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High-precision inverse potentials for neutron-proton scattering using
piece-wise smooth Morse functions”
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Abstract: The aim of this study is to construct inverse potentials for various ¢-channels of neutron-proton scatter-
ing using a piece-wise smooth Morse function as a reference. The phase equations for single-channel states and the
coupled equations of multi-channel scattering are solved numerically using the 5" order Runge-kutta method. We
employ a piece-wise smooth reference potential comprising three Morse functions as the initial input. Leveraging a
machine learning-based genetic algorithm, we optimize the model parameters to minimize the mean-squared error
between simulated and anticipated phase shifts. Our approach yields inverse potentials for both single and multi-
channel scattering, achieving convergence to a mean-squared error < 1073 The resulting scattering lengths "ap" and
effective ranges "r" for 35| and 1§ states, expressed as [ag, 7], are found to be [5.445(5.424), 1.770(1.760)] fm
and [-23.741(-23.749), 2.63(2.81)] fm, respectively; these values are in excellent agreement with experimental
ones. Furthermore, the calculated total scattering cross-sections are highly consistent with their experimental coun-
terparts, having a percentage error of less than 1%. This computational approach can be easily extended to obtain in-
teraction potentials for charged particle scattering.
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I. INTRODUCTION

Current high-precision nucleon-nucleon potentials,
available for scattering data up to the pion-threshold of
350 MeV, are provided by various groups; these include
the Argonne vy [1], Bonn [2], Reid [3], Nijmegen [4],
and Paris [5] potentials. These potentials are modeled
such that the NN interaction comprises one pion ex-
change potential for long inter-nuclear distances of » > 2
fm. The main differences between these high precision
potentials stem from the way the nucleon-nucleon inter-
action is modeled for intermediate/medium (1.0 fm < r <
2 fm) and short-ranges (» < 1.0 fm) [6]. This modeling is
performed using a central potential along with an inter-
play of orbital, tensor, spin-orbit, and quadratic spin-or-
bit terms. The approach involves simultaneously solving
for the wave-functions based on the model potential and
optimizing approximately 40—50 parameters for obtain-
ing the phase shifts for all ¢-channels for nucleon-nucle-
on scattering, from which the total cross sections are pre-
dicted to match the experimental ones [7]. An alternative
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methodology is to construct the inverse potentials utiliz-
ing the phase function method or variable phase approx-
imation [8—10], which has the advantage of obtaining
phase shifts by directly utilizing the potential, without the
wave-function. Here, the second-order time-independent
Schrodinger equation is transformed into a set of inde-
pendent first-order non-linear Ricatti equations for each ¢
channel. Thus, one can determine the potentials corres-
ponding to phase shifts for individual channels. This
methodology is equivalent to constructing the model po-
tential directly from the available scattering phase shifts
data, which is the basic premise of the machine learning
paradigm [11, 12].

Ideally, to obtain a complete inverse scattering solu-
tion, N discrete bound state energies E, <0 (n=1,2, ...,
N) and all possible scattering phase shifts for energies £ >
0, up to oo, are required [13]. However, the available ex-
perimental data are limited to very few projectile energy
values. Hence neural network-based machine learning
models are not suitable, and we propose to utilize meta-
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heuristic genetic algorithms (GAs) for constructing mod-
el potentials by optimizing the parameters of the chosen
reference function to guide the process. The phase equa-
tion arising from the phase function method is incorpor-
ated in the optimization procedure, and the bounds for
various parameters are chosen to obtain physically relev-
ant potentials. This is the essence of physics-informed
machine learning [14], representing a progressive ap-
proach for solving complex problems in computational
sciences.

Selg [13, 15] proposed the Morse function as an ideal
choice for the reference function to construct inverse po-
tentials due to its various advantages. It provides the ana-
lytical solution of the time-independent Schrédinger
equation for £=0. Moreover, the Morse function can rep-
resent all characteristics of nucleon-nucleon interactions
such as repulsion at short inter-nuclear distances, attrac-
tion at intermediate distances, and quick falling of the tail
at large distances. Previously, inverse potentials for all ¢
channels of mp scattering were constructed using the
phase function method by taking the Morse function as a
zeroth reference [16]. The Deuteron structure and form
factors were determined from the analytical ground state
wavefunction [17]. These were achieved by implement-
ing an innovative algorithm based on a variation of the
variational Monte-Carlo technique [18], which was cast
as an optimization routine. It was an equivalent alternat-
ive to the least squares minimization approach.

