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Effect of dark energy models on the energy content
of charged and rotating black holes
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Abstract: The energy content of the charged-Kerr (CK) spacetime surrounded by dark energy (DE) is investigated
using approximate Lie symmetry methods for the differential equations. For this, we consider three different DE
scenarios: cosmological constant with an equation of state parameter w, = —1, quintessence DE with an equation of
state parameter wy =-2/3, and a frustrated network of cosmic strings with an equation of state parameter
wp = —1/3. To study the gravitational energy of the CK black hole surrounded by the DE, we explore the symmet-
ries of the 2nd-order perturbed geodesic equations. It is noticed, for all the values of w, the exact symmetries are re-
covered as 2nd-order approximate trivial symmetries. These trivial approximate symmetries give the rescaling of arc
length parameter s in this spacetime which indicates that the energy in the underlying spacetime has to be rescaled by
a factor that depends on the black hole parameters and the DE parameter. This rescaling factor is compared with the
factor of the CK spacetime found in [Hussain ef al. Gen. Relativ. Gravit. (2009)] and the effects of the DE on it are
discussed. It is observed that for all the three values of the equation of state parameter w, the effect of DE results in
decreased energy content of the black hole spacetime, regardless of values of the charge O, spin a and the DE para-
meter a. This reduction in the energy content due to the involvement of the DE favours the idea of mass reduction of
black holes by accretion of DE given by [Babichev et al. Phys. Rev. Lett. (2004)].
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I. INTRODUCTION

In General Relativity (GR), energy-momentum is a
vital conserved quantity whose definition has been the
subject of many investigations [1-6]. The definition of en-
ergy and momentum is a major dilemma in GR and un-
fortunately, there is still no generally accepted definition
of energy and momentum. Generally, a spacetime shall
not be stationary (and particularly shall not be static) and
hence the energy conservation may be lost. Due to this
fact there is a long-standing problem of the definition of
energy (mass) in GR [7]. If the spacetime is a static
spacetime, then a timelike isometry or Killing Vector
(KV) exists and the energy of a test particle can easily be
defined. However, in the absence of a timelike isometry
the test particle's energy is not defined and hence the en-
ergy in the gravitational field is not well defined. For
gravitational wave spacetimes, the problem of defining
the energy content is particularly severe [8].

Different notions of approximate symmetries have

been utilized to resolve the problem of energy conserva-
tion in GR [9]. The idea of approximate or broken Lie
symmetries arises from the grouping of Lie theory and
perturbation theory. Hence, two different approximate
symmetry theories have been introduced using this idea.
The first theory was presented by Baikov, Gazizov and
Ibragimov (BGI) [10] while the second was introduced
by Fushchich and Shtelen [11]. Here in this article we
will follow the notion of approximate symmetries given
by BGI

In 4D spacetime, the no-hair theorem depicts that all
black hole (BH) solutions to the Einstein—Maxwell field
equations are particularly characterized by three paramet-
ers: mass M, electric charge O, and angular momentum J.
The spacetime characterized by these three parameters is
known as the charged-Kerr (CK) spacetime. In the spher-
ically symmetric and static case, where the parameter J
disappears, we get the Reissner-Nordstrom (RN) space-
time, and further if charge Q goes to zero we get the
Schwarzschild spacetime [12]. The charged spinning
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solution, or CK metric [13], is the spinning generaliza-
tion of RN and the electrically charged version of the
Kerr metric.

In the last few years, cosmological observations
found that the Universe is going through a period of ac-
celerating expansion which demands the presence of
some unidentified form of energy recognized as DE [14].
The current measurements of cosmic microwave back-
ground anisotropy by PLANCK also verified this result
[15]. The two famous candidates for this DE are the cos-
mological constant and quintessence [16].

The Universe accelerating expansion demands the
equation of state (EOS) parameter (w = p/p) to be in the
range —1<w<-1/3. The cosmological constant is
defined by a fixed value of EOS parameter w.=-1,
whereas quintessence is defined as a dynamical, time
evolving, spatially inhomogeneous component with neg-
ative pressure. For the quintessence DE model, the EOS
parameter w, € (—1,—-1/3) [17]. Unlike the cosmological
constant, the quintessential pressure and energy density
evolve in time, and @ may also do so. Other forms of DE
include chameleon fields [18], K-essence [19], a tachyon
field [20], phantom DE [21], dilaton DE [22] and a frus-
trated network of domain walls and cosmic strings [23].
The frustrated network of cosmic strings has the EOS
wy, =—1/3, and for this particular value of the state para-
meter the Universe remains unchanged (neither acceler-
ates nor decelerates) [24-27].

The Minkowski metric being maximally symmetric
gives conservation laws for energy, momentum, spin an-
gular momentum and linear momentum. If one moves
from flat to non-flat spacetime, a few of the conservation
laws do not show up because of the existence of the
strong gravitational field. These missing conservation
laws were first recouped by Kara et al. using approxim-
ate Lie symmetry methods for differential equations [28].
They recovered all the lost conservation laws for the
Schwarzschild BH. The same approach of approximate
Lie symmetries was used to recover the missing conser-
vation laws for RN [29], RN with quintessence [30, 31],
Kerr-Newmann (KN) [32], KN anti-de Sitter [33],
Bafiados-Teitelboim-Zanelli (BTZ) [34], slowly-rotating
Horava-Lifshitz [35], Bardeen [36] spacetimes and grav-
itational wave spacetimes [8].

