and py all
contain two contributions: a nonlinear magnetic-charged
part and the PFDM.

V. WEAK ENERGY CONDITION

The weak energy condition states that all physically
reasonable classical matter, as measured by any observer
in space-time, must be nonnegative [48], i.e.,

T >0,
for all timelike &“. With the decomposition of the energy-
momentum tensor 7,,,, the weak energy condition is equi-

valent to

€0, e€+p;i=0. (48)
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Substituting Egs. (44) and (47) into Eq. (48) leads to:

1 7| 3¢°Mr?

- g—rs_g >0, (49)
AT (P24 g2): 21

e+p, =0, (50)

2 (r2 —a?cos? G)p’ —rxp”
8nx?

E+p0=€+p¢=

s

(51

According to Eq. (47), as examples, we depict the
variations of € and e+ py/e+py with  and cos6 under
two sets of parameters in Figs. 2 and 3. It turns out that
the weak energy condition is violated near the origin of
the rotating Bardeen in PFDM, which happens for all ro-
tating regular black holes [10-13]. In fact, one can realize
this by considering the asymptotic behavior of the matter
density € and e+ py near the origin:

N 6Mr4—a/g3r N ar

€= 7 = 2°
8ng3 (r2 +a?) 8 (r2 +a?)

r—0, (52)

=
o
ey

Fig. 2.
M=1,a=02,g=0.5,a=-1.

N 3a*Mr? N aa®
€+ pg=—
2rg3 (r2 + az)2 167r(r2 + a2)2
@
x— d O, 53
167mar " (53)

where we set cosd = +1. Equation (53) implies that, for a
rotating Bardeen black hole (« = 0), the violation of weak
energy cannot be prevented if a # 0. As a verification of
Egs. (52) and (53), the dependence of € and €+ py on a
and « is plotted in Fig. 4. Furthermore, at large r, the
matter density € and € + py behave as

3¢°M
€~ 8 - ar - a'3’ r o oo, (54)
Arr(r2+a?)”  8n(r*+a?) 8rr

15Mg2_ 3a . 3a
8nrS  16ar3 1673’

€+ Py~ r— 00 (55)

for cosd = +1. From Egs. (54) and (55), one can find that
for a Bardeen black hole in PFDM, if a > 0, then both €
and e+ py are negative at large distances, which is quite
unreasonable from the perspective of observation. There-
fore, we always assume a <0 inthe following discus-
sions.

(color online) Dependence of matter density e and e+ p, on radius and angle for a rotating Bardeen black hole in PFDM with

Fig. 3.
M=1,a=09,g=05,a=-1.

(color online) Dependence of matter density e and e+ py on radius and angle for a rotating Bardeen black hole in PFDM with
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Fig. 4. (color online) Plot showing € and e+ p, as a function of r for various black hole parameters.

VI. PROPERTIES OF ROTATING BARDEEN
BLACK HOLE IN PERFECT FLUID DARK
MATTER

A. Horizons
Similar to the Kerr black hole, the space-time metric
(43) is singular at A, =0, which corresponds to the hori-
zons of a rotating black hole. In other words, the hori-
zons of a rotating Bardeen black hole in PFDM are solu-
tions of

4

Mr ro

+arln 0. (56)

A,=r2+a2— S
(r2 +g2):

|a]

Obviously, the radii of the horizons depend on the ro-
tation parameter a, magnetic charge g and dark matter
parameter «. Numerical analysis of Eq. (56) suggests the
possibility of two roots for a set of values of parameters,
which correspond to the Cauchy horizon r_ (smaller root)
and the event horizon r, (larger root), respectively. The
variation of A, with respect to r for the different values of
parameters a, g, and « is shown in Figs. 5 and 6. As can
be seen from Fig. 5, for any fixed parameters g and «,
when a < ag, the radii of the Cauchy horizons increase
with increasing a while the radii of event horizons de-
crease with a. For a = ag, these two horizons meet at rg,
that is, we have an extremal black hole with degenerate
horizons. Here, the critical rotation parameter ag and the
corresponding critical radius rg can be obtained by com-

bining A, =0 with §,A, =0. If a>ag, Eq. (56) has no
root, i.e., no horizon exists, which means there is no black
hole. A similar analysis can be applied to Fig. 6. The res-
ult shows that, for any given values of parameters a and
@, the two horizons first get closer with increasing g, then
coincide when g = gg, and eventually disappear.

