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Abstract: The recently proposed microscopic shell-model version of the Bohr-Mottelson (BM) collective model is
considered in more detail in the coordinate representation. The latter possesses a clear and transparent physical
meaning, which reveals several features of the new version of the collective model missed in the previous formula-
tion. The relationship to the original BM model is considered, along with the relationships between the different lim-
iting submodels of the microscopic version of the BM model, which closely resemble the relationships of the origin-
al Wilets-Jean and rotor models. The kinematically correct many-particle wave functions of the microscopic version
of the BM model, conserving the experimentally observed integrals of motion, are shown to consist of collective ir-
rotational-flow and intrinsic components — in accordance with the original BM unified model. The general BM
Hamiltonian is obtained as a contraction limit of the microscopic many-particle nuclear Hamiltonian, or, alternat-
ively, by restricting the latter to the scalar O(m) irreducible collective space.
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I. INTRODUCTION

It is known that there are two fundamental models of
nuclear collective motion, the Bohr-Mottelson (BM) col-
lective model [1] and the nuclear shell model (see, for ex-
ample, [2]), which have provided the central framework
for the development of nuclear structure physics. The BM
model was originally introduced by considering the
quantization of the classical picture of surface vibrations
and rotations [3]. It has demonstrated that low-lying nuc-
lear states can be described by considering only a few
macroscopic collective degrees of freedom when the in-
trinsic excitations lie at high energies. Conceptually, the
BM model has provided the basic ideas and language
with which nuclear collective motion is described. It has
influenced the development of all other collective mod-
els of nuclear structure. Alternatively, the shell model in-
cludes all the many-fermion degrees of freedom and
provides a general microscopic framework in terms of
which the other collective models can be founded and ex-
pressed.

A natural question arises — how collective dynamics
is embedded in the more complete many-fermion dynam-
ics of the shell model? In the original formulation of
these two models, this fundamental objective posed a ma-
jor challenge. The solution, however, has been given
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through the algebraic approach by embedding the BM
model in the shell model, that is, by expressing it as a
submodel of the shell model (see, for example, [4, 5]).
The result is the one-component Sp(6,R) symplectic
model [6] of nuclear collective motion, sometimes called
the microscopic collective model. The embedding sug-
gests how the collective effects can be obtained from all
the single-particle fermion degrees of freedom. It has
been shown that this can be achieved in an elegant way
using group theory by restricting the model many-body
Hamiltonian to the Hilbert state space H“*® with a def-
inite O(A — 1) symmetry @, where A4 is the number of pro-
tons and neutrons, or, identically, by projecting its
O(A — 1)-scalar part [7—16]. In this way, in contrast to the
phenomenological collective models in which the collect-
ive (rotational and vibrational) modes are postulated, in
the microscopic collective models they are derived from
the Schrodinger equation for the many-particle nuclear
Hamiltonian.

Recently, a fully microscopic proton-neutron sym-
plectic model (PNSM) of nuclear collective motion with
Sp(12,R) dynamical algebra was introduced by consider-
ing symplectic geometry and possible collective flows in
the two-component proton-neutron many-particle nuclear
system [17]. The PNSM generalizes the Sp(6,R) model
for the case of two-component proton-neutron nuclear
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systems, which can be easily understood by embedding
Sp(6,R) c Sp(12,R). Among its dynamical symmetry lim-
its, the PNSM contains one that has been shown to cor-
respond to a microscopic shell-model version [18] of the
BM model [1]. This correspondence has been established
by considering the algebraic structures of the BM model
and PNSM, which allows to consider in more detail the
proper relationships of the original BM submodel limits
(that is, the Wilets-Jean (WJ) [19] and rigid rotor [20, 21]
models) with their microscopic shell-model counterparts
within the framework of the PNSM. The correspondence
of the physics shared by both the original BM model and
its shell-model version has thus been demonstrated by
considering the corresponding reduction chains, or, in
other words, using the so called matrix or algebraic rep-
resentation. In this respect, some aspects of the micro-
scopic version of the BM model may not be sufficiently
revealed in this representation.

The purpose of this study is to further consider the
structure of the wave functions in the BM model and its
shell-model version in the coordinate representation,
which has a more transparent physical content. This will
hopefully offer a better understanding of the intimate re-
lationship between the original (phenomenological) and
microscopic shell-model versions of the BM model and
the physics behind them. This is important not only from
the conceptual perspective, but also in light of the first
successful applications of the new version of the BM
model to the microsopic shell-model description of quad-
rupole dynamics in several strongly deformed [22], trans-
itional [23], and weakly deformed [24] nuclei. The rigid-
or irrotational-flow collective dynamics in the above
studies were described without the use of an effective
charge, which can be considered as a significant achieve-
ment of the proposed proton-neutron symplectic-based
shell-model approach.

This paper is organized as follows. In Sec. II, the
many-particle microscopic kinematically correct nuclear
wave functions within the PNSM, which represent the
microscopic shell-model analogs of the wave functions of
the original BM unified (BMU) model [25, 26], are de-
rived using the coordinate representation. In Sec. 111, the
general BM Hamiltonian is obtained as a contraction lim-
it of the microscopic many-particle nuclear Hamiltonian,
or, alternatively, by restricting the latter to the scalar
O(m) irreducible collective space H@=® within the
framework of the symplectic based proton-neutron shell-
model approach. In Sec. IV, the difference between the
phenomenological and microscopic versions of the BM
model, following from the consideration of the many-
particle quantum mechanics of the corresponding Hilbert
spaces, is given. Furthermore, the microscopic shell-mod-
el counterparts of the three well known exactly solvable
limits of the phenomenological BM model are presented
in Sec. V, which closely resemble the original BM sub-

models and their mutual relationships. In Sec. VI, the
matrix representation of the many-particle wave func-
tions of the microscopic version of the BM model is
briefly considered. Finally, in the conclusion, the results
are summarized.

