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Abstract: In this study, we investigate the Kotzinian-Mulders effect under semi-inclusive deep inelastic scattering

(SIDIS) within the framework of transverse momentum dependent (TMD) factorization. The asymmetry is contrib-

uted by the convolution of the Kotzinian-Mulders function g7 and the unpolarized fragmentation function D;. As a

TMD distribution, the Kotzinian-Mulders function in the coordinate space in the perturbative region can be represen-

ted as the convolution of the C-coefficients and the corresponding collinear correlation function. The Wandzura-Wil-

czek approximation is used to obtain this correlation function. We perform a detailed phenomenological numerical
analysis of the Kotzinian-Mulders effect in the SIDIS process within TMD factorization at the kinematics of the
HERMES and COMPASS experiments. We observe that the obtained xp-, z;,-, and Pj, -dependent Kotzinian-
Mulders effects are basically consistent with the HERMES and COMPASS measurements. We also make predic-

tions at EIC and EicC kinematics.
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I. INTRODUCTION

The investigation of the internal structure of the nuc-
leon remains a frontier of hadronic physics research. Azi-
muthal asymmetries in semi-inclusive deep inelastic scat-
tering (SIDIS) are key observables to probe the spin de-
pendent substructure of the nucleon. Measurements of
azimuthal asymmetries are crucial to comprehending the
transverse structure of the proton. The collinear picture
utilized for DIS is not sufficiently appropriated to obtain
various asymmetries in SIDIS, and the transverse mo-
mentum of the active quark in a nucleon must be added.
The transverse momentum dependent (TMD) factoriza-
tion [1, 2] approach can describe this asymmetry. The in-
clusive cross section of SIDIS can be expressed as a con-
volution of nonperturbative TMD parton distribution
functions and fragmentation functions and perturbatively
calculated partonic cross sections. In other words, the
SIDIS cross section can be factorized into TMD parton
distribution functions (PDFs) having the information of
the active quark distributions with transverse momentum
in the parent proton and the TMD parton fragmentation
functions (FFs) illustrating the hadronizations of the
struck quarks into the detected hadrons. The azimuthal
asymmetries in SIDIS have been studied in many experi-

ments. The early research published by the JLab, HER-
MES, CLAS, and COMPASS collaborations on azimuth-
al asymmetries in SIDIS production of charged hadrons
are available in Refs. [3-23]. For both experimental and
theorical reviews, refer to [24-28].