The spacetime solution for the spherically symmetric
charged BH surrounded by a quintessence field has been
discussed by Kiselev [37]. This solution reduces to the
RN BH solution in the the absence of the quintessence
field. The gravitational energy (mass) of the quintessen-
tial RN BH has been thoroughly discussed in previous
studies [30, 31]. These obtained an explicit relation of the
energy content which is dependent on the square of the
charge-to-mass ratio Q?/M?, DE parameter « and the ra-
dial distance . The energy content of CK spacetime has
also been studied comprehensively [32]. The energy scale

factor of the CK BH spacetime found depends on the spin
parameter a and square of the charge-to-mass ratio
Q?/M? of the BH, which correlates the electromagnetic
self-energy with the gravitational self-energy. In the cur-
rent paper, we will explore the energy content of the CK
BH surrounded by DE using approximate Lie symmet-
ries, for different values of EOS parameter w. We will
consider the border cases of quintessence DE i.e. w. = —1
and w, =-1/3. The energy content of the CK BH sur-
rounded by DE will be investigated at an intermediate
value of the quintessence DE, i.e. at w, = —=2/3. Specific-
ally, we will discuss the effects of DE models on the en-
ergy content of the CK spacetime surrounded by DE. For
this purpose, we take the mass, charge, and spin of the
BH in terms of perturbation parameter €, and construct
the perturbed geodesic equations of the second order.
Here we retain the first and second powers of ¢, neglect-
ing its higher powers. More specifically, in the set of de-
termining equations for perturbed geodesic equations of

second order, the coefficient of 9 (in the symmetry gen-

erator given in Section II) collects a rescaling factor (giv-
en in Section III). Since energy conservation is associ-
ated with time-translational symmetry and s is the proper
time, therefore the energy in the CK spacetime surroun-
ded by DE rescales by some factor [discussed in Section
III]. We also give a comparison of the scaling factor ob-
tained here with the expressions already obtained in the
literature for the energy of the CK spacetime without DE
[32]. It is observed that at all three values of w, the en-
ergy content of the CK BH surrounded by DE decreases
due to the presence of the DE. This is discussed in detail
in the following sections.

In the next section, we briefly review the definitions
to be used in this work. In Section III we discuss differ-
ent cases to examine the approximate Lie symmetries of
the perturbed geodesic equations for the CK metric sur-
rounded by DE. The influence of DE on the energy con-
tent of the charged-Kerr spacetime surrounded by DE is
discussed in the same section. In Section IV we present
our summary and discussion.

II. MATHEMATICAL PRELIMINARIES

A vector field defined on a real parameter fibre
bundle over the manifold [38]

W =Wy +eW, + W, + 0(e), (1
is professed to be an approximate Lie symmetry generat-
or of 2nd order for a perturbed system of 2nd-order

geodesic equations

Y = Yo + €Y + Y, +0(), 2)
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if the following condition holds
W)Y)y=oe) = O(€), 3)

where,

0 0
_ = v a v
W = Z(s, x )65 +x“(s,x )('Jxl”

“)

E=E)+€E,+€5, x° =X +ex’ +e2x% and a,u=
0,1,2,3 respectively.

For the vector fields Wy, W; and W,, we take the
second prolongation because we are interested in finding
the approximate Lie symmetries of the 2nd order for the
2nd-order perturbed differential equations. The second
prolongation for W is given by:

0 0
“7[2] :E(S, xv)a +X(l/(s’xv)
S

(07 U U
o +x5(s,x7,X7)

oxv

+x (8, X7, 57, %)

)

oY’

The vector fields W; (i =0,1,2) given in equation (1)
depict the exact, lst-order and 2nd-order approximate
parts of the symmetry generator W. The term Y repres-
ents the exact part of the equation while the terms Y, and
Y,, given in equation (2), are the approximate parts of the
system of perturbed geodesic equations. The generators
W, (i =1,2) are called the non-trivial symmetry generat-
ors if the symmetry generator W =W,+eW,+
W, exists with Wo#0 or W; 20 and W, # kW,,
W, # kW, (k is some arbitrary number). By applying the
approximate symmetry condition given in equation (3) to
the perturbed system of 2nd-order geodesic equations, we
will obtain a significant result of the energy rescaling
factor (explained in Section III).

The vector field W is said to be a Noether symmetry
generator for the Lagrangian L(s,x",x"), if the following
condition holds:

WU L+ (DE)L = Dh. (6)

where h(s,xV) is the gauge function and the total derivat-
ive operator D is given by:

0
D=—+x" .
c')s+x oxv

(7

The Noether theorem that reveals the importance of
the Noether symmetries is stated below [39].

Theorem. If W is a Noether symmetry generator cor-
responding to a Lagrangian L(s,x",x") of the Euler-Lag-
range equations of motion, then / in equation (8) is a con-
stant of motion associated with the symmetry generator W.

oL
1=EL+(" - 1'8) 7
X

—h. (8)

(We use this result in Section III, to calculate the exact
first integrals).