One can observe the complex nature of nucleon-nuc-
leon interactions, as envisaged by various researchers
who have obtained realistic precision potentials, compris-
ing considerably different characteristics for the three re-
gions. Therefore, considering a single Morse function
limits the space of curves available for convergence to the
required inverse potentials.

In principle, one can construct inverse potentials by
solving the phase equation, for a potential V(r), iterat-
ively within the machine learning-based optimization al-
gorithm. The idea is to start with an initial potential array
V[i] = V[r;]. Here, r; is an array of uniformly sampled
values in an interval of [0,r/], where r; is the distance
beyond which the interaction is assumed to be negligible.
One can initialize the potential value V; at various points
r; randomly, just as one would initialize the wavefunc-
tion values y; at various r; in the variational Monte Carlo
approach for determining the ground state energy of a
physical system [19]. However, an important difference
between solving the time-independent Schrédinger equa-
tion and phase equation is as follows. While the wave-
function and its second derivative are evaluated in every
iteration to determine the energy in the variational Monte
Carlo approach using the Hamiltonian of the time-inde-
pendent Schrédinger equation, the potential appears in
the phase equation only as a multiplicative function.
Therefore, while solving the time-independent Schro-

dinger equation ensures the evolving wavefunction solu-
tion to remain smooth, the resulting potential from the
phase equation does not. Thus, we need to rely on certain
smooth mathematical functions as a reference for initial-
izing the algorithm. The variation of parameters of the
reference function would generate a large number of
curves in the sample space. The nature of the curves de-
pends on the bounds chosen for each of the individual
parameters of the reference potential. The inverse poten-
tial that best describes the expected phase shifts is ob-
tained by optimizing the parameters of the reference
function by minimizing a cost function such as the mean
squared error (MSE). The methodology of constructing
inverse potentials by solving the phase equation utilizing
the reference function is called the reference potential ap-
proach [13]. Generally, a multi-component potential com-
posed of a smoothly joined Morse type, i.e., piece-wise
smooth, Morse function is used in this approach [12]. A
three-component Morse potential was successfully util-
ized by Selg [20] for obtaining the molecular interaction
potentials.

In this study, we consider the same reference to con-
struct the inverse potentials for various {-channels of np
scattering for energies up to 350 MeV. Thus, we numeric-
ally solve the phase equation for single-channel scatter-
ing for various £-channels and successfully implement the
"Stapp-Parametrization" to incorporate mixing paramet-
ers, for many-channel scattering [10]. The latter tech-
nique involves solving three coupled non-linear differen-
tial phase equations. Our computational approach in-
volves solving these single and coupled differential equa-
tions iteratively within a GA based optimization routine
[21] to obtain the best parameters for the piece-wise
smooth Morse curve, consisting of three functions, to
minimize the MSE as the cost function.

II. METHODOLOGY

In this section, we explain the necessary models used
in the paper. We demonstrate the non-linear relationship
between observables and the scattering potential, focus-
ing on nuclear scattering experiments. Subsequently, we
elaborate on the Reference Potential Approach (RPA),
where we employ a piece-wise Morse function as a refer-
ence to solve non-linear equations. Subsequently, we dis-
cuss the machine learning-based optimization algorithm
used to optimize model parameters, yielding high-preci-
sion neutron-proton interaction potentials.

A. Variable phase approximation

To represent the forward problem of nuclear scatter-
ing, one must solve the 3D time-independent Schrodinger
equation [22]. This is a linear, second-order partial differ-
ential equation that describes the evolution of the (r)
wave functions under a scattering potential V(r). The
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problem can be simplified into solving the radial
Schrédinger equation, which is defined as follows:

2 1
dulkr) | (kz - @) wk,r) = U, r), (1)
dr? r2
2uE.. 2uV(r .
where k= th , Un= #hz() , and p isthe re-

duced mass of the system.