The various azimuthal asymmetries in SIDIS have
been investigated theoretically in various studies (e.g.
[29-31]). Generally, authors explore the SIDIS process at
twist-two level in the parton model with TMDs and TMD
FFs. Such processes can be described in terms of eight
PDFs including six time reversal even and two time re-
versal odd PDFs. Among the leading-twist TMDs, the
Kotzinian-Mulders (KM) function ng(x,I?T) [32] describ-
ing the probability of discovering a longitudinally polar-
ized quark in a transversely polarized nucleon has rarely
been considered to date. The g7 (x, l?%) is chiral-even and
can be reached in SIDIS combined with the unpolarized
FF. In practice, g]T(x,/%.) combined with the unpolarized
FF D; can be accessed from double spin asymmetries
(DSAs) AS%%~%) in SIDIS. The reason is that both a lon-
gitudinally polarized beam and a transversely polarized
target are necessary for the longitudinal polarization of
the active quark. This DSA is usually referred to as the
KM effect [32].
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In Ref. [29], the authors studied the KM effect in
SIDIS without scale evolution. In this study, we perform
a more detailed phenomenological analysis of the KM ef-
fect in SIDIS within TMD factorization and compare
them with the data from the COMPASS and HERMES
collaboration [16, 23, 33]. Measurements have also been
conducted for the KM effect in SIDIS with a neutron tar-
get [3, 34]. TMD factorization has been applied in many
studies [35-40] focusing on various asymmetries in Drell-
Yan and SIDIS processes. Beginning from the previous
research by Collins-Soper-Sterman (CSS) [41, 42], the
so-called TMD evolution following from factorization
theorems has been fully developed in recent years. Simil-
ar phenomenological studies for asymmetries contributed
by Sivers, Boer-Mulders, and Collins functions are dis-
cussed within TMD factorization in both Drell-Yan and
SIDIS processes. The energy scale evolution is connec-
ted with the Sudakov form factor [42-44] after solving the
evolution equation, which can be split into a perturbat-
ively computable part S,.x and a nonperturbative part
Snp. To be precise, TMD evolution is performed in the
coordinate b-space related by momentum space via a
Fourier transformation. The use of b-space simplifies the
expressions of the cross sections from convolutions in the
momentum space into simple products of » dependent
TMDs. Subsequently, the Sudakov evolution kernel be-
comes non-perturbative at large separation distances b,
whereas at small b <« 1/Aqcp, it can be perturbatively
calculated order by order for a strong coupling constant
as. A two dimensional Fourier transform must be per-
formed to the physical k, space for the corresponding
TMDs to calculate the measured cross sections. For a b-
space TMD at a initial scale y, it can be expressed as a
convolution of a perturbatively calculated C-coefficient
and a collinear correlation function at the same scale .
The collinear correlation function can be considered the
collinear counterpart of the h-space TMD, and it can be
obtained using perturbation theory. Specifically, the KM
function g;7 in the coordinate space can be expressed as a
convolution of the corresponding C-coefficient and the
collinear correlation function, g(x). In this paper, the per-
turbative Sudakov form factors are considered up to the
next-to-leading order (NLO) accuracy, and we adopt the
tree-level results of the C-coefficients since the C-coeffi-
cients for g;7 still remain in the leading order (LO). The
nonperturbative Sudakov form factors in the unpolarized
differential cross section were obtained from Ref. [45],
which followed the CSS formalism with the b*-prescrip-
tion. We performed the TMD evolution to attain the frag-
mentation function and g(x) at a initial scale u;, = ¢/b* us-
ing the evolution package QCDNUM [46]. Based on the
above considerations, in this paper, we estimate the KM
effect within the TMD factorization and compare the res-
ults with the HERMES and COMPASS measurements. In
addition, we perform predictions for the KM effect with-

in the TMD factorization at EIC and EicC kinematics.

The remainder of this paper is organized as follows.
In Sec. 11, we review the basic framework of TMD evolu-
tion for accessing the KM effect in the SIDIS process. In
Sec. 111, we present the numerical calculation of the KM
effect for the underlying process at the kinematics of
HERMES and COMPASS measurements, respectively.
The paper is concluded in Sec. IV.

II. THEORTICAL FRAMEWORK

We mostly follow the framework of a recent paper
[36], which studied the Sivers asymmetry of the Drell-
Yan process within TMD factorization. We consider the
SIDIS process in which a virtual photon g, =1, -1, with
invariant mass Q” = —¢? is exchanged:

I7(0)+p'(P) = I'(L') + h(Py) + X(Py), (1

where a longitudinal polarized lepton scatters off a trans-
verse polarized target nucleon with polarization S and
momentum P. Inside the target, the photon hits the active
quark with momentum k and then changes it to p. We use
the usual SIDIS variables [47]:

Q2 P- Q2
S :l+P2’ = , = — = y
ep=(+P) XB 2P g y T S
P-P 2Mx
w=75—  ¥="5- @
P-q Q

When P,, <« Q, the TMD factorization can be applied,
and the SIDIS differential cross section including
cos(¢y, — ¢s) term can be expressed as [48]

do

dedydzhdzﬁhJ_

:O'O[FUU,T +V1l-¢g2 cos(¢p — ps )FZOTS(%—%)]
=oo| ILfiDi]+ VI-& COS(¢11_¢S)I[781TDI] )

1-y=%

L=y+ 302+ 5722

where € = and

2ra, 1+(1-y)?
oo = — ——, 4)
0? y

and 13,1 . 1s the transverse momentum of the final state
hadron with respect to the lepton plane. Here, Fyy is the
spin-averaged structure function, and Fy7 is the spin de-
pendent structure function contributing to the cos(¢;, — ¢s)
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azimuthal asymmetry. The unit vector h= B /|1Py.). We
introduce ¢, and ¢s as the azimuthal angles of the trans-
verse momentum vector of the final-state hadron and
transverse spin of the target, respectively. Following the
Trento conventions [49], these angles are defined in the
target rest frame with the % axis along the virtual-photon
momentum and the % axis along the lepton transverse
momentum. In Eq. (3), the terms that we are not inter-
ested in have been ignored. We have also adopted the