1. APPROXIMATE LIE SYMMETRIES AND
GRAVITATIONAL ENERGY OF THE CK
METRIC SURROUNDED BY DE

The 4D CK spacetime generated by an axially sym-
metric gravitational source of mass M, charge O, and spin
a, surrounded by quintessence DE with EOS parameter
wy, 1s described by the following metric [40]

1
ds®> = - G(r,0)d* + 500 dr? +X(r,0)de”
+J(r,0)d¢? — 2K (r,0)dgdt, )
where
A, — a?sin®6 A,
9 e H 9 =
G(r,0) S0 (r,0) S0.0)

¥(r,6) =a* + cos’6),

J(r.6) = sin?0((r2 + a*)? — A,sin’6) ’
X(r,0)
K(-6) = asin?0((r + a*) — A,) ’
2(r,0)

A, =a*+r*+ Q2 —2rM — ar'=3 (10)

In the above equation (10), « is the quintessence para-
meter, which depicts the magnitude of the quintessence
scalar field around a BH, satisfying the following in-
equality [40]:

21+3w‘,

< .
@ 1 -3w,

(1n)

The horizons can be calculated by substituting A, = 0.
The inequality given in (11) holds when the cosmolo-
gical horizon determined by the quintessential DE exists.
It is observed that the total charge O does not affect the
range of a, i.e. the range of a remains the same in the ab-
sence of the charge O [40]. When quintessence does not
exist, i.e. as @ — 0, the metric given in (9) reduces to the
KN BH, which further reduces to the rotational situation
in the Kiselev quintessence BH, i.e. the Kerr BH as
0 — 0. In the particular case when a — 0, the metric giv-
en in (9) corresponds to the RN spacetime surrounded by
quintessence DE, and in the absence of the total charge Q
it further reduces to the quintessential Schwarzschild BH
according to the Kiselev description. In the present paper,
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we consider three different DE models, ie. w.=-1,
wg =-2/3 and w, = —1/3, to discuss the gravitational en-
ergy (mass) and 2nd-order approximate Lie symmetries
of CK spacetime surrounded by DE.

A. .= -1 (The cosmological constant model)

In the cosmological constant model, we consider
w,=-1 and from (11), @ < 1/16. In this particular case
the function A, is defined as

Ar=d®+r7+ Q% =2rM —ar*. (12)

. 2ar . (1-3ar?) .. €2
t= r—e T —
1—ar? r2(1 —ar?)? r3(1 -

To explore the approximate Lie symmetries of the CK
BH surrounded by the DE with w, =—1, we define the
mass M, charge Q and spin parameter a of the BH as a
small perturbation parameter ¢. Therefore, we consider

M =€, Q% = ki€%,a* = k€. (13)

To avoid a naked singularity, 0 < k; + k, < 1/4. Using (13)
in the above metric (12) and retaining the first and second
powers of €, we construct the following system of per-
turbed 2nd-order geodesic equations:

e [(1 —2ky = 3ar? + 6kjar? — 4kt + 2kt = 2k rO)i
ar

—sin20kyar’ (1 — ar?)*0i - 3r \Jky sin> 6(1 — arz)zi’d)] +0(&), (14)

ar(i? — (1 —ar?)*#) _

w1 22 s 2032y
#=r(1 —ar”)(@° +sin“6¢~-) d—ar)

€

+ 2k sin? Oar(1 — ar?)id

i.2

+ —_—
2r3(1 — ar?)?

6% +sin’0¢* +

112
2r2

1-3ar? 2

l4+ar?)- ——24"
(I+ar) 2r2(1—ar2)r

t'2
+ 62(7(1 +2ki + 2kyar® = 2kpar?cos?O(1 — ar?))
i

(1 =2k +6kyar® = 3ar? — 4k a*r* = 2kasin? 0(1 — ar?)) |+ O(€>), (15)

. o 2, .. ko sin26 . 2kycos?0 _,

6 =sinfcos 0({)2 — —70— € \Vkp sin20afp + el 2 st [a/rz(l - a/r2)t2 + 1’2] $272 7 cos 70
r 2rt(1—ar?) r3

Vkosin20 .. kpsin26 . .
- g 2;”; (0% +sin?6(1 — 2ar2)¢*] |+ O(E), (16)
& r

. .2 . 2 Vk . . 2 Vkycotf . 2k .

b =—2c0t00p— Zid+e| —Y2L i 42 \Jkoacot 66| + | 2% i 4 2 (1-aP)id
r r(1—ar?) r3 r3(l—ar?)

_ Vka(1-3ar?) .. 2k2asinzegq.S

3
A—ar? T a0

In the absence of the DE parameter, i.e. when @ — 0,
the system of 2nd-order perturbed geodesic equations
(14) = (17) reduces to the system of a CK BH [32]. For
k, = 0, the above system of equations (14)—(17) repres-
ents the system of perturbed geodesic equations for the
quintessential RN spacetime [30, 31]; in the absence of
DE parameter a, we get the perturbed system for RN
spacetime [29]; and as the electric charge Q — 0 we get
the perturbed system for the Schwarzschild spacetime
[28]. Now we calculate the 2nd-order approximate Lie
symmetries for the above equations (14)—(17). For this
purpose we examine the exact and 1st-order approximate
Lie symmetries first, by applying the approximate sym-
metry condition (3) in the above equations. Therefore, by
substituting € = 0,€> = 0, we obtain a system of exact (un-

(17)

[
perturbed) geodesic equations. Using Maple software we
get the following six exact Lie symmetries.