7TE(’ab- Here, my
mr +mp

and mp are the masses of the target and projectile, re-
spectively. In scattering experiments, we concentrate on
the asymptotic nature of wave functions, which are rep-
resented by the sum of an incoming plane wave e* and
an outgoing spherical wave, weighted by the scattering
amplitude f(k,0) and related to the differential cross sec-
tion as [22]

E,, is related to E;,;, as Ecm =

d
i = ko, @

The scattering amplitude and phase shifts can be ex-
pressed using a partial wave expansion, resulting in the
following form [22]:

1 )
f(k,6) = o Z(2€+ DX — 1)Py(cosO), 3)

where P, is the ¢ order Legendre polynomial, and &, is
the phase shift of the ¢"* partial wave. In scattering exper-
iments, differential and total cross sections are measured,
and phase shifts are obtained by fitting different partial
waves. Therefore, solving the Schrodinger equation by
fitting the expected asymptotic wavefunction and obtain-
ing the phase shifts is the forward problem.

However, the variable phase approximation or phase
function method addresses the inverse problem, where
the linear homogeneous equation of the second order can
be reduced to the first order Ricatti equation. This ap-
proach suggests that a function fulfilling the Riccati equa-
tion, known as a phase function, represents the phase shift
of the wave function at each point during scattering by a
potential that is truncated at that point, in contrast to the
case of unhindered motion [10, 23]. Now, we discuss an
exact equation for phase functions, which can aid actual
numerical computations. The most important cases asso-
ciated with potential scattering are considered.

1. Single channel scattering

Consider elastic scattering by a central potential or an
arbitrary potential that does not result in mixing of par-
tial waves with different orbital angular moments (i.e.,
one-channel reaction). Hence, the second order TISE is

transformed into Ricatti type equation [9, 10, 24], which
is given by

2
Peten = - 522 costorth n]ithr) = sinGo(k yith)|

4)

where U(r) = 2#;:2(”.

The initial point for the phase equation is
6,(r =0) = 0, indicating zero phase shift, where the poten-
tial has not yet affected the incoming wave. The ultimate
phase shift measured, 6,(r — o), represents the accumu-
lated phase shift as the distance approaches infinity. This
equation finds utility in atomic and nuclear physics for
determining the scattering phase shift corresponding to a
specific potential.

The Riccati Hankel function of the first kind is re-
lated to j.(kr) and #,(kr) as h.(r) = —f.(r)+i j.(r). For
¢ =0, the Ricatti-Bessel and Riccati-Neumann functions
Jo and 1j, get simplified as sin(kr) and —cos(kr). There-
fore, the phase equation for =0 is [18]

8 (k,r) = —? sin?[kr + 8o(r)], (5)

For higher partial waves, the Ricatti-Bessel and Ric-
cati-Neumann functions used in the PFM can be easily
obtained using the following recurrence formulas [16]:

+1

R 2¢ a o
Jesi(kr) = p Jelkr) = je_1(kr), (6)
. 20+1 .
fep1(kr) = o Ne(kr) — ey (kr), 7

The phase function equation for £=1 and 2 takes fol-
lowing form:

) _U®) [sin0; + (kr)) — (kr) cos(S; + (kr)) ]
k)= —= (kr) :
®)
§y(k,r) = — % {— sin (6, + (kr))
3008 (8, + (kr)) | 3sin(8 + (kr)) : ©

& (krp ’

Similarly, the phase function equations can be obtained
for higher partial waves using Eqgs. (6) and (7).
Equation (4) is a non-linear equation and can be
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solved numerically using the 5th order Runge-Kutta (RK-
5) method with the initial condition &,(k,0) = 0.

2. Multi-channel scattering

The phase function method can be expanded to en-
compass scenarios involving a non-central tensor interac-
tion and multi-channel inelastic scattering. A notable in-
stance is the elastic scattering interaction between two
particles with spin 1/2, such as nucleons, wherein the
tensor interaction is considered. In the triplet spin state,
the tensor forces T;(r) intermix the partial waves, leading
to different orbital angular momenta £ =J=+1 for a given
total angular momentum J of the system. Consequently,
the equations governing the radial wave functions u,(r)
and w,(r) are interrelated as [10, 22]

du,(k,r)
dr?