notation

> - ﬁ
TlwfD] = Z e f &2 prd*re®@ [ﬁ, —kr— Z’:l J
q n

X w(Pr,kr) f4(xp, p2)D" (2, k2), Q)

where kr and jr are the corresponding transverse mo-
mentum componments of k, p, respectively. The second
term on the r.h.s. of Eq. (3) refers to a leading twist ef-
fect involving the coupling of the transversal helicity dis-
tribution g7 and the unpolarized fragmentation function
D;.In SIDIS experiments, the KM effect can be ac-
cessed using

o 2 f deydes cos(¢y, — ¢s)dorr
COS(@,—@s
Arr

fd¢hd¢5d0'UU
hoF
oo V1-&21 MTngD1

— . 6
[ooIlfiD1] ©

To obtain a more detailed analysis of the KM effect,
we must consider the scale evolution. It is convenient to
perform the scale evolution of the TMD PDFs and FFs in
the coordinate space (b-space). For a general TMD PDF,
following the CSS evolution framework, we assume that
it depends on two scales named r(or {p) and u. Such
scale dependences are described using corresponding
evolution equations. First, the ¢ scale evolution is de-
termined using the Collins-Soper (CS) equation [41]:

dln f (xp. bi ) _51115?/(1(2;,,[7;(&#)
olnVir dln Vp
=K(b,u), @

where K(b,u) is the CS kernel. The u dependence is ob-
tained from renormalization group equations for f~1q, 5}1'/ kN
and K

dK(bp) _
ding = 7e@s).

d]nff(xg,b;gp,u)
dlnyu

dIn D)2y, b1 ¢p. 1)
dlny

=yr(as(W), {r /i),

:/YD(QS(/l)a §D/#2)7 (8)

where vk, vr, and yp are anomalous dimensions of K,
f?, and 5}1'/ ?, respectively. According to many previous
discussions in Refs. [1, 2, 41-43, 50] that solve the above
equations, for our aim, the relative relations for values of
Zr and ¢p should be clarfied. We obtain the PDFs and
FFs symmetrically and use +/Zr = V{p = Q as stated in
Ref. [51].  Subsequently, we can  consider
fx,b;lp = Q% u=Q) as f(x,b,Q) for simplicity. Thus,
we can summarize that the energy evolution of TMDs (f)
from an initial energy u to another energy Q can be
presented by the Sudakov form factor in the exponential
form exp(-S)

}T(-x> b’ Q) = 7: 675 '}T(x’ b’ﬂ)’ (9)

where ¥ is the hard factor that depends on the calcula-
tion scheme.

Now, we consider the evolution of a TMD PDF
]7(x,k 1;Q) probed at a certain scale Q that has a trans-
verse momentum k; and a collinear momentum fraction
x. It is useful to perform scale evolution in the coordinate
space, since the evolution between k, dependent TMDs
can be converted into simple products of h-space TMDs.
Therefore, we perform the Fourier transform of
ﬂx, ky; Q) in the two-dimensional b space as [36]

fx,b;0) = f ke P f(x kL 0). (10)

In this paper, following the CSS evolution formalsim,
we select an initial scale Q; =c/b for energy evolution.
Here ¢ =2¢7, and yg ~0.577 denotes Euler's constant.
Thus, the energy evolution of the b-space TMD from an
initial scale Q; to a final scale Oy = Q can be represented
as a factorization form [43, 51-53]:

— — Q0 2
fx.b:0) =f(x,b;c/b)exp{—f d_ﬂ(alan_z+b])}
c/b M M

o \ ¥
x((c/bﬁ) ' (1

The coefficients a,a,, and K can be expanded as an /7
series:
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E:iiﬁ(%) (12)

In our calculation, we use a(ll), a(lz), and b(ll) for the NLL
accuracy:

al =CF,
C 67 2\ 10
@2 _“F1~ (920 24 Y
) CA(18 6) 9 R”f]’
3
1 _
b =-3Cr.
K1 =0, (13)

where Cr=4/3, Cy, =3, and Tk = 1/2 are color factors.
ny is the the quark-antiquark active number of flavors in-
to which the gluon may split. Its value depends on Q, and
at the HERMES kinematics, it can be certainly lower than
five. We set ny =4 in this paper. According to the defini-
tion of the asymmetry, Fourier transforming a b-space
TMD back in transverse momentum space [36],

