Chinese Physics C  Vol. 46, No. 5 (2022) 053102

Lattice calculation of y., — 2y decay width”

Zuoheng Zou(4Bff:1H)'

Yu Meng(i# )"

Chuan Liu(X1)11)"**

'School of Physics, Peking University, Beijing 100871, China
*Center for High Energy Physics, Peking University, Beijing 100871, China
*Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

Abstract: We perform a lattice QCD calculation of the y.o — 2y decay width using a model-independent method

that does not require the momentum extrapolation of corresponding off-shell form factors. The simulation is per-

formed on ensembles of Ny =2 twisted mass lattice QCD gauge configurations with three different lattice spacings.
After the continuum extrapolation, the decay width is obtained to be T'yy(xc0) = 3.65(83)stat(2D)jat.syst(66)syst ke V.
Regardless of this large statistical error, our result is compatible with the experimental results within 1.35. Potential

improvements of the lattice calculation in the future are also discussed.
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I. INTRODUCTION

Charmonium physics lives in an energy regime where
both the perturbative and nonperturbative features of
quantum chromodynamics (QCD) intertwine. Notably,
charmonium decay played an important role in establish-
ing the asymptotic freedom of QCD and functioned as a
clean platform for probing the interplay between perturb-
ative and nonperturbative dynamics. In particular, the two
photon annihilation rates of charmonium are signific-
antly beneficial in elucidating quark-antiquark interac-
tions and decay mechanisms [1, 2].

In this research, we study the two-photon decay width
of x.0, which has been extensively studied from both ex-
perimental and theoretical approaches. From the experi-
mental approach, using the decay of ¥ (3686)—
YXc0.Xc0 — vy, both CLEO-c and BESIII collaborations
reported results of the two-photon decay width I, (xc0)
[3, 4]

FS}],“EO_C(XCO) :2.36(35)stat(22)5y5t keV
F%]?SHI(XL'O) :2.03(8)stat(14)5)’5tkev
FEYDG(XCO) =2.20(22)keV O

where the first line is obtained from CLEO-c, the second
from BESIII, and the last line is the PDG quoted value

with combined errors. It is expected that more accurate
results for these decay widths will become available in
the near future.

On the theoretical side, it is fair to infer that the situ-
ation is far from satisfactory. Theoretical results for the
decay rate have been obtained using a non-relativistic ap-
proximation [5, 6], potential model [7], relativistic quark
model [8-11], non-relativistic QCD (NRQCD) factoriza-
tion [12-18], effective Lagrangian [19], and Dyson-
Schwinger equations (DSEs) [20], as well as quenched
[21] and unquenched lattice calculations [22]. These res-
ults are presented in Table 1, which are scattered quite
significantly, although all they fall in the right ballpark.
Note that within the framework of NRQCD, the leading-
order (LO) prediction is close to the experimental meas-
urements; however, this process is extremely sensitive to
high-order QCD radiative corrections and relativistic cor-
rections. Therefore, only the LO predictions are listed in
Table 1.

In the last line of Table 1, we list two existing lattice
QCD results so far. The first one from Dudek et al. is a
quenched lattice computation on a single lattice spacing
[21]. The systematic error they quote mainly come from
quenching. The second one from CLQCD is an un-
quenched study using Ny =2 twisted mass fermions at
two distinct lattice spacings. The authors found that the
lattice artifacts are substantial and only quoted results
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Table 1. Some theoretical predictions for Iy, (x0)-

Theoretical computations for Iy, (y.0)/keV

Huang [1] 372 + 1.10 Barbieri [12] 3.5
Barnes [6] 1.56 Schuler [17] 2.50
Gupta [7] 6.38 Lanseberg [19] 5.00
Ebert [8] 2.90 Chen [20] 2.06-2.39
Godfrey [9] 1.29 Crater [23] 3.34-3.96
Bodwin [10] 6.70+2.80 Wang [24] 3.78
Miinz [11] 1.39+0.16 Laverty [25] 1.99-2.10
Dudek [21] 2.41(58)51at(86)syst CLQCD [22] 0.93(19)s¢4¢

from a finite lattice spacing, without an error estimate of
the finite lattice spacing errors. The number quoted in
Table 1 is the result from the finer lattice spacing [22].
Therefore, in both lattice studies, systematic effects such
as finite lattice errors are not fully investigated, which
was found to be large in the second study [22]. Evidently,
in order to fully compare with the upcoming experiments,
one needs to work in a theoretical framework that allows
an improvable error control, and in this respect, lattice
computation has an advantage over other phenomenolo-
gical methods listed in Table 1.