9 i) d i)
Yo=s—, Yi==—, Ya=—, Y3= —
0 saS, 1 (?s’ 2 (')l‘, 3 a¢»

Y, = sin¢a% +cotecos¢%,
Ys =—cos¢a%+cot€sin¢%. (18)

The exact Lie symmetries Yo and Y, corresponding
to E = gos+ g1, give the dilation algebra d,. The exact Lie
symmetry generator Y| = d/ds represents the time-trans-
lational symmetry as s is the proper time, and the other
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four symmetry generators Y,, Y3, Y4 and Ys, which
form the symmetry algebra so(3)®R correspond to en-
ergy and momentum conservation.

To explore the 1st-order approximate symmetries, we
take € = 0, in the above system (14)—(17). Now, by ap-
plying the approximate symmetry condition given in
equation (3) and the exact (unperturbed) Lie symmetries
given in equation (18), we obtain a set of 70 partial dif-
ferential equations (PDEs), keeping only first terms of e.
After solving this set of determining equations we obtain
the six approximate Lie symmetry generators (trivial) of
Ist-order given in (18). Next we use these exact and the
Ist-order approximate symmetries to calculate the ap-
proximate Lie symmetries of order two for the above sys-

i
r3(1 —ar?)?

Next we consider the extreme effects on the energy, in
the equatorial plane, i.e. in the regions where the rotation-
al effect is maximam (6 = /2), which implies § = 0.

The scaling factor contains the derivatives of ¢ and ¢,
and the derivatives only apply to the paths of the
particles. Hence, to get the energy of the underlying
spacetime, we replace the derivatives by the exact first in-
tegrals (obtained by using Neother theorem, i.e. { = Toar

—ar
. M . .
e _ﬁ) and using (13) in (19) we get the energy res-
;

caling factor for the CK spacetime surrounded by DE
with w. = -1, as a function of charge, gravitational mass,
spin parameter of BH along with DE parameter.

M 0? .| 02
Me ko= 1- = 130| =1
T —ar2)3[ ARl PYVE
g @ @] daf 3a_M. (20)
w2 2| o |7 an

As a — 0, we get the energy rescaling factor for the CK
metric without DE [32]:

M 0?
MC,]( = Z|:1 - W] +

3aM
PR 1)

It should be noted, if we retain only first powers of o
in the expansion of (20), the terms involving charge Q get
canceled. Therefore, to include the effect of charge along
with spin and the DE, we retained the first and second
powers of a in the expansion of (20), to separate the
terms involving a from those which are independent of
the parameter a. We get the following energy rescaling
factor:

[1 —2ky = 3ar? + 6kjar? — 4k a*rt + 2kyart — 2k2a3r6] -

tem of equations (14)—(17). Using the approximate sym-
metry condition given in equation (3), and retaining terms
with €2, we obtain a system of 70 PDEs once again. Con-
sequently, we do not find any new symmetry generators,
and recoup the same six Lie symmetries given in (18) as
approximate trivial symmetry generators of the 2nd order.
It is found that in the set of 70 PDEs for the 1st-order ap-
proximate symmetry case, the terms that contain E; = g
disappear. But in the case of approximate Lie symmet-
ries of order two for the CK BH surrounded by DE,
=y =go do not vanish instinctively, but collect a rescal-
ing factor to vanish, in order to satisfy the PDEs. In this
case we find the following energy rescaling factor:

¢ a1 y
m[3 \/k_len 9]—S1n29k2(1t9. (19)
M Q? g it o 5] 3aM
Mc g c=—|1-—-3 +—QQ0" +a’) |+ —.
oK 2r[ o T T pCe ety
(22)

From equations (21) and (22), we observe that the
total energy in the CK spacetime surrounded by DE is
different from the total energy in the CK BH by the giv-
en expression:

2,3 3Ma*r

_ar o, 2
E.= ] Q" +a”) > (23)

In equation (23), the parameters of the BH, charge Q,
spin a and the DE parameter o appear at the same order.
Also, we observe that the presence of the cosmological
constant term will increase or decrease the total energy of
the underlying spacetime if the behavior of the expres-
sion (23) is positive or negative. The investigation of the
behavior of E. is explained in the subsequent figures.

Ec

=100}

10 15 20 25 30

r

Fig. 1.  (color online) Plots showing the behavior of E. for
the CK BH surrounded by DE for w. = -1 with different val-
ues of a and fixed values 0=0.89, M =1, a=0.5.
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0.00 0.01 0.02 0.03 0.04 0.05 0.06
a

Fig. 2.  (color online) Plots showing the behavior of E. for
the CK BH surrounded by DE for w. = -1 with different val-
ues of a, @ < 1/16 and fixed values 0=0.89, M =1 and r=17.