J(J-1
+(k2— (r2 )—VJ’J_])Mj(k,r)—TjW_[(k,r)ZO,

&w,(k,r) J+2)(J+1)
Pt (o 020y, )
I &

xw,(k,r)=Tu,;(k,r) =0, (10)

The coupling of Eq. (10) complicates the calculation
of scattering phase shifts, which involves two phase shifts
and a mixing component. For small », one of the system's
linearly independent solutions is significantly larger than
the other. It is challenging to "extract" the gradually
growing solution from the background of the initial solu-
tion. The PFM allows us to obtain a straightforward set of
first-order linear equations for three functions and elimin-
ate this drawback. It is widely recognized that a tensor
potential permits a distinct parametrization of the scatter-
ing matrix. Various representations of these parameters
within the PFM equations have been developed in stud-
ies by Kynch [25], Babikov [26], and Cox and Perlmut-
ter [27].

In this study, we focus solely on the equations for the
functions 6,;_1(r), §,;:1(r) , and €;(r) , which are associ-
ated with "Stapp parametrization," widely employed in
nuclear physics [26, 28]. In neutron-proton scattering,
multiple-channel scattering occurs. For the state with an-
gular momentum J = 1, mixing of the 35, and ®D, states
occurs with a mixing parameter €. For J =2, mixing of
the 3P, and *F, states occurs with a mixing parameter e.
For J =3, mixing of the *D; and 3G; states occurs with a
mixing parameter €. For J =4, mixing of the *F, and
3H, states occurs with a mixing parameter ¢,.

Therefore, the equations for Stapp parameterization
can be written for a particular J as

dé; ;.0 -1
dr  kcos2e;

4 2 - 4 2
VJJ,I (COS GJPijl —Sin EJQJ,J—I)
—Vyysisin’ € cos’ € (P) ., — Q5,.1) — 2T, sing; cose;

2 2
(COS €P17-107741 —sin €JPJ,J+1QJ,J—1) >

(11)

d6L1+1 _ —1
dr kcos2e;

4 2 . 4 2
V]J_,_l (COS E]PJ“H_I—SIH EJQJ,J+1)

—V,y-isin* e cos’ € (P, — 05,_,) — 2T, sineg; cose;

2 .
(cos® /Py 11Quy-1 —sin’ €,Py1-1Qyss1) |

(12)

dEj -1
2 2
ar = * T, (COS €Pj 1Py +8IN EJQJ,J—lQJ,J+1)

= Vyisingrcose Py 101

= Vysr18in€; cos € Py 041 |5

(13)
where P;(r) and Q;.(r) can be defined as

Po(r) = co8(8,6(r) Je(kr) = sin(S ¢ (r)ie(kr),
Q;(r) = sin(8,,(r) je(kr) + cos(8 1, (r)fy (kr),

Equations (11)—(13) are three non-linear coupled first or-
der equations, which can be solved using RK-5 with ini-
tial conditions &;,-1(0) =0, 6;,,1(0)=0,and ¢;(0)=0.
Thus, in this study, we investigated single channel
and multi- channel scattering using the phase function
method by employing the reference potential approach.

B. Reference potential approach

Selg [13, 15] recommends the reference potential ap-
proach for solving 1D quantum systems wherein a single
Morse function [13] or a combination of smoothly joined
Morse functions of the form

URA(r) = Vi+ Dj[e 070 —2e7077]  j=0,1,2..., (14)
can be chosen as the starting point to solve the time-inde-
pendent Schrodinger equation for its energy eigenvalues
and scattering phase shifts, as well as the Jost function for
the inverse potential [12].

Here, D;represents the potential depths at equilibrium
distances r;, and «; represents the shape parameter of
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Morse functions. V; represents the constants added to the
total potential, whose importance is clarified later. These
functions are smoothly joined at various boundary points
Xivl-

The number of distinct Morse-type components that
may be added is almost unlimited. Naturally, the higher
the number of components, the better the match with ex-
perimental data; however, obtaining the analytical solu-
tion to the problem becomes more challenging.

In this study, we consider three Morse components (i
=0, 1, 2) to investigate neutron-proton (n-p) scattering
encompassing all interactions between the nucleons, giv-
en as

Ug™ (r) = Vo + Do[e 20 = 27200y < xy,  (15)
URPA(r) = V, + Dy [e 210 — g1 x| <1 <X,
(16)

URPA(r) = Vy + D, [e 727202 — 2gm22(rr2)], r > x,, (17)

where x; and x, are two internal points that demarcate
the three potentials, called as boundary points. These are
also varied so that a large number of smooth curves
would be available from the sample space to determine
the most optimal solution. For ensuring smoothness of
potential at the boundary points x; and x,, between the
three, the functions Uy(r)l,=y, = Ui(r)l,=y, and U,(r)l,, =
U,(r)|,=x, and their derivatives must be continuous at x;
and x,. That is,

dUy(r) dU,(r)
=—" , 18
dr r=xi dr r=xi ( )
dU,(r) dU,(r)
_ , 19
dr r=xa dl" r=xa ( )