— L T
floki;Q) = f We‘kfbf(x,b; 0

L f wdbbJo(klb)f(x,b; 0), (14)
271' 0

where J; is the Bessel function of the zeroth order. To
perform this Fourier transformation, we should obtain de-
tails of the entire b € [0, co] region; thus, we should extra-
polate the b-space TMD to the non-perturbative large-b
region in which we should introduce a non-perturbative
Sudakov factor Ryp(x, b; Q) = exp(—Snp)

F(6,5;0) = foert(x,b.; Q)RNp(x, b; 0), (15)

where the perturbative part of the TMD f(x, b.;0Q) is de-
noted by

~ c _ .
fpert(x’ b*aQ) = f—(va; b_)e Spm(QJL): (16)

with b, = b/ \/1+ (b/bmax)?. The function form of b, satis-
fies b, ~ b when b is small and b, ~ by, at large b val-
ues. The typical value of by, is selected to be approxim-
ately 1 GeV ' such that b, is always located in the per-
turbative region. This b, -prescription of a b-space TMD

facilitates a smooth transition from perturbative region
and avoids the Landau pole singularity in @,. Thus, the
total Sudakov-like form factor is seperated by a perturbat-
ively calculable part and a non-perturbative part:

S(Q;b) = S pert(Q3 b.) + Snp(Q: ). 7

The perturbative part of the Sudakov form factor
evolves the transverse part of the b-space TMD, which
can be presented as

04 2
Spen(Q;b*)=f —'u[Aan—2 +B|, (18)
w M H

where u; =c/b, is the default initial scale in the CSS
evolution framework. In the region where 1/b>> Aqcp,
the b-space TMD PDF or FF at a fixed scale can be ex-
panded as the convolution of perturbatively calculated
hard coefficients and the corresponding collinear PDFs
(FFs) at the same scale [41, 54]:

by = Coci® f1H (x ),

_ 1 . .
Db =) 5 Creq®D@p),  (19)
J

where ® appears for the convolution in the momentum
fraction x(z)

ldg

. X .
Cyei® f1H (xp, 1) = ?CqH(—B,b;ub,.zp)f'”’@,ub),

3

A

. Lag . .
Cicq® D" (1) Ef fcﬂ—q(é’b;ﬂbagF)DH/j(‘faﬂb)‘
: (20)

Therefore, including the TMD evolution, TMDs can be
expressed as

. . .
Flep. b %) =S (@PISHONE S €y fCxpupan),
i

1

N .2 =8 pea(Qb.) =S 2L (Q.b
D({(Zh,b,Q ) =e5n (Q.b.)=8(Q )Z2
h

- »
Dy Y Cjeg®DV i)

J
2

The hard coefficients C;, F for f; and C;, D for D,
have been calculated up to the NLO, and those for the
transversal helicity distribution are also known up to
NLO [55]. However, only the first term of the transversal
helicity distribution result in Eq. (57) of Ref. [55],
namely the g(x) term, is dominant. It is not necessary to
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consider the Tr contribution in this paper as it is beyond
the WW approximation and a very extensive project.
Thus, for consistency, in this paper, we adopt the LO res-
ults of the C coefficients for PDFs and FFs under consid-
eration.

Subsequently, we can obtain the unpolarized PDF and
FF in b space as

_ ) > ,
Fi(xp,b; QF) =eSe(@PI=Sw(@D) fixp 4y,

— Dy 1
.2 =8 pen(Q,b.)-S 2 (Q,b
Di(zn,b; Q%) e~ (@000 =

D). (22)
Zh

Thus, we can obtain in the denominator of Eq. (6)
bdb Pnib
w1l =36 [ 5ol %)
Uy Z 27rzh Zh

><fﬁ(xg,ub)D?(zh,uwe-”w'-sw, (23)

where the non-perturbative form factor results from the
contributions of the distribution and fragmentation func-
tions:

Snp(Q,b) = SLp(0,b) + SLL(0, b). (24)

For the non-perturbative form factors, we follow the para-
meterization of Ref. [56]

b
Snp(0,b) = —la2+g21n—1ng + 3b2( ) + 82, (25)
b, Qo xg)  z
with the initial scale Q}=24 GeV?, and g, =0.212,
g2 =0.84,g3=0,g, =0.042, xo =0.01, and 2 =0.2. At this

initial scale, these parameters are fitted to the experiment-
al data.