From the graphical results (Fig. 1, Fig. 2, Fig. 3) we
observe that the behavior of E, is decreasing. Therefore,
we remark that the contribution of cosmological constant
does not play any role in increasing the energy content of
the CK metric surrounded by the DE despite considering
the different values of charge Q, spin parameter a and DE
parameter a. Hence, in the cosmological constant model
with w. = -1, the influence of DE results in reducing the
total energy (mass) of the CK spacetime surrounded by
the DE.

2

. a . (1-2ar) .. +Vkasin?0 . €
= —€ tr+ o |-
1-ar r2(1 —ar)? (1-ar) r3(1 —ar)’

—2ar+kyar(l —ar)[cos> 05 — 4ar) — (1 — ar)))iF

.2
sin 9(4ar—3)~¢+0(63),

—koasin® 01710 + \/k_gr 2
(1—ar)?

2 -2

Lt ) ar
- 1- e
A 2rz(a/r( ar))+2(1_ar)
o P 1
+ €| (atks +k) + = (1 +2k1) — 2k
272 r

-2

-
231 —ar)3[

— (1 — ar)(6* +sin®0¢%) — e[— +

0.00 0.01 0.02 0.03 0.04 0.05 0.06
a

(color online) Plots showing the behavior of E. for

Fig. 3.
the CK BH surrounded by DE for w. = -1 with different val-
ues of O, @ < 1/16 and fixed values a=0.5, M =1, and r=3.5.

B. w4 =-2/3 (Quintessence DE model)

In the quintessence DE model, we consider a fixed
value of the EOS parameter w, = -2/3, and for this par-
ticular value the function A, takes the following form

Ar=a*+r+ Q0 —2rM —ar’. (24)

From equation (11), we see that for w,=-2/3,
a < 1/6. Using (13) in the above metric and preserving
only first and second powers of ¢, we construct a system
of 2nd-order perturbed geodesic equations given below:

(1 =2k + 5kyar -3k r?

(25)

2 Qar-1i? e s oy
272 m+ \/EO’(] —ar)sin 9l¢+0 +s1n 0¢

2(ky +ko)(1 = ar)® +2ar—1—ar(1 —ar)[k; + ky + ko(1 — ar) cos® 9]]

in20 . & in?0 ., ¢
122250+ Lk +kasin® 0+ koarcos? 0] + Vo 2 lig+ Ly + kosin® 0+ kaar]sin? ) + O(E),
I r r r
(26)
. . . 2 .
b sindcos 9¢~2 3 gi-é e Vkaasin 26 i 2 kosin 20a 2 kosin20 2 2k, cos 9’,’9 _ kosin20 )
r r 2r3 2r*+(1 —ar) r3 2r2
kysin20 ..  kpsin26sin’6 -
+ ‘/_Zsin i — 2s1n2 21+ 2an) |+ 0(€), @7)
r- s
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. 2 . . ko . 2 Vkyacoth \/_(l—ar) 2\/_cot0 2ky .
=—= t66) 0|~ 6~
P ORI B e Y T Ad—ar? TP Al—an)’
B kzcvcotHSian (2-arkyasin2f 06|+ o). (28)
r(1—ar) 2r(1 —ar)

When the quintessence does not exist, i.e. as @ — 0,
the above system of equations (25)—(28) corresponds to
the perturbed system for the KN spacetime [32]. As in the
prior case, we study the 2nd-order approximate Lie sym-
metries for this BH spacetime and recovered the same six
Lie symmetry generators given in (18) as trivial 2nd-or-
der approximate Lie symmetries.

The exact symmetry generators and the trivial 1st-or-
der approximate symmetry generators did not give any
new result, but in the 2nd-order approximate symmetries
of the CK BH surrounded by DE we noticed the terms
containing E; = go pick up a rescaling factor which con-
sists of terms involving 7, ¢ and 8, to provide a necessary
cancellation. We consider the equatorial plane, i.e.
6 = /2, which implies 6 = 0. This rescaling factor corres-
ponds to the rescaling of the energy in the spacetime field
of the CK BH with quintessence. Hence, for the quint-
essence DE model we find the following rescaling factor:

4 22
m[l—ﬂq + Skyar -3k = 2ar

—koar(1-ar)?|+

¢
m[ Vioar-3)|. (29)

After replacing the derivatives by the exact first integrals,

. M .
1. f=——,p=—

, we get:
1—ar

272’

M

" [y _ 2,2 _
MC—K—Q _2r(1 _a,r)z [1 2k + Skiar—3kia’r 2ar

—lpar(1-ar)’|- ﬂz[ Viao(ar-3)|.
’ (30)

Using (13) in (30) we get the rescaling factor of en-
ergy for the CK spacetime surrounded by DE that is de-
pendent on charge Q, gravitational mass M and spin a of
BH along with quintessence parameter a.

M, = M 1
k-0~ 2r(1 —ar)?

2
—2ar— M(l —-a
4M?

Q Qzar
2M2 4M2

(5-3ar)

r)z] - %(4(”— 3).  (31)

In the absence of quintessence parameter a we get the

energy rescaling factor for CK spacetime [32].