Using these equations, four of the twelve parameters are
determined as

D,
D, = @ ogo’ (20)
81
Dl
D, = a1y 1)
a1y
V1 = V2 +D2k2 _lel’ (22)
V() = Vl +D1f1 —Doﬁ), (23)

where the factors f, f1, 0. &1, k1, k2, [1, > are given by

f() — e—Zrlo(Xl—fo) _ ze—ﬂo(xl =70)

fl =e—ZHl(Xl—rl)_2e—ﬂl(x|—rl)’ (24)

— a—2a0(x1-r9) _ q—ao(x1—70)
8o=¢ e

g1 = e 2ai(xi—r) _ e*m(xl*rl), (25)

ky = e 2a1(n=r1) _ na-ai(x=ri)

k2 — e—2ﬂz(Xz—rz) _ Ze—az(n—rz)’ (26)

I = e 2a1(x=ry) _ g-ai(x2-r1)
I, = e 2= _ e*az(n*rz)’ (27)

Therefore, we should optimize eight model paramet-
ers of three smoothly joined Morse functions, i.e., ag, @1,
s, 1o, 1, 12, V2, and Dy. We also optimize the points x;
and x, where the considered Morse functions are joined.
Overall, we need to optimize 10 parameters to construct
inverse scattering potentials for single channel scattering.

For many channel scattering, we need to construct
three potentials by solving three coupled non-linear first-
order equations simultaneously. For this, we need to op-
timize 30 parameters to obtain potentials corresponding
to different total angular momenta, J, along with the
tensor potential.

Hence, we optimize these required parameters by util-
izing a physics-informed machine learning paradigm
through the variable phase approximation, which is the
inverse scattering method.

C. Machine learning (ML) based optimization

Manual optimization of parameters is a time-consum-
ing and resource-intensive task, requiring experimenta-
tion with various combinations and settings. For expedit-
ing this process, optimization algorithms [29] are em-
ployed to efficiently determine the best configuration of
model parameters. These algorithms iterate through nu-
merous combinations to identify the optimal model con-
figuration, surpassing the capabilities of human optimiza-
tion.

In machine learning optimization, a loss function
serves as a metric for assessing the disparity between ac-
tual and predicted output values. The objective is to re-
duce the error incurred by the loss function, thereby en-
hancing the model's accuracy in predicting outcomes.
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There are various techniques that we may utilize to op-
timize a model. In this study, we employed a prominent
optimization technique known as the GA [21, 30, 31].
The GA is an optimization method inspired by genetics
and natural selection. It is commonly employed to discov-
er optimal or close-to-optimal solutions for challenging
problems that might otherwise be impractical to solve
within a reasonable time-frame. Moreover, it is often
used in research for solving optimization problems.
While GAs do not necessarily involve explicit learning
processes such as those found in supervised or reinforce-
ment learning, they utilize principles inspired by biolo-
gical evolution to iteratively improve candidate solutions
to optimization problems. In GAs, a pool or population of
potential solutions is subjected to recombination and
mutation, similar to processes observed in natural genet-
ics. This generates new offspring, and the cycle repeats
across multiple generations. Each individual, represent-
ing a candidate solution, is evaluated based on its fitness,
determined by the objective function value. Fitter indi-
viduals have a higher likelihood of reproducing, follow-
ing the principle of "survival of the fittest" from Darwini-
an theory [21, 29].

Through successive generations, the algorithm
evolves better solutions until a stopping criterion is met.
While GAs involve randomness, they outperform simple
random local search methods by leveraging historical in-
formation.

Process of GA The GA employs three primary sets of
rules during each iteration to generate the succeeding
generation from the current population [29]:

1. The selection process determines which individu-
als, referred to as parents, will be included in the popula-
tion for the next generation. This selection is typically
probabilistic and may consider the scores or fitness of the
individuals.