Now, we examine the cos(¢;, — ¢s) asymmetry in SID-
IS. In the small b region, we can also express the KM
function g7 of the nucleon at a fixed energy scale u in
terms of the perturbatively calculable coefficients and the
corresponding collinear correlation function [57]

g b\
g7 (x.byp) =2M - 8q(x,p0), (26)
where M is the mass of the nucleon. The hard coeffi-
cients are calculated up to the LO, and the KM function

in the b space is defined as

104

—_ =3 TR k
T = [@EeEEL B. @)

The collinear function g,(x) is a twist-3 quark-gluon-

quark correlation function, which is only the first trans-
verse moment of the g7 [58]

]?2 (D
gq(x)zfd kLZMZng(x L) gq (x). (28)

For the nonperturbative part of the Sudakov form
factor associated with the KM function, the information
remains unknown. In a practical calculation, we assume
that it is the same as S IS\;; obtained in Ref. [35]. There-
fore, we can obtain the KM function in b-space as

ib(l/
g xb)y=2M (f)e‘s SN g (). (29)

Thus, we can express the numerator in Eq. (6) as

]%\l)']_()]" 1 00 P, b
I[ D ] L f dbb2]
M 81T 272 J, 1 Z

2~ —(SS SIS o
Xzquq(xB’ﬂb)D‘f(Zh,#b)e Sra* S 250,
q

(30)

IIT. NUMERICAL ANALYSIS

In this section, we make predictions of the KM effect
in the SIDIS process at the kinematics of HERMES and
COMPASS experiments for a longitudinally polarized
lepton scattering off a transversely polarized proton. To
perform the numerical calculation of the denominator of
the asymmetry in Eq. (23), as for the unpolarized distri-
bution function fij(x), we select the LO set of the
MSTW2008 parametrization [59]. For the unpolarized
parton-to-pion fragmentation function, we obtain the
NLO fit [60] to apply the TMD evolution at NLL accur-
acy. Meanwhile, we select a recent NLO fit for the unpo-
larized parton-to-kaon fragmentation function [61]. For
the numerator of the effect given in Eq. (30), we must
parameterize the distribution g(x) in a properly initial
scale ¢ and then evolve it to the scale yu, = ¢/b*. There-
after, the TMD evolution equations will be used to evolve
from ¢/b. to Q. Since g;r has not been extracted from ex-
perimental data, we obtain g(x) by employing the WW
approximation [28]

1
~ WW-type dy
o) = =" [ Lo 6D
X

where g7 is the quark helicity distibution extracted form
Ref. [62], and g =1 GeV.

As for the scale evolution of the g, we assume at the
initial scale Qp =1 GeV that the g function is parameter-
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ized as Eq. (31) and then evolve it to the final scale Q us-
ing the evolution equation for g. The energy evolution of
the g function has been studied extensively in literture
[58]. In Refs. [36] and [63], only the homogeneous terms
of the evolution kernel were maintained for the evolution
of the Qiu-Sterman function and the twist-3 fragmenta-
tion function A®, respectively; we adopt the same in this
paper. A similar option was adopted in Ref. [39] to study
the Sivers asymmetry in SIDIS. The homogenous terms
of the g evolution kernel are expressed as

. 1+22 3 Cyl+72
PEonCp|— 4 25(1-7)|-=A .
e ITES T ] I iy peee

(32)

We used the QCDNUM evolution package [46] to ob-
tain the numerical solution of the g(x) evolution equation,
where the scale evolution of the unpolarized fragmenta-
tion function was performed using the internal time-like
evolution. We modified the original code of QCDNUM
to add the evolution kernel of the g(x) function, selecting
the initial scale Q%=1 GeV? for the evolution. Among
the QCDNUM codes, we used the two loop QCD coup-
ling constant [64], and the QCDNUM code was executed
with the alignment a(Qp) = 0.327. In Fig. 1, we plot the
g(llT) distributions of up and down quark at three scales. In
both panels, the red solid lines depict the results at the
initial scale Qf =1 GeV?, and the purple solid and dot-
ted lines show the results at Q2 =10 GeV? and Q3 =50
GeV? after applying the evolution equation for g. We ob-
serve that the evolution equation significantly changes the
shape and size of the TMD at different scales. The abso-
lute maximum of TMD increases as the scale increases in
both up and down quark cases.