In this study, we attempt to improve on the existing
lattice computation of T',,(xc0) in two major aspects.
First, in previous lattice studies, many systematic effects
were not yet completely considered, the most important
of them being the finite lattice spacing effect, which was
observed in Ref. [22]. Second, it is typical to compute the
off-shell form factors at various discrete photon virtualit-
ies. To obtain the physical decay width, an extrapolation
of these results are required, thereby introducing a model-
dependent systematic error.

In this study, we have made the following improve-
ments. First, to attack the lattice artifacts, we perform our
calculation on ensembles with three different lattice spa-
cings, which enables us to perform a reliable continuum
extrapolation. Second, we adopt a novel method to dir-
ectly extract the on-shell form factor, by-passing the con-
ventional momentum extrapolation and therefore avoid-
ing the corresponding model-dependent extrapolation er-
rors. We also considered the excited-state contamination,
further improving our results on the physical form factor.
Similar procedures have been successfully utilized for the
two-photon decay of n. [26]. We expect that these im-
provements would also shed some light on the two-
photon decay of y..

The remainder of this paper is organized as follows.
In Sec. II, the methodology for extracting the on-shell
form factor is introduced. Sec. III is divided into several
parts. In Sec. III.A, information on the configurations and
operators used in this work is introduced. In Sec. IIL.B,
the mass spectrum of y.o is presented. In Sec. III.C, we

provide the renormalization factor and spectrum weight
factor. In Sec. III.D, numerical results of the form factor
in three different lattice spacings are presented. Then, in
Sec. IIL.F, extrapolation of the results to continuum is
performed, yielding our final results for the decay rate.
We also compare our results with both the experimental
and theoretical results. The main sources of error in our
work are discussed, and possible solutions in the future
are proposed.

II. METHODOLOGY

In this section, we outline the methodology for the
calculation of the two-photon decay width of y.. In the
conventional approach [27], using the Lehmann-Syman-
zik-Zimmermann (LSZ) reduction formula and integrat-
ing out the QED part to O(e.,), the amplitude for the
two-photon decay of charmonium can be obtained as fol-
lows [21],

IM(pp) ~e€re; f dte =0 f e ¥

X f & IO {ou (%, 1) I(5, (0, 1) 10),
@)

where ¢u(%,t¢) is an appropriate composite operator that
creates a desired meson M (in our case, the y.o meson)
from the QCD vacuum; ¢€,,€, denote the polarization
four-vectors for the two final photons; J, =3 e,qv.q
(eg=2/3,-1/3,-1/3,2/3 for g=u,d,s,c) represents the
electromagnetic current operator due to the quarks, with e
being the elementary charge unit. In this work, we only
consider the connected contributions emerging from the
charm quark current. Disconnected contributions are neg-
lected. These contributions are extremely expensive for
lattice computations and are assumed to be small in char-
monium physics [21, 28, 29]. Subsequently, the matrix
element in Eq. (2) relevant for the y.o decay can be para-
meterized in terms of the form factor G(Q3, 03) as,

y(qy(g)IM(py))

2 (2 \?
=—(—€) G(01. Qe eq1 e2-e qie1-q2],  (3)
my \3

where ¢, ¢» are the two four-momenta of the final
photons while Q% = —¢?, Q5 = —¢5 represent the virtualit-
ies of the two photons. The mass of y.o is denoted as m,,
and the polarization vectors of the two photons are given
by € and €. The physical decay width is related to the
on-shell form factor, which is obtained by a momentum
extrapolation towards the physical point: Q% =03 =0.
Hence, in this conventional approach, to achieve better
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control on the extrapolation, one needs to compute the
matrix element at various different non-physical virtual-
ity combinations, which also introduces extra computa-
tional costs. The extrapolation itself also triggers model-
dependent systematic errors. In the novel approach intro-
duced in this study, we adopt a method that requires no
off-shell form factor calculations at all and therefore by-
passes the model-dependent extrapolation in photon vir-
tualities. This method has been successfully utilized in
two-photon decays of 7, [26]. Next, we briefly outline
the major steps for the case of y. below.