2. Crossover rules merge two parents to create off-
spring for the subsequent generation.

3. The mutation rules introduce random alterations to
individual parents, resulting in the formation of children.

Recombination and mutation are essential mechan-
isms in GAs for promoting exploration, maintaining ge-
netic diversity, and preventing premature convergence. If
their values are set too low, the optimization process may
suffer from limited exploration, slow convergence, loss of
diversity, and an increased risk of settling on suboptimal
solutions. Therefore, it is crucial to carefully tune the val-
ues of recombination and mutation to achieve a balance
between exploration and exploitation, leading to effect-
ive optimization outcomes.

The GA has many advantages over traditional optim-
ization methods. Algorithms such as gradient descent and
Newton's method rely on derivatives to find optimal solu-
tions. They begin at a random point and iteratively move
in the direction of the gradient until reaching a peak.

While effective for problems such as linear regression
with single-peaked objective functions, they struggle with
real-world complexities featuring multiple peaks and val-
leys (non-convex objective functions). Traditional al-
gorithms often get trapped at local optima in such scen-
arios [32]. In contrast, GAs bypass the need for objective
function gradients. They are versatile, suitable for optim-
izing discontinuous, non-differentiable, stochastic, or
highly non-linear functions. Moreover, GAs are easily
parallelizable, fast, and capable of exploring vast search
spaces efficiently. They can accommodate multiple com-
plex optimization objectives.

Using this algorithm, we optimized the model para-
meters by minimizing the loss function called MSE,
defined as

N

1 , .
MSE = > (6, (kr) = Sy (kr))?, (28)

i=1

In the inverse problem, the asymptotic phase shift val-
ues (6(r — o) at different energies are used as input to
describe the unknown potential V(r). Thus, (6§np(kr) are
the input phase shifts that we took from the Granada data-
base [33] at different energies for different ¢ channels.
With these inputs, we optimized the model parameters of
the reference potential using the GA and obtained phase
shifts 6i,,(kr) by solving phase equations. Using the op-
timized parameters, we constructed the inverse potentials

V(7).

III. RESULTS AND DISCUSSION

The scattering phase shift data for an np system com-
prises two S-states (35, 'Sy), 4 P-states ('P;), PPy, 3P,
3P,), 4 D-states ('D,), (°Dy, 3D-, 3Ds), 4 F-states (' F3),
(®F,,’F3,°F,), 3 G-states (!G,), (°Gs, 3G,), and 1 H-state
(*H,), i.e., a total of 18 states. Of these, eight of them
have mixing due to the tensor potential, which results in
four multi-channel states, (3S, 3D,), (CP,, 3F,), (®Ds,
3G3), and (°F,, *H,). The Granada group considered a
total of 6713 np and pp scattering data collected between
1950 and 2013 with a 3o-self-consistent database, the
largest collection of NN scattering for energies up to 350
MeV to date. They carefully considered all statistical
versus systematic errors and refined the database to com-
prise only 11 data points at energies of 1, 5, 10, 25, 50,
100, 150, 200, 250, 300, and 350 MeV for each of these
states and mixing parameters [33].

A. Optimization of potentials for single
channel scattering

To construct inverse potentials for channels exhibit-
ing single-channel scattering, we employ a 10-D paramet-
er space. Optimization of these inverse potentials is
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achieved through a GA, where the selection of bounds
plays a pivotal role. For instance, let us consider the case
of the 'S state, necessitating the optimization of 10 para-
meters. For this, we generate a parameter space by spe-
cifying the bounds. Initially, we set the bounds as fol-
lows: [a’o, ay, A, o, 'y 12, Vz, X1, X2, Do] = [(001, 10),
(0.01, 10), (0.01, 10), (0.01, 6), (0.01, 10), (0.01, 10),
(0.01, 5), (0.01, 1), (1.01, 4), (0.01, 500)]. This creates a
vast sample space for each parameter and constructs a
family of curves, necessitating considerable time for con-
vergence towards the optimal solution. Upon careful ex-
amination of the obtained optimized parameters after a
few thousand iterations, we reduce the sample space for
the parameters as [[(0.01, 2), (0.01, 10), (0.01, 2), (0.01,
6), (0.01, 2), (0.01, 5), (0, 0.01), (0.01, 1), (1, 4), (0.01,
100)]] to decrease computational time. The obtained
MSE for the best solution, representing the interactions
comprehensively, is on the order of 1073. The optimized
model parameters for channels exhibiting single ¢ scatter-
ing are presented in Table 1.