To perform numerical calculations for AS3*~%) in
SIDIS at HERMES, we adopt the following kinematical
cuts [65]

0.023 < x5 < 0.4,
Py <0.6GeV, Q%> 1GeV?,

0.1<y<0.95 02<z,<0.7,
W2 > 10GeV?, (33)

Q2 = 1GV?
Q% = 10GeV?
04 [ Q% = 50GeV?

0 0.5 1
rB

(1)
1T

Fig. 1. (color online) g

where W is the invariant mass of the photon-nucleon sys-

1 —
tem, and W2 =(P+¢)*~ ﬂQZ. Moreover, to apply
X

TMD factorization and be ccl)gnsistent with Ref. [35], we
select P,y <0.6 GeV for the produced hadron in SIDIS
process at HERMES kinematics since we focus on the
TMD factorization region P, < Q. At COMPASS kin-
ematics, we select [33]

0-2<Zh <1,

W? > 25GeV?.
(34)

0.004 < xp<0.7, 0.1<y<0.9,
0.1 < Py, <0.6GeV, Q%> 1GeV?,

Additionally, we now make some predictions for the
KM effect at EIC and EicC kinematics. For EIC, we ad-
opt the following kinematics [66]

0.001 <xp<04, 007<y<09, 02<z,<0.8,

Py <05GeV, 0%>1GeV?, W?>25GeV?,

Vs = 45GeV, (35)
and for EicC, we adopt

0.005 <xp<0.5, 007<y<09, 02<z,<0.7,

Py, <0.5GeV, 1GeV? < 0 <200GeV?,

W?>4GeV?, +/s=16.7GeV. (36)

In Figs. 2-8, we show the results for pion and kaon
production. By integating over the other variables, the
xp-, zi-, and Pj,-dependent KM effect are depicted in
the left, central, and right panels of the figure, respect-
ively. The solid lines represent our model predictions.
The full circles with error bars show the preliminary
HERMES and COMPASS data for comparison. For n~
and n° production, Figs. 3-4 provide a good description
for the HERMES data, while Fig. 2 somewhat overestim-
ates the HERMES data. For pion production in Figs. 2-4,
the obtained P, -dependent effects increase as P, in-

QZ=1GV2 ——
Q% = 10GcV?
0.05 F Q3 = 50GeV?

—0.15 |

0 0.5 1

B

distributions of up and down quark as a function of xz.
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0.2 02 0.2
TAMD theorical prediction — TMD thearical prediction — TAD theorical prediction
0.15 HERMES drla d—s— 015 HERMES daln —s— 015 HERMES data I
0.1 0.1 l
3 | I N ~
3 005 3 005
X A
[N\ AN E U R B A 2 0 _ ] — ] — = —
s g5
005 005
—01 —0.1
~0.15 —0.15 ~0.15
—0.2 —0.2 —0.2
0.05 0.1 0.15 0.2 0.25 0.3 02 04 0.6 0 05 1
zp zn Pp1|Gev|

Fig. 2. (color online) KM effect calculated within TMD factorization compared with the HERMES measurement [65] for #* produc-

tion.
0.2 0.2 0.2
TMD theorical prediction TMD thearical prediction —— TMD theorical predietinn ——
0.15 H;B“FS [ — 0.15 HERMES data —e=—| 0.15 HERMES dain —s—
0.1 { ‘ 0.1
% 0.05 s I ? 0.05
: o T S 0
25 8y
5005 50.05
—0.1 —0.1
—0.15 —0.15 —0.15
—0.2 -0.2 -0.2
0.05 0.1 0.15 0.2 0.25 0.3 0.2 0.4 0.6 0.5 1
xp Zn Py |GeV|

Fig. 3. (color online) KM effect calculated within TMD factorization compared with the HERMES measurement [65] for =~ produc-
tion.