First, the on-shell decay amplitude of y. — 2yis re-
lated to an infinite-volume hadronic tensor ¥, (p), which
is the Fourier transform of the real-space tensor H,,(t, %)
in continuum Euclidean space,

Fantp) = [ arem® [ @574,
Hou (1, %) = (0|T T (2)1,(0) xco(K) ) &

where we have chosen the rest-frame of the y. meson,
such that k = (imX,6). Note that we have fixed the four-
momentum for one of the final photons to be
p =(@im,/2,p) with |§|=m,/2, making it explicitly on-
shell, and then the energy-momentum conservation guar-
antees that the other photon with the four-momentum p’
is also on-shell. With this choice, the on-shell decay amp-
litude can be expressed as

M= 62€;(p, Ve, (p", )F(p). (5)

According to the quantum number of y., the hadronic
tensor can be parameterized as (repeated indices are
summed),

Fuv(P) = €ijuakijupPakpF . yy- (6)

Here, the approach to extracting the on-shell form factor
F .y is also slightly different from the conventional ap-
proach. By further multiplying the Lorentz structure
factor in the above equation, the hadronic tensor can be
contracted to a scalar, including only the form factor
F .y With a constant factor. Then, the form factor can be
derived by dividing the coefficient as follows,

F _ eijpaeijvﬂpakﬂﬂv(p)
N € jua€ijypPakg€i o € jup Parkp
ol
=———— | dee™'/?
8m, | pI?
- OH,,(x
de:%)?e_lp'xﬂj#(yﬂjvoﬁ. (7)
Ox,

To date, all derivations are in the continuum Euclidean
space. Now, we utilize the spatial isotropy symmetry to
average over the spatial direction of 7,

it L g SOAIRD _

e S I o
d i s
o) = —(% - @) = /12, ®)
Z Z Z

where j,(x) represent the spherical Bessel functions. Fi-
nally, the scalar from factor is expressed as

1
Fyopy =Wfdtem*t/2fd3)?
x

y [11 (715
P

Jo(P11xD)
171

(xiHo; + xiHip) + 2H; |, (9)

where i = 1,2,3 take spatial indices and are assumed to be
summed over.

To obtain the hadronic tensor H,,(t,X) in Eq. (9), we
utilize the variational method to determine the optimal in-
terpolation operators and create the y.o meson state [30].
The physical decay width of y.o is given by

I'yy(reo) = o’ mfm F Azaow : (10)

Therefore, one only needs to compute the Euclidean cor-
relation functions Hy; and H;; that are directly relevant
for the on-shell amplitude and then substitute the results
into Eq. (9) to arrive at the physical decay width I, (xc0)
in Eq. (10). This completely avoids the on-shell extrapol-
ation process in the conventional lattice approach.

III. SIMULATION RESULTS

A. Lattice setup

We utilize three Ny =2-flavor twisted mass gauge
field ensembles generated by the Extended Twisted Mass
Collaboration (ETMC) with Ilattice spacing a =~ 0.0667,
0.085, 0.098 fm, respectively. The parameters of these en-
sembles are presented in Table 2. The valence charm
quark mass parameter yu. is tuned, such that the mass of
the n. meson for each ensemble reproduces its correct
physical value. For more details, we refer the reader to
Refs. [31, 32],

Before getting into the simulation details, we need to
clarify an outstanding subtlety related to the twisted mass
fermion. Because the twisted mass action breaks parity #
by O(a?) effects, the basis operator O; = cc for y.o would
unfortunately mix with O, = &y’c, which has the oppos-
ite parity. This mixing implies that a specific combina-
tion of these operators will be relevant in creating a phy-
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Table 2.
lattice spacing a, spatial and temporal lattice sizes L and 7,

From left to right, we present the ensemble names,

number of measurements of the correlation function for each
ensemble Ny x T, light quark mass ay;, pion mass m,, and
the range of the time separation 7, between y. and the
photon.