II. COORDINATE REPRESENTATION

The use of the coordinate representation has the ad-
vantage of a more clear physical interpretation. An at-
tempt to unify the collective and many-particle fermion
degrees of freedom was conducted in the early develop-
mental stage of the collective model by proposing the
BMU model [25, 26], in which the nucleons move in a
deformable shell-model potential with vibrational and ro-
tational degrees of freedom. Thus, in the BMU model
[25, 26], in the adiabatic limit, the states of a rotational
band are assigned a common intrinsic state. According to
this, the wave function of the nucleus in this limit can be
represented in a coordinate representation as [25—27]

¥ = 0(B,7)Dips (10D inir (&), (1)

where ¢(B,7), Dk, (16;}), and ¢, (€) denote the vibra-
tional, rotational, and intrinsic wave functions, respect-
ively, and & represents the set of fermion coordinates. Eq.
(1) assumes that when the intrinsic excitations lie at high
energies, the collective and intrinsic dynamics are de-
coupled and the low-lying nuclear states can be con-
sidered purely collective. In addition, when the rotational
frequencies are considerably smaller than the vibrational
frequencies, the rotational motion decouples from the vi-
brational degrees of freedom [1, 25], which is also reflec-
ted in (1). We notice that the BMU model approach leads
to so called redundant variables (see, for example, the
discussion in Sec. 11.C of Ref. [28] and the references
cited therein). In what follows, we show that this prob-
lem does not arise in the microscopic shell-model ap-
proach, in which all proton-neutron degrees of freedom
are properly considered.

A. Microscopic nuclear wave functions within the
PNSM

In [17], it was shown that Sp(12m,R) is the full dy-
namical group of the entire many-particle two-compon-
ent proton-neutron nuclear system, spanned by all Her-
mitian bilinear combinations of the position x;(a) and
momentum p;;(e) many-particle relative Jacobi coordin-
ates. The indices take the following values: i,j=1,2,3,
a,B=p,n, and s=1,2,....m=A-1. The group Sp(12m,
R) contains different types of motions — collective, in-
trinsic, cluster, etc. However, often, one restricts himself
to a certain type of dominating mode in the process un-
der consideration. Thus, by reducing Sp(12m,R), one per-
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forms the separation of the 6m nuclear many-particle
variables {g = x;;(@)} into kinematical (internal) and dy-
namical (collective) variables, that is, {g} = {gp,qx}. The
choice of the reduction chain depends on the concrete
physical problem we want to consider. In the nuclear
structure theory of collective motion, we are interested in
the following reduction chain [17]:

Sp(12m,R) > Sp(12,R)® O(m), )

in which the first group Sp(12,R) has been shown to be
the group of proton-neutron collective excitations, where-
as the second group O(m) allows one to ensure the prop-
er permutational symmetry of the nuclear wave functions.
The latter allows us to construct kinematically correct
models of nuclear motion. It is known that in formulating
the nuclear many-body problem, some kinematical re-
quirements should be satisfied by the nuclear wave func-
tion [7, 8]. First, the wave function of the nucleus should
be realized microscopically, that is, it should depend on
all single particle variables — spatial and spin variables.
Second, the nuclear wave function should be translation-
ally-invariant. This means that the wave function of the
atomic nucleus, free from external fields, can be ex-
pressed as a product of a plane wave, describing the cen-
ter-of-mass motion, and translationally-invariant wave
functions, describing the internal properties of the free
nucleus. The two conditions can be unified into a single
one and formulated as a requirement for the wave func-
tion to be microscopically translationally-invariant. Third,
the nuclear wave function should preserve the observed
integrals of motion (total angular momentum, its third
projection, proper permutational symmetry, efc.). An ar-
bitrary wave function fulfilling the above requirements is
referred to as a kinematically-correct wave function [7, 8].
In this way, the considered reduction (2) corresponds
to the splitting of the microscopic many-particle configur-
ation space R®”, spanned by the relative Jacobi vectors,
into kinematical and dynamical submanifolds. It has been
shown that the simplest kinematically correct wave func-
tions within the PNSM can be classified by the quantum
numbers provided by the unitary scheme chain [13, 17]:

Sp(12m,R) > Um) > U®G) ® Um).

[Eo0...0]  [E)...Eq] [El...Eﬁ(')}
U BU
G O(m)
(wq...we)

oy

Sm+1

[f1n
3)

Then, the wave function can be written in the form [17]

E\E _ E,E .
W (gt X+ x0) =¥ (g rinl0 - 865 8m)
= Z S (gﬁﬁo" ', gg)D?/"),&[f]h(gm),

' @)

where, for simplicity, the spin variables are suppressed,
{p'®), gt} are the microscopic collective variables, and g,
denotes the set of complementary internal variables. The
PNSM is then given a simple expression as a hydro-
dynamical model with wave functions comprising col-
lective (irrotational-flow) @(gjﬁﬂp(“ﬂ),gg) and intrinsic
(vortex) Dy 54,(8m) components. In Eq. 4), E=
[E1,...,E¢] denotes both the U(6) and U(m) irreducible
representations, and Eg = E1 +...+Eg. f and 0 are multi-
plicity indices, and # is a basis for the U(6) irrep, which
can be fixed by specifying the group G and its subgroups
along the chain (3). From (4), we can see that the basis
represented by the columns of the matrix D is fixed by
the irrep of the §,,+; group [f] and its basis 4. The latter
is crucial for ensuring the proper permutational sym-
metry of the total nuclear wave functions. Additionally,
owing to the full antisymmetry property of the nuclear
wave functions, the spin content is determined by the
conjugate representation [f]. Therefore, if required, the
spin part of the many-particle proton-neutron nuclear sys-
tem can easily be recovered. However, for most practical
applications in which only the case S =0 is considered,
the spin part can be dropped without lost of generality, as
is done in the following.

B. Wave functions of the microscopic version of the
BM model

In this study, we further consider the following reduc-
tion chain of the subgroup U(6) c Sp(12,R) [18]:

U(6)2>50(6) > SU,(3)®S0(2) 2 50(3),

E v Au o v g L

or the equivalent to it

SU1,1)®S06) > U(1)®SU,,(3)®S0(2) > 5S0(3),

Ay, ov P Aw o v g L

both of which define the microscopic shell-model ver-
sion of the BM model. Then, the basis index = FvvgL
(or equivalently, n = A, p;vvqL) provides a full classifica-
tion of the basis states. The nuclear wave functions along
the chain (6) take the more familiar form of a direct
product of radial and orbital wave functions, as we will
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see later. Because we consider only fully symmetric U(6)
and U(m) irreps, the multiplicity index g =1 is dropped.
Instead of the reduction chain, defined by Egs. (3) and
(5), we can use the equivalent one

Sp(12m,R) > Sp(12,R) ® O(m)

U U
SU(1,1)®S0(6) S it
U )
U(1)®SU,(3)®50(2)
U
S0(3),

obtained by combining Eqgs. (2) and (6).