0.4 0.2 0.4
TMD theorical prediction  ——— TMD thearical prediction  —— TAD theg
HERMES daza —s—

rical prediction —

HERMES dafa —=—- 0.3 HERMES data —=—

—0.4 —0.2
0.05 0.1 0.15 0.2 0.25 0.3 0.2 0.4 0.6
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Fig. 4. (color online) KM effect calculated within TMD factorization compared with the HERMES measurement [65] for #° produc-
tion.
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Fig. 5. (color online) KM effect calculated within TMD factorization compared with the HERMES measurement [65] for K* produc-
tion.

creases, and the largest effect can occur at 0.15. Note that ~ bution in, e.g., Fig. 2 will become very large at approxim-
this behavior does not mean that the asymmetries will ately P, =0.7 GeV. The reason is that the model pre-
tend to 1 as Pj, increases. If we loosen the constraint dicted denominator of the asymmetry decreases to zero at
P, < 0.6 GeV by applying Py, <1 GeV, the P, -distri- approximately P, =0.7 GeV. Thus, such model behavi-
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Fig. 6. (color online) KM effect calculated within TMD factorization compared with the HERMES measurement [65] for K~ produc-
tion.
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Fig. 7. (color online) KM effect calculated within TMD factorization compared with the COMPASS measurement [33] for K~ pro-
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Fig. 8. (color online) KM effect calculated within TMD factorization compared with the COMPASS measurement [33] for K~ pro-
duction.
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Fig. 9. (color online) KM effect calculated within TMD factorization for K+ production at EIC kinematics
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Fig. 10. (color online) KM effect calculated within TMD factorization for K~ production at EIC kinematics.
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Fig. 11. (color online) KM effect calculated within TMD factorization for K* production at EicC kinematics
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Fig. 12. (color online) KM effect calculated within TMD factorization for K~ production at EicC kinematics.

or indirectly proves the necessity for adopting P, <0.6
GeV to guarantee TMD factorization. A similar behavor
is observed for Py, -distribution in similar model calcula-
tions, e.g., [39, 40]. For the K* production, the obtained
asymmetries in Fig. 5 also exhibit a similar result with the

basically consistent with HERMES data. Note that when
xp>0.5, the predicted z,-dependent effect nearly be-
comes zero. In Figs. 7 and 8, we plot the TMD predic-
tions of the KM effect for n*,7~ production. The cases
are similar to those of HERMES, and the predictions are

HERMES data. The P, -dependent effect in Fig. 5 can
reach nearly 0.1 at the point with xz =0.5. Fig. 6 indic-
ates rather small effects for K~ production, which is also

basically consistent with COMPASS data. The uncer-
tainty may resuslt from fj,D;,g, the evolution kernel of
g, and the nonperturbative factors. Overall, the TMD ef-
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fects are non-negligible and ocassionally significant.

Figs. 9-12 also show similar asymmetry results for
kaon production at EIC and EicC kinematics. By integat-
ing over the other variables, the xp-, z;-, and Py, -de-
pendent KM effect are depicted in the left, central, and
right panels of the figure, respectively. We observe that
the KM effect results for K* production are larger than
those for K~ production. Generally, the KM effect res-
ults at EicC kinematics are slightly larger than those at
EIC kinematics, and shapes of xz-, z;,-, and P, -depend-
ent KM effects at both EIC and EicC kinematics are sim-
ilar. Future experiments will be useful for extracting the
KM function after a global analysis of data sets.

IV. CONCLUSION
In this study, we investigated the KM effect in the

SIDIS process within the framework of TMD factoriza-
tion. We considered the TMD evolution of g and unpolar-
ized parton distribution and fragmentation functions. We
first obtain a previous parametrization of g function at a
initial energy Qo and then evolve it to the CSS default
initial scale y;, through an approximation evolution ker-
nel, which includes only the homogenous terms for the g
function. Subsequently, we obtain the xp-, z;-, and Py, -
dependent KM effects in SIDIS for the pion and kaon
production at the HERMES and COMPASS kinematics.
The numerical results are compared with the correspond-
ing HERMES and COMPASS measurements. We ob-
serve that the KM effect within the TMD factorization
and evolution in the corresponding kinematics is basic-
ally consistent with the HERMES and COMPASS meas-
urements. The TMD effect is occasionally significant.
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