Ensemble a/fm
Ens. I 0.067(2)

0.085(3)

0.098(3)

3T  Neont @ mg/MeV th
323x64 179  0.003 300 10-20
243x48 200  0.004 315 10-15

243x48 216  0.006 365 10-15

Ens. 11
Ens. 111

scial scalar charmonium in the twisted mass action [30]
_ 1 ¥
0;,=V|0| +;0.. (11)

The two-point correlation function C, () =(0|0,, ()
O;LO(()) |0) can be derived by multiplying the correspond-
ing coefficients with the basis correlation functions
lej = (OIO,-(t)Oj(O) |0Y(i, j = 1,2). Therefore, after choos-
ing a time slice #y, one could disentangle the mixing of
the two operators by solving a generalized eigenvalue
problem (so-called GEVP procedure):

( C'n@ Ch) )( Vi) )
C'o@ Counm JUvE V)

A4 0 C'u(to) Cialto) \( vy v
= B (12)
0 ) Cuto) Can@) )\ v v
where the generalized eigenvalues A; behave like e £~
at large time separations. In practice, we fix # =1 and
solve Eq. (12) on each time-slice independently and then
employ them to reconstruct the three-point correlation
functions.

B. Mass spectrum for y

Because the generalized eigenvalues in Eq. (12) de-
cay exponentially, the corresponding mass eigenvalues
can be extracted easily from

cosh(m,) = 220~ 12); (’:)"(” D (13)

Because we want to extrapolate the form factor and elim-
inate the excited state contamination, we adopt the fol-
lowing two-state fit form for the y .o correlator,

72
CRO=V Y St (e +e @) (14)
i=0,1 =

with 7 being the spatial volume, my the ground state

mass, and m; the first excited state mass. The factors

1
Zi= —(iIOTDIO) with i=0,1)are the overlap amp-
NS ( ) p amp

1.18 1.8
¥ m,=3906(176)MeV |
v 16
1.175 oy T = E
¥ 1.4 o F i { i {
h4 I
@ 1.2
I .
hé

117 6 8 10 12 14
3 [ t/a
V-
% % L] 1478
1165 |- % % A 117 F m =3438@)MeV
3 i 1
ﬂ? ¥ 1.165 [ oo % = % d
hd i )
116l 1.16 &
1155
10 15 20 25 30 6 8 10 12 14
t/a t/a
(a) Ens.I
15
22 ¢ m, =4248(293)MeV
1.495% - 2
g
1.49 1.8
€ 16
1.485
1.4
¢ 5 6 7 8
R 148 7 . t/a
g 79 + 1485
1475} $¥ ) i
% % 148 m=3417(5)MeV.
1471 " % %’ Y 1475 i L
Y v 4
1.47 == Y
1.465 - - 1
1.465
1.46
5 10 15 20 5 6 7 8
t/a t/a
(b) Ens.IT
1725 35 .
1 m, =4271(366)MeV
1729 - 3 1
1.715 254 E -
A2
1Y = 2 -
¥ 7 15
1705 % - 4 5 6 7 8
LH: %; Y ¥ t/a
7 H
| 1705
1.695 — S 1 ¢ m=3419(6)MeV
4 i o’ i
1.69 - 171 . q
¢
1685
i ‘ 1695 =
168
5 10 15 20 4 5 6 7 8
t/a t/a
(c) Ens.III
Fig. 1. (color online) The left panels present the effective

mass at different time slices together with the corresponding
fitting ranges (grey bands), while the right panels show the
ground and excited state mass values fitted from two-point
correlation functions using Eq. (14). The black symbols de-
note the chosen my that corresponds to the grey band to its
left. The green symbols in (a) denote another choice for mg
and m;.
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litudes for the ground and the first excited state, respect-
ively. The corresponding mass plateaus and masses are il-
lustrated in Fig. 1 for the three ensembles utilized in this
work. The left column of the panels show the effective
mass on each time slice. The right panels present the
mass values fitted from two-point correlation functions,
the upper panel for the first excited state, and the bottom
one for the ground state. According to the grey bands in
the left panels, the starting time slices are adjusted ac-
cording to y?/d.o.f of the fit, while the ending time slices
are fixed to be fma = 27,20,20 for ensembles I, I, and III,
respectively. Note that the grey band of Ens. I signific-
antly differs from those of the other two ensembles;
hence, the ground state mass my might be underestim-
ated. Therefore, we calculate the result for another plat-
eau with a green mark and take their difference as the ma-
jor source of systematic uncertainty.

The results for the mass values are summarized in
Table 3. Note that we use the n. mass to fix the valence
charm quark mass au, in this study. Furthermore, the y.o
experiment mass is 3414.7(3) MeV, as quoted by PDG [33].