Recall that we can regard the configuration space of
the m-quasiparticle system as a space of the real 6xm
matrices R = {x; (@)= x45; s=1,...,m; a=1,...,6}. Al-
ternatively, the quadrupole tensor of the two-component
proton-neutron nuclear system can be rewritten as Qu, =
ST Xasxps = Qij(@,B). Then, we can view the quadru-
pole tensor O as a map from the microscopic many-
particle configuration space to the collective configura-
tion space:

Q:R™—>Q x— Q) =Xx, ®)
where X denotes the transpose of the matrix x e R%”. It
follows that every path x(¢) in R®" has an image Q(x(1))
in Q. Thus, collective motion in R®" maps to collective
motion in Q =R?!, the latter spanned by the quadrupole
moment operators Q;;(a,pB).

In the microscopic collective space R?! of the PNSM,
there is a six-dimensional subspace spanned by R® =
{Qij(p,n) = Qji(n,p)}, related to combined generalized
quadrupole-monopole proton-neutron collective dynam-
ics. We prove that the six components of the quadrupole
tensor operators g;; = Q;;(p,n) correspond to the micro-
scopic collective variables {p, g%}. For this purpose, we
perform a three-dimensional Zickendraht-Dzyublik (ZD)
coordinate transformation of the many-particle variables
of the proton subsystem, which in Vanagas's notation is
given by [7-11, 13, 16, 29]

3
Xis(p) =Y _pW D (@D, (8m). ©)

ih=1

where p(») are three radial variables, and g3 are the stand-
ard Euler angles for the SO(3) group. All six variables
{pgﬂ)g;} are referred to as microscopic collective vari-
ables [7, 8, 10, 11]. Similarly, we perform the ZD trans-

formation for the neutron subsystem many-particle co-

ordinates x;;(n) by replacing p with » in (9). Then, for the
combined proton-neutron quadrupole operators, we ob-
tain

3
i i 1); 1)
0ij(p.m) = pp D)} (e3)D{ " (g3) (10)

i=1

Assuming p® = pli) = p) we can see that g;; = g;;(p™,
g3) depends only on the six microscopic collective vari-
ables {p, g%}.

To reveal the physical meaning of the microscopic
collective variables {p@, g%}, we turn to the intrinsic
body-fixed system. There is a well defined group-theoret-
ical prescription [13] on how to obtain a given function
depending on the group parameters and additional vari-
ables in the intrinsic frame of reference with respect to
the group under consideration. Thus, in the intrinsic
frame with respect to SO(3), we obtain the well known
result

R Ngij = 9

3
=2 D@D =p 5, (11)
i,=1

in which the mass quadrupole tensor ¢;; becomes diagon-
al in the intrinsic body-fixed coordinate system. This re-
veals the meaning of the radial variables p entering (9)
as principal axes values of the quadrupole mass tensor.
Correspondingly, the rotational matrix D(g3) takes us
from the frame of reference fixed in the space to that
fixed in the body.

Taking Eqgs. (3) and (5) (or (6)), we can write the fol-
lowing for many-particle wave functions:

E EvvgLM
\P(wé[f]h |X1""7Xm)
E,EvvgLM,| (q,
=¥ (i 0. 8658m)
E,EvvgLM, (q,
:Z@(mwvw |p(a),gg)D“Vﬁ,’5[f]h(gm), (12)
V()

where the SU(1,1) basis states |4,,p) correspond to the
six-dimensional harmonic oscillator basis states |E) [30],
and the minimal Pauli allowed quantum number E.;, cor-
responds to the Sp(12,R) irreducible label (o). As is
evident from (12), the collective wave function
@ (Ll M p@) g+) generally depends on six radial vari-
ables p® , which take the values 0 < p® < co, and on 15
variables parameterizing the group SO(6), which are de-
noted as g¢ ={a},a},...,a}s}. Similarly, the intrinsic
wave functions depend on the 6m—21 intrinsic coordin-
ates g,,, which parameterize the coset space O(m)/
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O(m—6) [17].

C. Collective wave functions of the microscopic
version of the BM model

Since the microscopic collective space R®=
{Qij(p,n) = Qji(n, p)} is six-dimensional, 15 of the 21 mi-
croscopic collective parameters {p®),g¢} should be zero.
For the non-zero collective variables, we choose
pl®) = plio) =p§f0) =p for ap = ip = 1,2,3 and p“) =0 for
ap=4,5,6, as well as gf={a]#0,a5#0,a}#0,
@y =0,...,0]5=0}={g3,0,...,0}. The set of three para-
meters g3 ={a},a},a3} denotes the usual Euler angles.
Then, for the microscopic collective wave functions, we
can write

E,EvvgLM, (i,
O ("1™, 83)

=2 0" ") Dkun(8?). (13)
K

where © (%2774 |p(@) are obtained using the initial wave

functions ‘I’(i‘:;f}’]‘;quMlxl,...,xm) via the following expres-

sion [7—11]:

® (ﬁfuquK |p(l‘0)>

E\EvvgLM
\Il(w(s[fuvq Xy = < Xm-2 = p(l)él,m—Z,

Xm-1 = p(2)62,m—1’xm = p(3)63,m) . (14)
Instead of the three radial variables {p™}, we can use
the three variables {r,8;,6,}, defined by the transforma-
tion [7, 8, 13]
p(l) = rsin§1 sin@z,
p(z) = —rsin51 cosgz, (15)

p(3) = rcosgl,

where r= />, (x2(p) + x2(n)) is the global radius. Then,
instead of the microscopic collective variables {p, g%t}
(or {gij}), we can use the equivalent set of six collective
variables {r,6;,60,, g3}, where the angles {61,6,, g3} define
a point on the five-sphere Ss. Using these, the collective
wave functions of the microscopic version of the BM
model can alternatively be written as

EEvvgLM, X 7
O (""" 1r,01,02,87)

=Re(NDY 11 01:62,80), (16)

where Rg,(r) is the radial wave function of the six-di-

mensional oscillator, and 0 represents the scalar SO(6) ir-
rep because 7 is an SO(6) invariant variable. Introducing

the notation ¥}, ,,,(Qs) = \/_Dg LMo w(61,52,g§), we ob-
tain the coordinate representation of the microscopic col-
lective wave functions, classified by Egs. (5) (or (6)) and

introduced (up to a numerical factor) in [18],

O (" 1r.01.02.83) = (do) P Rpu (YY1 4(Qs) (17

in terms of the SO(6) Dragt [31, 32] spherical harmonics
Yy m(Qs) depending on the five angles Qs = {6,6,,83}.
Note that, generally, other choices for the parameteriza-
tion of the five-sphere exist.