Now we check the influence of quintessence DE on
the total energy of underlying spacetime. In the expan-
sion of above equation (31), retaining terms with o and
neglecting all higher powers of o we get the following ex-
pression:

aMa 3aM
.
42
(32)

Q2
2M?

M @ s 9
MC—K—Q = 2)‘[1 }‘i‘ 8M(Q a’)

From equation (32), it is clear that the energy in the
CK BH surrounded by the quintessence differs from the
energy in the CK BH [32] by the expression given below:

a/Ma

E,= (0" —d")- (33)

In equation (33), charge Q and spin a appear quadrat-
ically while the DE parameter o comes in linearly. It is
noted that the effect of quintessence DE may increase or
decrease the energy content of the underlying spacetime
if the function E, is increasing or decreasing. The effect
of quintessence on the energy content of the CK BH sur-
rounded by quintessence is explained through the graphs
below.

From Fig. 4, Fig. 5 and Fig. 6, we observe that the be-
havior of the function E, is decreasing, which shows that
the energy of the underlying spacetime may decrease for
different values of spin parameter a, charge QO and quint-
essence parameter « < 1/6. Hence, for w, = -2/3, the in-
crease in the energy content is improbable, despite con-

-500 -
= =1000
[

=1500 -

~2000 -

1IU 1I5 2IE] 2I5 30
r
Fig. 4. (color online) Plots showing the behavior of E, for
the CK BH surrounded by quintessence for w, =-2/3 with
different values of « and fixed values Q=1, M=1, a=0.5.
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0.4}

-0.6

=0.8F+

=1.0}F

013 014 045 0.16

a

U.‘IIU U.‘II1 0.1I2
Fig. 5.
the CK BH surrounded by quintessence for w, =-2/3 with
different values of a, a < 1/6 and fixed values 0 =0.89, M =1,

and r=15.

(color online) Plots showing the behavior of E, for

sidering different values of BH parameters and the DE
parameter.

C. w, =-1/3 (Frustrated network of cosmic strings)

It is well known that the frustrated network of cosmic
strings may produce negative pressure for w,=-1/3
[24]. With w, = —1/3, the function A, is defined as:

0.00 f
-0.05F
-0.10F

= =015 F
w
-0.20 F
-0.25F
-0.30 F

0.0 0.8
Fig. 6. (color online) Plots showing the behavior of E, for
the CK BH surrounded by quintessence for w, =-2/3 with
different values of O, @< 1/6 and fixed values a=0.5, M =1
and r=0.9.
Ar=a>+r+Q*—2rM —ar’. 34)
Like the previous two cases, here we also construct
the system of 2nd-order perturbed geodesic equations by
introducing the BH parameters in terms of a perturbation

parameter. The perturbed geodesic equations of 2nd-or-
der with w, = —1/3 are given below:

. i 2aVkysin?6 . 2 5 .
f=- - i — 1 -2k + 2k — 2k 0(1 — ))ii
€[r2(1—a) d—a) i r3(1—a)2[( 1+ 2kja —2kyacos™0(1 — a))ir
—sin260k ar(1 — a)?i0 — (3 — @) vk sin? e)rm's] +0(e), (35)
n2 2012 iz fz n2 2012 2 iz 2
?:r(l —a/)(G +sin 9¢ )_E(ﬁ(] —Q)—m-ﬁ-ﬁ-@ +sin 9¢ )+E [(ﬁ(l +2k1 —2k1(1+2k2(¥COS 0(1 —(1))
2 kysin26
¥ mu ~2(1 - @)k +kosin®6) — 2kar(1 — @) cos® 6) + L )
(ki kpsin?0  k 20\ ([ Vkasin?0(1-a)..\ .,[kisin’6 ksin’6
+92(_1+ 28I Y, Taacos )+( zsm2( “)z¢)+¢2( 1o 7, 2o [sin29+acos29])+0(e3),
r r r r r r
(36)
. . 2. Akysin20a . ko sin26 . 2kycos?6 . kosin26 .
— 2 . 2 2, .2 . 9]
6 =sinfcos H¢ —;rO—GTI¢+€ [m(a(l—a/)t +7)+ 3 9+ 22 0
Vkysin26 .,  kpsin26sin®6 .
_ VRS AT T 0myd? |+ o)., (37)
r3 272
. . 2. 2+kacotba ., 2+vkzcotf vk . 2k .
b=—2c0t00— Zid+e Y20 2 ENREOT N2 iy B2 (1 _acos?0)id
r r? r3 “l-a)  rPl-a)
. ko kycos? 6 ko 2 ko sin26a(a-2) . . 3
+2cot 6 1 -2a]- —=[1+cos? 0] |+ —————26¢ |+ O(e). 38
T T ] M =Trp s R %)

For w, =-1/3, 0 <a < 1/2. The above system of ap-

proximate equations (35)—(38) reduces to the system of

015101-8



Effect of dark energy models on the energy content of charged and rotating black holes

Chin. Phys. C 46, 015101 (2022)

the CK BH [32] when the DE does not exist (¢ — 0).