Next, we further analyze the behavior of the horizons
of rotating Bardeen black holes in PFDM. As shown in
Fig. 5, when the dark matter parameter « is fixed, for any
given magnetic charge g, there always exists a critical
value of ag at which the two horizons coincide. Varying
g, we thus obtain a critical curve with M =1 in the para-
meter space (a,g) (see Fig. 7(a)), and every point on the
curve corresponds to an extremal black hole with degen-
erate horizons. The critical curve separates the black hole
region from the no black hole region. Figure 7(a) implies
that the extremal value of the rotation parameter ag de-
creases with increasing magnetic charge g. As a compar-
ison, the critical curve of Kerr-Newman black holes is
also depicted in Fig. 7(b). One can give the analytic ex-
pression of the curve, a® + Q> = M?, with O denoting the
total charge of the black holes. From this expression as
well as Fig. 7(b), it is easily found that the critical curve
is part of a circle.

B. Ergosphere

The ergosphere is a region bounded by the event hori-
zon r, and the outer stationary limit surface (denoted by
r1); in fact, it lies outside the black hole. Interestingly,
the ergosphere can be used to extract energy from a rotat-
ing black hole, which is known as the Penrose process

055103-8



Bardeen black hole surrounded by perfect fluid dark matter Chin. Phys. C 45, 055103 (2021)

M=1g=0.2,a=-0.4 M=1,g=0.8,a=-0.4

a=05 ] 20¢ a=0.1
a=1 150 a=0.5
ag=121034 7 0 /b ap=0.785824

N a=14 .7 - ] 10~ ————— a=0.98 L

- .. Nt - . N ~ o
< e T ’ < o5 e, T T
00 e et -
) ] N V>/
re =1.48808 re=1.62516
. . . . . . “10 . . . ‘
0.5 1.0 1.5 2.0 25 3.0 3.5 0.5 1.0 1.5 20 25 3.0
r r
M=1,9=0.2,a=-1.2 M=1,9=0.8,a=-1.2
T T T T T T 2.0 T T T
a=0.5 Ve
beo - a=0.1
* =0.9 *
ol a ra 1.5F a=0.5 1
Neo e ag=1.08422 s
. - L a£=0.655401
S, e a=14 e 10, -

~. - o S ————— a=0.9 id

0.0
re=1.88808 | re = 2.05041

E

05 1.0 1.5 20 25 3.0 35 1.0 1.5 20 25 3.0
r r
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Fig. 6. (color online) Behavior of horizons as a function of , with varying g, for a set of fixed values of M = 1,a, and «.

2Mr*
= L orln LI -0. (57

[48]. We will discuss it in detail in the next section. The 2 +a*cos® 60—
(2 +g2)? |

stationary limit surface, that is, infinite redshift surface, is
a surface where the time-translation Killing vector Solving Eq. (57) for various values of the parameters nu-
K* = 0, satisfies K*K,, = 0, or equivalently, merically, one can generally get two roots, i.e. an inner
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‘\
~

(a) Rotating Bardeen black hole in PFDM
Fig. 7.

stationary limit surface 5 and outer stationary limit sur-
face 5. Figure 8 shows the shapes of the ergospheres and
horizons for a rotating Bardeen black hole surrounded by
PFDM. It can be seen that the size of the ergosphere in-
creases with the rotation parameter a (see Fig. 8 horizont-
ally) and increases slightly with increasing g (see Fig. 8
from the top down). Moreover, there exists a critical
value ar at which the inner horizon and outer horizon de-
generate into one, and when a > ag, the ergosphere disap-
pears.