Table 3. Mass value mp and spectral weight Z, for the
ground state and the first excited state mass m; on each en-
semble, respectively. Ens. I(a) and Ens. I(b) correspond to the
black and green symbols, respectively.

mo/MeV Zy my/MeV

Ens. I(a) 3438(9) 0.0959(25) 3906(176)
Ens. I(b) 3445(4) 0.0972(9) 4181(57)
Ens. TI 3417(5) 0.1216(10) 4248(293)

Ens. I 3419(6) 0.1320(7) 4271(366)

C. Renormalization factor Zy

The hadronic tensor #,, contains the electromagnet-
ic current operators J, from all flavor of quarks.
However, becuase we neglect the disconnected diagrams
in this study, we only need to consider the charm quark
current Jff) = ¢y,c(X,1). Because we adopt the local cur-
rent form, there exists an extra multiplicative renormaliz-
ation factor Zy that can be calculated by a ratio of the
two-point function and the three-point function ex-
pressed in Eq. (15). In principle, this renormalization
factor does not depend on the particle state used to calcu-
late it. For a better signal, we decide to adopt the 7. cor-
relators instead of y.o. Considering the around-of-world
effect, we use the following relationship to extract Zy .

7= Y0, ()0} (0)) |
" zeo, (J(1/2, 70}, (0)) (1 +e7m @20y’

(15)

The results for Zy are presented in Table 4.

Table 4. Renormalization factor Zy for three ensembles.

Ens. I Ens. 11
Zy 0.6523(21) 0.6296(29)

Ens. 111
0.6057(27)

When computing the scalar form factor F,_,, in Eq.
(9) on the lattice, the integration over space-time are re-
placed by discrete summations. When two identical cur-
rents in H,,,(z, %), which implies that they share the same
Lorentz index, are at the same space-time point, an extra
renormalization is required to take the contact term into
account . This is owing to a novel type of composite op-
erator that is not properly renormalized yet, even if each
current is already properly renormalized by the factor Zy.
To take this effect into account, one needs to impose an-
other appropriate renormalization condition for this nov-
el composite operator. In this study, we decide not to sum
the same space-time point contributions for identical cur-
rents, thereby avoiding this potential renormalization. To
summarize, the above mentioned procedures adopted on
already O(a)-improved ensembles will at most introduce
an extra O(a®) lattice artifact on physical observables,
which will be considered in the final continuum extrapol-
ation.

D. The scalar form factor F, .,

When computing the hadronic tensor, we evaluate the
three-point correlation function (Jﬂ(x)JV(O)O;,O(—th)). To
generate the static meson state, we employ the Z;-
stochastic wall source placed at time-slice —z#,. This cuts
the uncertainty by approximately half when compared
with the simple point source for the meson mass. We also
apply the APE [34] and Gaussian smearing [35] for the
gauge field and y.o operator. We utilize the random point
source propagator for the current to arrive at the three-
point correlation function. In practice, the hadronic tensor
with current J,(0) placed at the zero point is actually an
average of all the time slices and random positions on
each time slice.

Consequently, the scalar form factor we computed ac-
cording to Eq. (9) on the lattice F} , actually suffers
from excited state contamination owing to the higher ex-
citation states of y.o. What we really need is the ground
state y.o. This effect can be addressed by considering the
t, dependence of the form factors. Therefore, we com-
pute several different separations #, and perform the fol-
lowing fit,

F),(‘-uyy(th) = F)(m}’}’ +E- e*(mfmo)tn , (16)

where F, ,, and ¢ represent the two free parameters. For
the parameters my and m;, we take the values presented
in Table 3. The form factors with different time separa-
tions f, together with the ground state extrapolation val-
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(color online) The left column represents the plateaus of the form factors with different #, while the right column presents the

extrapolation to the ground state contribution. The labels (a) and (b), (c) and (d), and (e) and (f) are for Ens. I(a), Ens. II, and Ens. III,

respectively.

ues for F, ,, for three set of ensembles are presented in

Fig. 2.