D. Relation to the BM wave functions

Now, we return to the full many-particle nuclear wave
functions written in the form

E,EvvgLM
‘I’(mmh Ix?,...,x%)
_w(EEvvglM, G,
=W (o 10,83,8m)
EE LM A
_Z® a)v“ vvq (’),gg')D‘v"o,g[f]h(gm), (18)

where the collective wave functions © (4“0, g%) al-

low us to establish a relationship with the original BM
collective wave functions depending on the phenomeno-
logical parameters (B,y). For this purpose, we consider
the following transformation [7, 8, 13]:

=)+ () + (),

psiny =% ("= )?).
Peosy =% (M2 +PP=2677). (19)

where 7 is again the global radius. The collective wave
functions thus become

@ (EofatM i) o)
=@ (Br ™My gy, ¢%)
=R, (NO (25" M8,y 63), (20)

where ©(520""|3,y,¢1) gives the microscopic shell-
model counterpart of the BM collective functions. The
dependence on the Euler angles can be further taken ex-

plicitly using the following expression:
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O ("M 1B.y.3)
—Z@ o KBy ) D (89), 1)

where © (25" |5,) and Dk, (¢}) represent the micro-
scopic shell-model counterparts of the vibrational and ro-
tational collective wave functions of Eq. (1). Then, the
full-shell model analog of the BMU model wave func-
tions of the nucleus becomes

p (EnEIJf;:jLM' )
=¥ (f)?sEﬁthLer B.v.83 ,gm)

—ZRE,,(rxa ot 18y ) Dk (89D s (8m)s (22)

where, in addition, the radial wave function Rg,(r), de-
pending on the global radius 7, appears in the decomposi-
tion. Here, an important difference appears between the
phenomenological and microscopic shell-model  ap-
proaches. From Eq. (22), it follows that owing to the sum
over 0, in the microscopic version of the BM model, the
collective and intrinsic dynamics are strongly coupled, in
contrast with the phenomenological case (cf. Eq. (1)). De-
coupling will appear only for the one-dimensional scalar
O(m) irreducible representation w = (0), relevant only to
doubly closed shell nuclei, in which case the sum over »°
disappears. Hence, the microscopic wave functions cor-
responding to the original ones of the BMU model are
obtained from Eq. (22) only for the scalar O(m) irredu-
cible representation w = (0) (or, equivalent to it, the scal-
ar symplectic Sp(12,R) irrep (o) = (0)). As shown later,
this leads to some specific artificial features of the col-
lective dynamics in many-particle two-component pro-
ton-neutron nuclear systems. However, we first consider
the derivation of the original BM collective Hamiltonian.

III. DERIVATION OF THE BOHR-MOTTELSON
HAMILTONIAN

In this section, we show how the standard BM
Hamiltonian can be derived from the microscopic many-
particle nuclear Hamiltonian. First, we obtain the Bohr
Hamiltonian, which is just the kinetic energy term. To ob-
tain the kinetic energy operator, we must consider the
momentum observables. In the BM model, they are ca-
nonically conjugate to the position coordinates {a,}, that
is,

0

V= ik
b i aa,

y=0,+1,+2. (23)

The BM model variables {a,,7*} thus obey the standard

Heisenberg-Weyl commutation relations
[, 7] = ih6)). (24)

In microscopic nuclear theory, the phenomenological
surface parameters {a,} are replaced by the quadrupole
moment operators Q, [4, 5, 18], that is, {a,} = Q,, which
have a well-defined expression in the many-particle co-
ordinates. Furthermore, we include the monopole degree
of freedom and consider the mapping (e} — {gij=
Qij(p,n)} [18], where 1=0,2 and u=-4,...,4. To obtain
the Bohr (kinetic energy) Hamiltonian, we use the
Laplace operator in the microscopic collective variables

qij = Qij(p(io)ag;) [10, 11]:

’;

. 9 9 ik ik

Vz = —_—— —_— JRE—
phen i;j; a(CIij)z oXx2 + oY? + 072

< 1 1 )6 ( 1 1 )6
+2 — 2 —t+t— )=
X-Y X Z/)oX Y-Z Y-X/o0Y

+2< ! + ! >i+ 2 I
Z-X Z-Y)0Z (X-Yy@ 2

(25)

in which the notations (")?>=X, (p?)’=Y, and
(") =Z are used. To give Eq. (25) a more familiar
form, we express the components of the quadrupole
tensor in SO(3) irreducible terms,

qdim = Z Cl j mqu me mm(g3) (26)

i>j=1

where [=2,0, and p/,
for [=0, we get

— N2 11
- Ziﬂ(p(l())) Cln ipm*

In particular,

V3p)=X+Y+Z="r~=p,. 27)

For =2, using the Clebsch-Gordan coefficients in the
Cartesian basis, we find that p2, is nonzero only for two
values of m. These values are denoted as 11 and 22, and
we explicitly express p?, and p3, as

2 1
V6 (28)
Py = FED

which coincide with the last two equations of (19).
In the variables (19), the operator (25) takes the fol-
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lowing form [10, 11]:

0 5 {134@

P
:37 [ —— - {1 3 _
phen =250 T 5T 38" 98 T Brsindy oy By
=2
: L,»,»(gp}

2 S5 BY) (29)
where
J12 = 48%sin’y,
I13 = 4B%sin’ <y_ %ﬂ) ’
w4 (=) (30)

We find that the second term in Eq. (29) coincides with
the Laplace operator of the phenomenological rotation-vi-
bration BM model,

b= | gt L D iy O
Bohr ™| 34 98" 9B " B2sin3y dy 78}/
: Li,-(g;)}
521 i BY)