VII. PENROSE PROCESS

Since the Killing vector K* = 9, becomes space-like
inside the ergosphere, there exist negative energy orbits.
Base on this, Penrose first proposed that one can extract
rotational energy from a black hole. Consider, for ex-
ample, a particle 4 moving in the ergosphere which
breaks into two particles B and C. We arrange the break-
up so that the energy of particle B falling into the black
hole is negative and particle C escapes to infinity. Due to
the local conservation of energy along the geodesics for
this process, the energy of particle C will be greater than
that of particle 4. In order to study the Penrose process
quantitatively, we have followed Refs. [49-51]. For sim-
plicity, we will restrict the motion to particles in the

equatorial plane (9 = g)

The geodesic motion for test particles in the space-
time (43) are determined by the following Lagrangian:

20\, 4ap,. 1
20 =-(1-2)2- Lip 1
r r A,

24%p

+(r2+a2+T)[p2, (58)

No Black Hole Regionf

——

(b) Kerr-Newman black hole

(color online) (a) Parameter space (a,g) for various values of a = -0.4,-1.2. (b) Parameter space (a,Q) for various values of
M=1,12.

2Mr? 2Mr
where 2p= —rx —aln— and Ar=r2+a2——r3+
(2 +g2): ] (r2+g2):
arln Tl In terms of the Euler-Lagrange equation, one
(04

gets two conserved quantities, i.e. the energy £ and the
angular momentum L of the test particle:

oL 0

E=—-——=—gui— b, L=
En 8ul — 8rp®

&~

3 =gt +8pshs  (59)

D

where the dot (-) denotes derivatives with respect to the
affine parameter A.

The radial equation for the geodesic motion of a test
particle can be obtained by means of Egs. (58) and (59)
as

ri? =E? (r4 +at+ az(Zr2 - A,))

+ L@ -A) - 4aLEpr + 5rPA,, (60)

where 6 =—1,0,1 correspond to time-like, null and space-
like geodesics respectively. Suppose that the breakup
happens at the turning point of the geodesic, where i =0,
then from the radial equation for an equatorial geodesic it
follows that

_ 2aprL+r VA, \/Lzr2 —5(r*+a*+a2(2rr = A)))

E , (61
rr+at+a22r: = A,) 6D
and
- —2aprE +r VA, \E*r2 +6(r2 = 2pr) . 62)

A, —a?

Using Eq. (61), one can derive the condition where the
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value of the energy is negative: in order to have positive
energy in the limit ¢ — 0, we must retain only the posit-
ive sign; on the other hand, when a # 0, a necessary cri-
terion for having negative energy is L < 0. Thus in order
to have negative energy, we must also have

4612,021'2L2 > r2A, [L2 2_s(rt+at+a* 2 - Ar))] ,
or alternatively

1-L s, (63)

. 2 . .
Since g, (6= g) =—[1- 7'0), the above inequality clearly

suggests that this can happen in the ergosphere.

Let us now consider a massive particle (§ = —1) with
Es=1>0 (without loss of generality) and angular mo-
mentum L, entering the ergosphere. This particle then
decays into two photons (6 = 0) with energies and angu-
lar momenta (Ep, L) and (Ec, L¢) respectively. We could
arrange this process such that the photon which falls into
the event horizon has negative energy and the photon
which escapes to infinity has positive energy. From Eq.
(62), we have

—2apr+r VA, \2or
= = aA7

L
A A, —a?