First, we illustrate the exact symmetries for the above
system of perturbed differential equations (35) - (38). For
the exact case we substitute € = 0,€> = 0 (no mass, charge
and spin) in the above equations and get an exact system
of geodesic equations. Using the approximate symmetry
condition given in equation (3) in the unperturbed system
we get the eight Lie symmetry generators. Out of these
eight symmetries, six Lie symmetries are given in (18)
and the remaining two symmetries are: Y¢ =td/0¢ and
Y; =rd/dr. Now letting €2 =0 (no charge and spin) we
get the 1st-order approximate geodesic equations. Next,
we calculate the 1st-order approximate symmetries, us-
ing the approximate symmetry condition given in (3) and
the exact (unperturbed) Lie symmetry generators. At this
stage we find a set of 70 PDEs. After solving this system
of equations we obtain the same eight symmetries as 1st-
order trivial approximate symmetries. Using these exact
and 1st-order approximate symmetries into the equations
(35)—(38), we obtain the trivial approximate Lie sym-
metry generators of second order. Hence, we conclude
that for the EOS parameter w, =-1/3, no non-trivial
symmetry is obtained at first and second order like the
earlier cases discussed here. In this calculation it is no-
ticed that in the set of 70 PDEs, for the case of 2nd-order
approximate Lie symmetries the terms involving E; = g
do not disappear automatically but, pick up a scale factor
(energy rescaling factor) to make the system of equations
(PDESs) consistent. The scale factor has derivatives of ¢, ¢
and 6. We consider the equatorial plane, i.e. when
0 =n/2, and get the following scale factor:

13[1—2k1 +2k1a]—%[(3—a) Val. (39)
r I

Now we replace these derivatives (7 and ¢) by the ex-
act first integrals of the geodesic equations. Using equa-

tion (8) and the exact Lie symmetry generators we get

.M . M .

I= 1—,¢= 57 Hence, in the case of w.=-1/3, we
- r

get the following rescaling factor of energy for the CK

BH spacetime surrounded by DE

B-a)Ma
(l—a)}+T. (40)

Mc g =

M, 0?
2r(1 —a)[ oMz

In the absence of DE we get the energy rescaling
factor for the CK BH [32] from (40). Now we discuss the
influence of DE on the energy content of the quintessen-
tial CK BH. It is observed, for w, = —1/3, the total en-
ergy in the CK BH surrounded by DE varies from the en-

ergy in CK BH by the following expression (details are
given in Appendix):

Ma| 1 a
E,=——-=| 41
" Zr[l—cx Zr] “h

Unlike the previous cases, here the contribution due
to the DE term E, is independent of the charge Q. In or-
der to analyze the significant features of DE, we sketch
the expression (41) versus DE parameter a and radial dis-
tance r and examine its dependence on the BH paramet-
ers M and a.

From Fig. 7, it is clear that the behavior of E,, is de-
creasing for different values of the DE parameter a. Fig. 8
shows the effect of the DE with different values of spin a.
Here we observe that if the DE parameter o is initially
small, then the value of E, will increase at first and then
it shows a gradual decline for the larger values of a.
Hence, here we remark that the contribution of the DE
term for w, = —1/3, first results in increasing the total en-
ergy of the underlying spacetime for very small o, and
then decreasing for comparatively larger values of a.

1.5+
1.0}
uf
0.5+
UIU _I 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
r
Fig. 7. (color online) Plots showing the behavior of E, for

the CK BH surrounded by DE for w, =-1/3 with different
values of a and fixed values M =1, a=0.7

0.0 0.1 0.2 0.3 0.4 0.5

Fig. 8. (color online) Plots showing the behavior of E, for
the CK BH surrounded by DE for w, =-1/3 with different
values of a, 0 <@ < 1/2 and fixed values M =1 and r=2.

IV. SUMMARY AND DISCUSSION

To examine the energy content of the charged and ro-
tating BHs surrounded by DE, 2nd-order approximate Lie
symmetries have been studied intensively. For this pur-
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pose, we have introduced the parameters of BH in terms
of a small perturbation parameter ¢ and constructed a sys-
tem of 2nd-order perturbed geodesic equations by retain-
ing terms up to € only. We have considered three differ-
ent DE models to study the gravitational energy and ap-
proximate Lie symmetries of the CK spacetime surroun-
ded by DE: (i) cosmological constant model with w, = -1,
(i1) quintessence DE model with w,=-2/3, (iii) frus-
trated network of cosmic strings with w, = —1/3. Initially,
we investigated the exact symmetries (no mass, charge
and spin), and for w. =-1 and w, =-2/3 we have ob-
tained six symmetries which form a six dimensional Lie
algebra so(3)®R@d,, given in (18). For w, =-1/3, we
obtained two more Lie symmetries Yg=1r9/dt and
Y7 =rd/or. Using the exact symmetries we have found
the approximate Lie symmetries of first order (no charge
and spin) and obtained the same exact Lie symmetries as
trivial 1st-order approximate symmetries. In the set of 70
PDEs for the Ist-order approximate symmetry case, the
terms that contain E; = go have disappeared and do not
collect any energy rescaling factor, and we have only re-
covered the lost conservation laws as 1st-order approxim-
ate conservation laws. Therefore, since we were inter-
ested in finding the energy content of the CK BHs, we
have studied the approximate Lie symmetries of second
order, using exact and 1st-order approximate symmetries.
Again we get no non-trivial approximate symmetry gen-
erator at 2nd order. It has been observed that in the case
of approximate Lie symmetries of second order for the
CK BH surrounded by DE, E; = go do not vanish instinct-
ively and collect a rescaling factor to vanish, in order to
satisfy the determining equations. In spite of the fact that
there are no non-trivial 2nd-order approximate Lie sym-
metries, we have obtained the non-trivial result of energy
rescaling from the application of 2nd-order approximate
Lie symmetries in all the three cases we have discussed
here.