31

and, in addition, Eq. (29) contains the kinetic energy term
related to the radial (monopole) oscillations. The full BM
Hamiltonian is then obtained by adding the potential en-
ergy term, that is,

hZ
Hpm = _%VzBohr + V(ﬂ, 7)- (32)

Since V(B,y) can be expressed in terms of the microscop-
ic quadrupole moment operators g;; because [gxg]® ~
B> and [gxgxq]® ~B3cos3y, any BM Hamiltonian of
the form (32) immediately defines a microscopic shell-
model Hamiltonian

H=K(p,n)+V(q), (33)

2
Ly
29 1
particle kinetic energy K(p,n) = Y71 S i Pis(PIpis(n). V(g)
is a rotationally invariant function that can be built up
from different powers of the quadrupole moment operat-
OIS gij.

It is convenient, however, to keep all six collective
variables {p, g3} or those equivalent to them {g;;} and

use Vghen (29). Including the radial degrees of freedom,

where the operator — 2 .ne is replaced by the many-

the microscopic analog of the generalized quadrupole-
monopole BM Hamiltonian can be written in the form

2

h
H(gij) =57V

2 phen T V(r,B,cos3y). (34)

This Hamiltonian acts in the phenomenological Hilbert
space Hphen, spanned by the complete set of wave func-
tions depending on the six collective variables {r,3,v,g%}
or those equivalent to them {g;;}.

An important property used in the derivation of the
phenomenological BM Hamiltonian from the microscop-
ic many-particle nuclear Hamiltonian is the exploitation
of the Hermitian conjugate pair of the position (g;;) and
momentum  (p;; = —ih0/dq;;)  collective  variables.
However, using the microscopic collective variables
0ij(p,n), it can easily be checked that

pij = Pij(p,n) = MQ;;(p,n)
A 9
= (pis(p)xjs(”) + xis(p)pjs(n)> * _lha -

s=1 ql]

(35)

From Eq. (35), it becomes clear that the quantization of
the BM model (cf. Egs. (23) and (24)) is not correct. New
commutation relations emerge,

[Gijs Pra) = iR (8@ + S jt + S i + S ki), (36)

which generate the Lie algebra of a general collective
motion group in three dimensions: GCM(3) ={L;;,qij, pij},
where L;j = >, (xs(@)psj(@) — xj(@)psi(@)). The GCM(3)
model is a slightly extended version of the original
CM@3) model of Weaver, Biedenharn, and Cusson
[33—35] (see also [36]), which also includes monopole
degrees of freedom. A characteristic feature of the new
spectrum generating algebra of the GCM(3) model is that
it has irreps with different intrinsic angular momenta
(vorticities).

The original BM commutation relations, however,
can be obtained as a contraction limit from those of the
GCM(3) model. Following the procedure of Inonu and
Wigner [37], the monopole and quadrupole moments of
the nucleus can be expressed in units of a small paramet-
er &, which is assigned a value 4¢ = 1/{go), where {(qo) is
the mean value of the monopole moment of the nucleus
in its low-energy states. In these units, the monopole/
quadrupole observables are given by [38]

Qo = &q0 = &(q11 + 922 +q33), (37)
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corresponding to the original irrotational-flow BM model,
Pl=gp’= 38 o o
ep” = elpin+pn+py). (38) in which the many-particle kinetic energy reduces to
02 =eqn, P =e(=1'pay. (39)

With the commutation relations of Eq. (36), it is easily
determined that

[Qo. P’] =ikl + O(e?), [Qo. P¥]1=ih8),+O(e),  (40)

and that the commutators [Qo, P*1, [Q2,P°1, [Qoy, 2],
and [P?, P?] are O(g). These are microscopic versions of
the Heisenberg-Weyl commutation relations assumed in
the BM model. It follows then that the BM collective
Hamiltonian is also obtained in the considered contrac-
tion limit from the microscopic many-particle nuclear
Hamiltonian.

The same result (29) can also be directly obtained us-
ing the expression for the many-particle kinetic-energy
(that is, the 3m Laplace operator) in terms of the ZD vari-
ables p", g1, and g,, and their derivatives [9, 11, 13]:

0 0
A=Vi=dy — ———
g A(x;5(p)) O(xi5(n))

& 1 0
B Z iy Him=3l zl: Pl a(pi)

Iy

1 { . w0
+2 4, | pl) — _ pl) }
%Zi; (p(’o))z — (p(’n))z ap(’\)) 8p(lu)
U

_ Z Z s \m=3+7
(N2
iros=1 (p )
~ Z ()2 + (p(i))? P o2
((p(i()))z _ (p(ig))z)z m=3+iy,m—3+i; io iy

1<ty

(pU)p)
- 4 Z ((p(l:)))z — (p(l(/;))z)z Jm—3+i6,m—3+il’)’—£i(’)ig ) (41)

in<iy

assuming again that p = p(i» = p{®) In (41), J and £ are
the infinitesimal angular momentum operators of the
groups O(m) and SO(3) and are defined in the intrinsic
frame, with respect to the O(m) and SO(3) groups, re-
spectively. Similar expressions for the many-particle kin-
etic energy have been obtained in Refs. [5, 14, 39—-46].
The operators J of intrinsic rotations were first intro-
duced in [47] and called quasi-momentum operators, later
to be rediscovered by other authors [35, 48, 49] (see also
[4, 5, 38]) and referred to as vortex-spin operators. From
Eq. (41), we see that the many-particle kinetic energy de-
pends on the number of particles and the O(m) generat-
ors. This dependence disappears if we restrict the many-
particle Laplace operator (41) to the O(m)-scalar space,

2
A0 =N
)2
— 0p®)

1 / |
(ln) _ (ln)
+2 Z (p(ié))z — (p(i{{))2 P ap(ib) P 6p(i6'>

5
1)<ty

(p(ig))z + (p(i;,'))z
B Z ()2 — (pli))2)2 t%aia" (42)

1<ty

This expression is the same as Eq. (25); therefore, using
(19), we can obtain the final result (29) with the useful
identifications for the SO(3) angular momentum operat-
ors L;j=L;; in the intrinsic frame and irrotational-flow
((0D)* = (p")H)?