E. Comparison of the form factor with previous

The most recent lattice computation on y. — yy de-

lattice results

cay in the literature is the one from CLQCD [22], which
coincidentally employed the exact same set of ensembles
as this research. This allows a more detailed comparison
on the level of dimensionless form factors for each of the
common lattice spacings. Accordingly, we decide to con-
vert our results for F, ,, into dimensionless quantities
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that can be taken as either Iy, (y.0)/m,,, or the dimension-
less form factor G(0,0) utilized in Ref. [22]. The relation-
ship between these two dimensionless quantities is easily
found to be

r
M = 0«'27T|m)(mFXm7)/|2 = azﬂ(ec)4|G(O’ O)|2 (17)
m)(m

Dimensionless quantities have the advantage of being
independent of the scale setting process for the lattice
spacings, which is subject to its own errors depending on
how the scale was set. Because the scale setting pro-
cesses for lattice calculations have also progressed over
the years, information on the lattice spacing in physical
units, both the central values and the errors, also keeps
changing with time, even for a given particular ensemble.
Therefore, it is better to attach these errors due to scale-
setting at the very end when comparing with the experi-
ments. In the intermediate step, when comparing with
other lattice computations, it is easier to directly compare
the dimensionless quantities if possible. In fact, this al-
lows us to compare with previous lattice results in Ref.
[22] at each individual lattice spacing, namely Ens. I and
Ens. II, which have also been utilized. Certainly, when
quoting the final physical decay width, the effect of scale
setting will be considered together with its associated er-
rors.

In Table 5, the dimensionless form factor G(0,0) ob-
tained via Eq. (17) from F ,, for all three ensembles are
presented together with the corresponding results for Ens.
I and Ens. II from Ref. [22]. Ens. III was not utilized in
the study prsented in Ref. [22]. Two entries for Ens. I, la-
belled as Ens. I(a) and Ens. I(b), correspond to the two
different ways of extracting y.o masses, as demonstrated
in Fig. 1. The errors quoted for G(0,0) in this study are
obtained using the conventional jackknife method. Re-
garding the three errors for the results from Ref. [22],
they represent errors from statistics, momentum extrapol-
ations, and estimates of the finite lattice spacing errors,

Table 5. Dimensionless form factors G(0,0) obtained in this
study and those obtained in Ref. [22] for each ensemble.
Ens.I(a) and Ens.I(b) denote two different results obtained by
taking two different y.o mass values, as demonstrated in Fig.
1. Ensemble III was not available in Ref. [22]. Errors quoted
for G(0,0) in this study are purely statistical and are obtained
using the conventional jackknife method. The three errors for
the results from Ref. [22] are the errors from statistics, mo-
mentum extrapolations. and estimates for the finite lattice spa-
cings, respectively.

G(0,0) Ens. I(a) Ens. I(b) Ens. IT Ens. III
This work 0.1884(123) 0.1899(69) 0.1911(85) 0.1931(131)
Ref. [22] 0.09079(8)(19)(90) 0.1017(7)(102)(126) -

respectively. We observe that the central values for di-
mensionless form factors G(0,0) differ by almost a factor
of two for Ens. I and Ens. II. The reason for this apparent
discrepancy remains unknown to us. One possibility
could be the under estimation of the lattice artifacts for
each of the ensemble in Ref. [22].

F. Continuum extrapolation, final results,
and discussions

After obtaining the dimensionless form factors for
three different lattice spacings, we can investigate the
continuum limit of this quantity. To achieve this, we per-
form this extrapolation using the more physical quantity
I,y (xc0)/m,,,, which is proportional to the norm-squared
dimensionless form factor |G(0,0)]%, as indicated in Eq.
(17). The continuum extrapolation is done by performing
a linear fit in «® for the three ensembles; in addition, the
results after the continuum extrapolation, together with
the results for each ensemble, are illustrated in Fig. 3.
Here the horizontal error bars for the data points indicate
the errors in a? inferred from Refs. [31, 32]

It is observed that the three data points fit well on a
straight line yielding a reasonable y?/d.o.f. The two
points near a®> =0 with larger error bars designate two
different results obtained from the fit with and without
considering the horizontal a”-errors for the lattice spa-
cings. Below the two data points, we also plot the corres-
ponding experimental value from PDG for this ratio. The

x10° ‘ ‘ ‘
¥ this work: 3.65(83)(21)(66) keV
5 ¥ PDG-fit: 2.20(22) keV
3
=
>
< f
[
050 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12
az[fmz] %1073
Fig. 3.  (color online) Continuum extrapolation for the ratio