—2apr—r2 VA,

Lp=—"L" "X By = ap(r)Es,
A —a

—2apr + /A,

LC :TQZEC = O!C(V)EC. (64)
r

The conservation of energy and angular momentum gives
Eg+Ec=Es=1 (65)

and
Lp+Lc =ap(NEg+ac(r)Ec = Ly = as(r). (66)

Solving Egs. (65) and (66) and using Eq. (64), one fi-
nally gets:

1 M2
S R L L (67)
2 (P2+g2): T ||

1 2Mr?
14— 2l (68)
(r2+g2): Tl

Clearly, the photon C that escapes from the black hole to
infinity has more energy than the initial particle 4, and
the energy gain AE in this process is

2
AE = l{\/ZL—glni—l]:—EB. (69)

2 (r2+g2)% r ol

It follows from Eq. (67) that the maximum gain in en-
ergy occurs at the event horizon, A, = 0, and the maximal
efficiency of the Penrose process is then given by

Es+AE 1 2Mr?
Efmax = 2= |1+ | —=—-Zm | (70)
E4 2 (r2+g2)5 r+ ol
+

which is shown visually in Fig. 9. It is easy to see that the
maximal efficiency Egyax increases with the increase of
spin parameter a and magnetic parameter g. Interestingly,
the effect of the dark matter parameter @ on Egpay 1S non-
monotonic. When @ > o€ (critical value), the maximal effi-
ciency Egmax decreases with its decrease; however, when
@ < a®, Egma increases with its decrease. In fact, this is
caused by the influence of @ on the event horizon.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we have obtained the exact solution for
a static spherically symmetric Bardeen black hole sur-
rounded by perfect fluid dark matter and then studied its
thermodynamic properties. We first derived the first law
of thermodynamics and the corresponding Smarr formula
by treating the magnetic charge g and dark matter para-
meter o as thermodynamic variables. Furthermore, we
discussed the thermodynamic stability of the black hole
by means of heat capacity. The result showed that there
exists a critical radius r¢, where the heat capacity di-
verges and the second order phase transition occurs. The
critical radius r¢ increases with the magnetic charge g
and decreases with the dark matter parameter «.

With the Newman-Janis algorithm, we generalized
the static spherically symmetric Bardeen black hole sur-
rounded by PFDM to the corresponding rotating solution.
According to the components of the energy-momentum
tensor, we found that the weak energy condition is viol-
ated near the origin of rotating Bardeen black holes sur-
rounded by PFDM, which happens for all rotating regu-
lar black holes. Meanwhile, we constrained the dark mat-
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Fig. 9.

ter parameter to @ < 0 in terms of the weak energy condi-
tion.

The structure of the black hole horizons was studied
in detail. By solving the relevant equation numerically,
we found that for any fixed parameters g and @, when
a<ag, the radii of Cauchy horizons increase with in-
creasing a, while the radii of event horizons decrease
with a. For a = ag, we have an extremal black hole with
degenerate horizons. If a > ag, no black hole will form.
Similarly, for any given values of parameters a and «, the
two horizons first get closer with the increase of g, then
coincide when g = gg, and eventually disappear. Further-
more, for a fixed dark matter parameter @, we can obtain
a critical curve in the parameter space (a, g), which separ-
ates the black hole region from the no black hole region.
We found that the extremal value of the rotation paramet-
er ap decreases with the magnetic charge parameter g. By
the analysis of ergospheres, we have seen that the size of
the ergosphere increases with the rotation parameter a
and increases slightly with the increase of g. Moreover,
when a > ag, we have no ergosphere.

Finally, energy extraction was discussed by consider-
ing the Penrose process in a rotating Bardeen black hole

0.0 05 1.0 -1.0

a

-0.5 0.0 0.5 1.0
a

(color online) Variation of maximal efficiency of Penrose process with a, g and a.

surrounded by PFDM. We have demonstrated that the
maximal efficiency Egmax increases with the increase of
spin parameter a and magnetic parameter g. However, the
effect of the dark matter parameter @ on Egmy,.x 1S non-
monotonic, which is caused by the influence of a on the
event horizon.

Very recently, the first image of the M87* black hole
was obtained using the sub-millimeter Event Horizon
Telescope, based on very-long baseline interferometry
[52]. The observation of black hole shadows will be a
useful tool for better understanding astrophysical black
holes and also for testing modified gravity models.
Hence, as done in Refs. [53-55], we intend to further con-
strain the relevant black hole parameters by studying the
optical properties of Bardeen black holes surrounded by
perfect fluid dark matter.
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