From Eq. (41), we find that, in the case of the general
non-scalarO(m) irrep w # (0), the many-particle kinetic-
energy operator couples the collective to the intrinsic dy-
namics, and the latter is associated with the rotations in
many-particle index space. Decoupling of the collective
degrees of freedom from internal dynamics is achieved
only for the scalar O(m) irrep w = (0), corresponding to
the case of doubly-closed shell nuclei, which exhibit ir-
rotational-flow dynamics of the BM type. We also ob-
serve that the true many-particle kinetic energy operator
possesses a considerably richer structure than the origin-
al Bohr Hamiltonian. This implies that in the practical
shell-model calculations within the microscopic version
of the BM model, we use the full many-particle kinetic
energy instead of the simpler Bohr Hamiltonian.

moments of inertia J;; =

IV. PHENOMENOLOGICAL AND MICROSCOP-
IC COLLECTIVE HILBERT SPACES

The collective wave functions of the microscopic ver-
sion of the BM model are defined by Eq. (20). They span
the microscopic collective subspace L*(R®) of the many-
particle Hilbert space H. Then, the microscopic shell-
model counterpart of the BM collective functions
O(5E ™M B y,¢3) spans L2(R%)c L*(R%). The Hilbert
space is characterized by all exact integrals of motion ob-
served experimentally and denoted collectively as
Ao ={m,L,M,[f],h,A, T3 =1/2(Z— N)}. The last two integ-
rals of motion indicate that the numbers of protons and
neutrons, constituting the nucleus, are preserved. Addi-
tionally, a new integral of motion appears — the O(m) ir-
reducible representation w— which is related to the col-
lective effects. The full collective Hilbert space is then a
direct sum of O(m) irreducible collective subspaces:
H®) = HMeD g AT g where I' denotes the set of
remaining quantum numbers required to classify the nuc-
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lear states and is determined by the reduction chains (3)
and (5) (or equivalently (7)).

The phenomenological collective space of the BM
model corresponds to w=(0) [7, 8 10, 11], that is,
Hphen = H®@=OD A specific feature of this violated per-
mutational symmetry space H@=OD ig that it gives a
"freezing" of the intrinsic collective structure of the used
Hamiltonians and makes them similar to those in BM the-
ory, associated only with the irrotational-flow collective
dynamics. Then, only the high-energy excitations will ap-
pear, which are related to the giant resonance degrees of
freedom. However, for w = (0), from the Young scheme
[f1=[m] of S, it follows [f] = [1"] for the conjugate
spin symmetry, which is impossible for m >4 due to the
Pauli principle. This means that the Pauli allowed Hilbert
subspaces of the microscopic version of the BM model
are spanned by the O(m) irreducible subspaces H«D
with @ > wyin, Where wpi, does not permit O(m)-scalar
values for m > 4. Thus, strictly speaking, the original BM
collective model is not kinematically correct. This prop-
erty is lost when w = (0), which means that in phenomen-
ological models, the effects related to the multidimen-
sional particle-index space O(m) areignored, immedi-
ately resulting in the violation of the Pauli principle.

Therefore, it is clear that to restore the correct per-
mutational symmetry and recover the full proton-neutron
quadrupole-monopole collective dynamics, we must con-
sider the Pauli allowed subspaces H®*«#*OD of the full
many-particle Hilbert space. In other words, from the hy-
drodynamical content of the PNSM [17], we know that
for the more complete description of nuclear many-
particle dynamics, we must include the intrinsic (vortex)
degrees of freedom. The intrinsic (vortex) subdynamics
in the PNSM is represented by an intrinsic U(6) structure
(or an Sp(12,R) symplectic bandhead (o) = w), which in
shell-model terms is associated with the valence-shell
proton-neutron degrees of freedom. It turns out that the
presence of this intrinsic structure significantly modifies
the proton-neutron rigid-flow quadrupole dynamics, par-
ticularly that in the rotor model and W1J limits of the mi-
croscopic version of the BM model.

V. LIMITING CASES OF THE MICROSCOPIC
VERSION OF THE BM MODEL

The Laplace collective operator in the microscopic
version of the BM model is given by

10 s0 A

2 5
=—=—r——-—, 43
sor ar 12 “43)
where A? is the SO(6) Casimir operator. Its concrete form
depends on the parameterization of the five-sphere Ss.
For example, using the Zickendraht parameterization

[50],

p =% v/ 1 —sinasing,
r

rpn =—= +/ 1 + sinasing, 44
NGi V ¢ (44)

consisting of the three Euler angles g} = (6,,6,,6s), the
hyper-radius » and two internal angles («,$). The Euler
angles define the intrinsic body-fixed system with re-
spect to the laboratory system, whereas the variables
(r,@,¢) define the shape of the nucleus. The five-sphere is
thus defined by the five angles Qs = {a,¢,¢3}. Then, the
SO(6) Casimir operator is expressed in terms of the
Zickendraht coordinates in the form [50]

o2 0 1 & cosa— . 0
A% =4] " +2cot2a— — - —
{502 ecot aaa " sina 04  sin®a Zlﬁ(])}
- [A@L + B@)L; + C(@)L2], (45)
where
Ae) = _ Bla)= ———
"~ (1 +sine)’ (1 -sina)’ (46)
Cla) = )
(@ 2sin’a

and {L;} are the components of the angular momentum
operator in the intrinsic principal axis system. Note that
the fourth term in the curly brackets and the terms in
square brackets couple rotational dynamics with the
shape vibrations of the nuclear surface.

The interaction in this parameterization will depend
on the three internal coordinates (r, @, ¢), and the Hamilto-
nian of the microscopic version of the BM model can
then be written in the form

h2
H= _sz +V(r,a,¢), (47)

where the Laplacian is given by Eqgs. (43) and (45). The
six-dimensional spherical harmonics, which are eigen-
functions of A2, can thus be represented in the form [50]

L
Yyl ¢,83) = e’ Z Fonik (@D (g3), (48)
K=—L

where K takes only even (odd) values for even (odd) v.
For the y-unstable WJ model limit of the microscopic ver-
sion of the BM model, corresponding to the asymmetric
rotor, and for the more general case of an arbitrary poten-
tial V(r,e,¢), we can replace D%,,(¢%) in Eq. (48) with
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the symmetrized rotational function |[LKM)p, =
1 .
W[DﬁM(gg)+(—1)LDEKM(g§')], which accounts
KO

for the D, symmetry of the non-axial rotor.