As for different BH spacetimes [29-36] and gravita-
tional waves [8] discussed in the literature, we have ob-
tained the scaling factors for the CK spacetime with DE
for the three different values of w. It is observed that in
all three cases of the CK BH with DE the energy rescal-
ing factors contain the derivatives of ¢, § and ¢. We have
considered the extreme effects on the energy, i.e. 6 = /2,
which gives 6=0, and replaced the remaining derivat-
ives 7 and ¢ by the exact first integrals of geodesic equa-
tions, and obtained the energy rescaling factors in terms
of charge, mass, spin, radial distance and DE parameter
given in equations (20),(31) and (40). In all three cases
the spin of the BH does not appear explicitly and only ap-
pears in a product with the DE parameter a. As the DE
parameter @ — 0 the energy rescaling factor of the CK
BH can be recouped [32].

The effect of DE on the energy content of the CK BH
surrounded by DE is spotted through graphical analysis.

It is found that in all the three cases the effect of the DE
results in reducing the energy content of the CK BH sur-
rounded by DE, despite taking the different values of the
charge Q, spin a and the DE parameter a. In equation
(23), from the first term we have observed that the contri-
bution of energy due to the charge, i.e. the electromagnet-
ic energy, and the energy extracted by rotation add up and
the term which is independent of O and a and dependent
on DE parameter a gets subtracted from it. This implies
that the pure DE term is dominating and hence causing
the decrease in the total energy of the underlying space-
time with w. = —1, as evident from Fig. 1, Fig. 2 and Fig.
3. From expression (33), we can see that the contribution
in energy E, due to the charge and rotation is multiplied
by the DE parameter a. The terms involving rotation a
get subtracted from the term that is dependent on charge
Q and the graphical results show that the total behavior of
the energy is decreasing in the case of w, =-2/3. This
implies that the terms involving rotation dominate the
term which involves the charge parameter Q.

The effect of the DE models on the energy content of
the RN BH surrounded by DE with w, = -1, w, =-2/3,
—1/2 and w, = —1/3 has been thoroughly discussed in the
literature [30, 31]. For w.=-1 and w,=-2/3,-1/2, the
effect of the DE gives the similar findings, i.e. the influ-
ence of the DE may result in decreasing the total energy
content of the RN BH surrounded by DE for different
values of the BH parameters and the DE parameter. In the
case of the RN BH [30], for w, =-1/3, it was observed
that the contribution of DE to the total energy content of
the spacetime, involved the square of the charge-to-mass
ratio Q*/M? of the BH, which correlates the electromag-
netic self-energy with the gravitational self energy, was
added in and hence resulted in increasing the energy con-
tent of the underlying spacetime. Here in the case of the
CK spacetime surrounded by DE with w, = —1/3, it is no-
ticed that the contribution to the energy due to the pres-
ence of the DE is independent of charge Q and depends
on spin @ and mass M of the BH, radial distance » and DE
parameter a, as given by (41). Furthermore, from (41) it
can be seen that the term involving rotation is to be sub-
tracted from the term that depends on the DE parameter
a. Since the energy extracted by rotation from the space-
time is subtracted from the total energy of the spacetime,
it hence may be the cause of decrease in the energy con-
tent of the CK spacetime surrounded by DE. The pres-
ence of DE causing the reduction in the energy content of
the CK BHs encircled by DE favours the idea of mass
(energy) reduction of BHs by the accretion of DE onto
BHs given by Babichev et al. [41]. Also, at w, = —1/3 we
have noticed from Fig. § that the energy E. due to the
presence of the DE parameter a first increases and then
decreases for different values of spin parameter a. It is
known that at this value of EOS parameter the Universe
remains static [24], and this may be correlated with our
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result of first increasing and then decreasing the energy
E., as shown in Fig. 8, i.e. the increasing and the decreas-
ing behavior may balance each other and as a result of
this behavior the Universe remains static.

APPENDIX

M 0? aMa

Mcog—c = - = (1-a)|- L2
CoKe 2r(1—a)[ e 0‘)} 42

First-Order expansion:

M
—(1+
2r( @

0> Q| aMa 2 Ma a
- =4 - +0) = 221-4],
e T | e PO =5y

Second-Order expansion:

M s 0> Q*xy aMa 3
5(1+a+a)[1—2M2+2M2]— o o)
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S 2r 2r P

Third-Order expansion:

aMa
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0* Q% ]

4
22 2 o)

M
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-
Ma N
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In compact form we get the following expression

Ma| 1 a
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