Iy, (xc0)/my,,. The three data points with both horizontal and
vertical error-bars are the results from the three ensembles.
The extrapolated results are represented by two side-by-side
points near o = 0. The one with a smaller error bar (the right
one) represents the extrapolation result without considering
lattice spacing errors. The other one (left one) is the result
with lattice spacing errors taken into consideration. The data
point (blue) below these two with a smaller error depicts the
PDG-fit value for this ratio. At the upper right corner, we have
also indicated the result of the width in physical units.
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two extrapolated results share almost identical central
values. They differ only by their errors. The point with a
slightly larger error (the one slightly to the left) is the one
that takes the horizontal a?-errors into account, while the
other one is the one without considering a?-errors. Fi-
nally, there is another source of systematic errors that
emerges from the different plateaus in the mass, as dis-
cussed in Sec. III. B. Therefore, we finally express the
result of the decay width in physical units as

Fyy(XcO) = 3-65(83)stal(21)lat.syst(66)sysl keV, (18)

where the first two errors represent the error obtained
without/with the a?-errors. It should be interpreted as fol-
lows: the first error is the error without considering a?-er-
rors. The second one with the subscript lat.syst indicates
the extra amount of error if the a?-errors are considered.
In other words, one could add the first two errors in quad-
rature to obtain the error with a?-errors taken into consid-
eration, which is demonstrated by the left point near
a*> =0 in Fig. 3. The last error with subscript syst reflects
the systematic error from different mass plateaus in Ens.
I(a) and Ens. I(b). Accordingly, we separate different
sources of systematic errors that have been studied in this
research.

It is evident that the central value for the decay width
obtained in this study is larger than the PDG value.
However, owing to our large statistical and systematical
uncertainties, it remains compatible with the experiment-
al results within 1.30.

We have attempted to estimate the systematic uncer-
tainties that might influence our final result expressed
above in Eq. (18). This includes choosing different plat-
eaus for the mass, renormalization factor Zy, spectral
weight factor Z;, and number of time-slices we adopted
for the extrapolation of the ground state form factor. Ulti-
mately, only the two plateaus presented in Sec. I1I. B con-
tribute to a visible deviation in the central value, which
we add in the third error in Eq. (18).

Certainly, there are also other sources of systematic
errors that are more difficult to quantify, e.g., neglecting
the disconnected contributions, quenching the strange and
charm quarks, etc. The contributions of the disconnected
diagrams are believed to be suppressed in the charmoni-
um system [28, 29] owing to the Okubo-Zweig-lizuka
(OZI) rule. Furthermore, the non-physical masses of up
and down quarks usually solely result in a negligible ef-
fect, which is indicated in previous lattice calculations
[36]. Therefore, the major direction in future improve-

ments points to the deduction of the statistical noise in
Xxco correlation functions. Only after the large statistical
uncertainty is fully under control, should we consider oth-
er remaining systematic effects.

Part of the large statistical error in our study can be
traced back to the mixing of y. and 5. in the twisted-
mass formulation of lattice QCD. To entangle this mix-
ing, we have utilized a GEVP procedure that projects out
the operators best overlapped with n, and y., as dis-
cussed in Sec. III. A. Although this procedure works per-
fectly for the ground state 7., its efficiency for y. is not
quite satisfactory, rendering the two-point and three-point
correlation functions of y. much noisier than that of 7,
and resulting in a significantly larger error for the decay
rate of y.o. Possible approaches to circumventing this dif-
ficulty could be simply increasing the statistics of the en-
sembles, using more interpolating operators as the basis
operators, or simply using a formulation that does not
suffer from this mixing effect at all, e.g., utilizing the
clover-improved Wilson fermion configurations.

IV. CONCLUSION

In this paper, we report a novel lattice QCD computa-
tion of the scalar charmonium y.o to the two-photon de-
cay width. We conducted this study using three en-
sembles of Ny =2 twisted mass gauge field configura-
tions at three different lattice spacings. This allowed us to
perform a more reliable continuum extrapolation, thus
eliminating the substantial finite lattice spacing errors ob-
served in previous lattice studies. We also adopted a nov-
el method that directly extracts the relevant on-shell form
factor, thereby by-passing the extrapolation in the photon
virtualities. We obtain the decay width of the y.o meson
to be T'y)(xc0) = 3.65(83)stat(2Diacsyst(66)syst keV. Regard-
less of the large errors in this computation, the obtained
results are compatible with the existing experimental val-
ues within 1.3¢. Further possible improvements were also
discussed. This calculation and possible systematic stud-
ies in the future will await the new experimental results
that will be made available soon.
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