A. Harmonic vibrator submodel

The Hamiltonian for the spherical vibrator submodel
of the microscopic version of the BM model is defined by
the Hamiltonian of the six-dimensional harmonic oscillat-
or

1
Hyy = ———V? + —mw?r?, (49)
whose equidistant energies are given by
6
&(E) = (E+3 o, (50)

with £=0,1,2,... [18]. Strictly speaking, this situation is
valid only for doubly closed shell nuclei, or for the scalar
(o) = (0) irreducible representation of the Sp(12,R) dy-
namical group. For open-shell nuclei, owing to the Pauli
principle, the number of oscillator quanta E starts from a
minimal Pauli allowed value E.;, =0 +...+0¢, Which
as explicitly shown, is determined by the symplectic
bandhead structure (o) # (0).

Note that there is also an approximate solution for the
six-dimensional displaced (or deformed) oscillator with a
potential

Vi) = 5Cr=ro?, 51)

which is valid in the limit of small oscillations around the
equilibrium value rg. This is given in terms of two
quantum numbers (n,v) [51],

1 1 15
8(n,v)=e<n+2)+2Mr(2){u(v+4)+4}, (52)

where € = vVC/M. The first term gives a harmonic vibra-
tional spectrum with n=0,1,2,..., and the second term
gives a quasirotational spectrum with v=0,1,2,....

B. Wilets-Jean submodel

A six-dimensional analog of the WJ limit of the mi-
croscopic version of the BM model is obtained for
V =V(r). This limit is thus invariant under the SO(6)
transformations. The microscopic analog of the WIJ
Hamiltonian is an SO(6) invariant, and its eigenvectors
occur in multiplets that span irreducible representations
of the SO(6) group. The energies are labeled by the SO(6)
quantum number o.

The energies and radial wave functions can be found
as solutions of the eigenvalue equation [18]

{_ % (v2 _ “(“rj 4)> + V(r)} Rey(r) = EpyRey(r), (53)

An r-rigid Wl-type model assumes that the radial co-
ordinate r is frozen at some non-zero value ry. Then, the
radial degree of freedom can be suppressed, and the
Hamiltonian in (53) reduces to [18]

n”o,

— 54
2M r(z) 4

Hepwy =

Its eigenvalues determine the energies that are now not
equidistant and are given by
2

Ev) =
@) 2Mr(2)

v(v+4) = Bu(v+4). (55)

This expression produces a characteristic ratio Ey: /Ep: ~
2.67 (to be compared with the classical WJ value 2.5) of
the ground state band energies with the subsidiary as-
sumption L = v (for example, the left diagonal of Table 1
of Ref. [18] with (A,x) = (k,0), k=0,2,4,...).

C. Rigid rotor submodel
Expression (45) can be rewritten in the form

PE o 1 & .9

A2 :4{@ +200t2a% + Sinza?& - :izszz ZI%}
_ [(M) (*-12)

N <A(a');B(a)

JL-L) +Cc@L]. (56)

When the other two collective variables a and ¢ are fur-
ther frozen, the only remaining degrees of freedom are
rotations in the three-dimensional space. The SO(6)
Casimir operator (56), with o and ¢ taking fixed values of
ag and ¢, reduces to

A2=_ [(w)@azﬁ)

+ (Ai(%) . B ("0)) (L-L) +CoLi] ). (57)
We can easily check that for small a9 — 0, the corres-
ponding factors become  (A(ag)+ B(ap))/2=1/(1-
sinag) = 1 and (A(e) — B(ay))/2 = —sinag/(1 - sin’ag) —
0. The corresponding rotor-model Hamiltonian thus takes
the form
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2
-2 52
Ho= —1—5 (L -L
i 2(§Mrg)< )

- '%ZI(ZZ—KZ) =a(I’-K?), (58)

where the moment of inertia is given by J = Mr3/4, and
the term C (a)Zf, pushed infinitely up in energy, is
dropped. This corresponds to the case of axially symmet-
ric nuclei, for which the moments of inertia in rotation
about the symmetry axis are equal to zero, and hence the
levels with projection K # 0 lie infinitely high in energy.
The SO(3) Casimir operator I’ in the intrinsic frame is
defined in terms of the three Euler angles g3 = (6:,6,,65)
as

5 1 0 ( . 0 )
L' =—————( sinfcosf) —
sinf;cosf; 00, SIe1Cos 1801
1 & 1 &
cos*th 86;  sin“6; 063
The eigenvalues of the rotor model Hamiltonian (58) are
then simply

Ex(L)=a|LL+1)-K?]. (60)

In this way, by considering the coordinate representa-
tion of the collective Hamiltonian, we have obtained the
three exactly solvable submodel limits of the microscop-
ic version of the BM model, which closely resemble the
exact relationships of the original BM submodels (see, for
example, Ref. [52]). We wish to point out that the three
exactly solvable limits obtained are too simplistic, and in
practical application to real nuclear systems, a more use-
ful version is one in which the mixing of different SU(3)
irreducible representations within a single or different
SO(6) seniority representations is involved. Additionally,
the (non-scalar) symplectic Sp(12,R) bandhead structure
(o) # (0) for open-shell nuclei strongly affects the rigid-
flow quadrupole dynamics. For instance, shell-model
considerations based on the pseudo-SU(3) [53] scheme
give the Sp(12,R) irreducible representation Op-Oh [22]6
(or, equivalently, (o)=(65+191/2,43+191/2,...,43+
191/2)) for '°20s [23]. The latter allows us to describe
the low-energy quadrupole dynamics of an r-rigid WIJ
type in °20s via the mixing of different SU(3) mul-
tiplets within the maximal seniority SO(6) irrep vg = 22,
as shown in Ref. [23]. This quadrupole dynamics is
identically vanishing (or "frozen") within the scalar
(o) =(0) many-particle irreducible collective space of
Sp(12,R), corresponding to the phenomenological ver-
sion of the original BM model. The given shell-model
considerations demonstrate the crucial role played by the

Pauli allowed subspaces H™«*OD (with w=0) of the
full many-particle Hilbert space in the description of the
observed low-energy quadrupole dynamics in atomic
nuclei.

VI. MATRIX REPRESENTATION

We want to stress that the extraction of collective and
intrinsic wave functions, expressed in the coordinate rep-
resentation, makes sense if we intend to solve the relev-
ant dynamical equations for the collective functions.
However, if we are not going to do this and want to use
only the simplest kinematically correct wave functions
provided by Egs. (3) and (5) (or those equivalent to them
in Eq. (7)), it is not necessary to represent them in the
form of the sum of the products of the collective and in-
trinsic components. It is simpler to return from the col-
lective and intrinsic variables to the initial Jacobi co-

ordinates and use the wave functions ‘P(f)gﬁf]vthMW,.

x%), whose quantum numbers are defined by the reduc-
tion chains (3) and (5) (or those equivalent to them in Eq.
(7)). Moreover, we can entirely avoid the coordinate rep-
resentation and instead use the algebraic or matrix repres-
entation of the wave functions. In the matrix representa-
tion, the wave functions of the microscopic version of the
BM model can simply be written as

ey

I‘P(EOEvquM; wé[f]h)) = |EgEvvgLM;wé[f1h), (61)

where we recall that the symplectic bandhead o (or the
Sp(12,R) irrep (o)) is determined by the O(m) irredu-
cible labels @ because o = w. Then, we can further con-
struct the matrix representation of an arbitrary Hamiltoni-
an in the basis (61).

Finally, note that by working in the matrix representa-
tion, we do not need the explicit dependence on the col-
lective coordinates, and in this case, the construction of
the basis states and the calculation of the required matrix
elements, such as those of the radial function or spherical
harmonics, can be performed in a purely algebraic way.
For instance, the computational technique for performing
realistic shell-model calculations within the microscopic
version of the BM model has been given in Ref. [30].

VII. CONCLUSIONS

The recently proposed microscopic shell-model ver-
sion of the BM collective model is considered in more
detail in the coordinate representation. The latter pos-
sesses a clear and transparent physical meaning, which al-
lows it to reveal several features of the new version of the
collective model missed in the previous formulation. The
relationship with the original BM model is considered, as
well as between the different limiting submodels of the
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microscopic version of the BM model, which closely re-
semble the relationships of the original WJ and rotor
models. The kinematically correct many-particle wave
functions of the microscopic version of the BM model,
conserving the experimentally observed integrals of mo-
tion, are shown to consist of collective irrotational-flow
and intrinsic components — in accordance with the origin-
al BMU model. The general BM Hamiltonian is obtained
as a contraction limit of the microscopic many-particle
nuclear Hamiltonian, or, alternatively, by restricting the
latter to the scalar O(m) irreducible collective space
H@=0) We have demonstrated that this leads to some
specific features (ignoring the many-fermion aspects) of
the collective dynamics in the original phenomenological
BM model, one of which is the violation of the Pauli
principle, which leads to kinematically incorrect
quantum-mechanical treatment of the nuclear many-
particle system. The second is the ignoring of the intrins-
ic collective structure, determined by the non-zero
Sp(12,R) symplectic bandhead. In this way, by consider-
ing the Pauli allowed Sp(12,R) irreducible representa-
tions, we recover the more complete quadrupole-mono-
pole collective dynamics of many-particle proton-neut-
ron nuclear systems. This more complete collective dy-
namics of atomic nuclei can thus be described within the
framework of the well-defined many-nucleon quantum
mechanics.

This study has a conceptual style and may appear too
mathematical to many readers. Nevertheless, we point out
that the present theory has already been successfully ap-
plied to several heavy mass nuclei with different collect-
ive properties, representing the typical collective struc-
ture characteristic for each of the various submodel lim-
its of the BM model. However, we note that these first
applications of the present symplectic based approach
open the door for more intensive and systematic applica-
tions of this microscopic shell-model version of the BM
model to different mass regions, which will allow for real
systematics evaluations of the evolution of nuclear struc-
ture with the increase of the number of protons and neut-
rons. Especially interesting are the regions of transitional

and weakly deformed nuclei, in which the different col-
lective degrees of freedom are expected to be strongly
coupled between themselves from one side and to the oth-
er non-collective (quasiparticle) degrees of freedom from
another side. A complicated feature in these nuclei is the
triaxial nature often observed in certain nuclear isotopes,
which is usually described as y-unstable in the WJ limit
[19] of the BM model or as y-rigid in the triaxial rotor
model limit [20]. Of particular interest is the microscopic
shell-model description of Cd isotopes, traditionally re-
ferred to as vibrational-like nuclei but recently shown to
exhibit weakly deformed rigid- or irrotational-flow type
quadrupole dynamics with the competition of intruder or
shape coexistence structures.

Finally, we note that the results in this paper repres-
ent the so called algebraic approach to nuclear collective
motion and, in particular, to the microscopic foundation
of the BM model. We notice, however, that there is an-
other line of theoretical development intensively ex-
ploited in the last two decades, which provides a micro-
scopic foundation for the collective BM Hamiltonian of
quadrupole vibrational and rotational degrees of freedom.
The parameters of the five-dimensional collective
Hamiltonian in these theoretical approaches, which are
used to calculate the corresponding excitation energies
and transition probabilities, are determined via con-
strained non-relativistic or relativistic self-consistent
mean-field microscopic calculations. For instance, col-
lective BM type Hamiltonians based on the relativistic
energy density functionals have recently been developed
and applied in a number of studies on nuclear structure
phenomena related to, for example, the coupling of shape
and pairing vibrations [54], quadrupole-octupole excita-
tions [55], effects of triaxial deformation and dynamical
correlations on the nuclear landscape [56], yrast and non-
yrast excitations in neutron-rich %+%%Kr isotopes [57],
and intruder states and shape coexistence of Cd isotopes
[58]. The exploited BM type collective Hamiltonians in
these applications use more general and complicated ex-
pressions for the kinetic energy than the standard Bohr
Hamiltonian of Eq. (31).
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