During optimization, it was observed that the value of
parameter V, approaches zero or is on the order of 1078,
Hence, we omitted the value of V, in the table as it con-
sistently tends towards zero for all channels. The MSE
for the states having single channel scattering is also less
than 1073, There is an advantage in utilizing three piece-
wise Morse functions as a reference as they offer three
shape parameters, @y, @;, and «@,, in contrast to a single
Morse function, which offers only one shape parameter,
ap. These shape parameters aid in elucidating the long-
range part of the NN interaction without compromising
the deep attractive nature expected for the intermediate
region. This long-range part is often fitted by OPEP by
many researchers [7]; however, in this study, we fit it
phenomenologically using piece-wise Morse functions as
a reference.

Using these optimized parameters, we construct in-
verse potentials and determine the corresponding scatter-

ing phase shifts by solving the phase equation, as depic-
ted in Fig. 1 and Fig. 2. From these figures, the following
observations are made:

1. For the 'S, state, the depth of the potential V, is
determined to be 97.87 MeV at a distance r; of 0.84 fm.
Observing the phase shifts depicted in Fig. 1, it is noted
that they exhibit a decreasing trend, with positive values
from an energy of 1 MeV up to 250 MeV. However, from
300 to 350 MeV, the phase shifts have negative values.
This indicates that the constructed inverse potential must
manifest an attractive nature for energies up to 250 MeV
and a strong repulsive nature at short inter-nuclear dis-
tances that can be reached at very high energies. This is
observed in Fig. 1(a).

2. For ¢ =1, there are three states: 'P,, 3Py, and 3P;,
each exhibiting single-channel scattering. In the case of
the 'P; and 3P, states, it is observed that their phase
shifts cross over after 200 MeV. Similarly, their respect-
ive inverse potentials cross over at approximately 1.48
fm. For 3Py, phase shifts are initially positive and then
cross over to negative values; the repulsive nature of the
potential curve can be observed. The depth of potential
V, is 14.06 MeV at a distance r; equal to 1.73 fm,
as shown in Fig. 1(b).

3. For ¢=2, there are two single channel states,
namely !D, and *D,. For the state 'D,, the phase shifts
are consistently positive, indicating an attractive nature.
The obtained inverse potentials are purely attractive, with
a depth V,; of 109.76 MeV observed at a distance r; of
0.99 fm. Conversely, for the state 3D,, the phase shift val-
ues exhibit an increasing trend from 1 MeV to 300 MeV.
However, at 350 MeV, the phase shift value decreases,
indicating a transition from increasing to decreasing be-
havior. Consequently, the constructed inverse potentials
exhibit both repulsive and attractive characteristics. The
depth of potential V, is determined to be 52.96 MeV at a
distance r; of 0.25 fm, as shown in Fig. 2(c).

4. For £=3, 'F; and *F; are single-channel scatter-

Table 1. Optimized model parameters for channels exhibiting single-channel scattering.

States @o ay [¢%] ro r rn X1 X2 Dy
1So 1.9279 3.2968 1.2739 1.5652 0.8408 0.6625 0.1447 2.5943 65.548
lp, 0.5291 1.226 0.902 2.892 2.725 0.1209 0.3838 2.412 86.5373
3Py 0.4833 2.1083 1.107 3.6406 1.7308 1.739 1.3573 3.7105 25.8011
3p, 0.4038 0.3509 1.066 3.2984 1.9282 1.1887 0.0862 1.9142 99.8203
'D, 1.6731 2.1799 1.1822 0.1951 0.4325 0.6853 0.5247 3.2577 62.9885
3D, 0.4772 1.6048 0.9652 3.9727 0.9912 0.01 0.4254 4.1974 26.8804
Lp, 0.2786 2.1457 0.9051 4.6928 0.2598 0.3213 0.5347 3.0394 33.2355
3F3 1.5956 3.9514 0.9899 0.6209 1.9159 1.6301 1.8396 3.0465 76.5406
1G4 0.1592 2.1651 1.0086 6.5931 0.666 1.433 0.5038 3.2474 31.7747
3Gy 0.2439 1.4924 0.9587 2.0183 0.5926 0.1479 0.4721 3.9713 83.3077
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Fig. 1.

ing states. For ! F5, the phase shifts are consistently negat-
ive, indicating an increase in repulsion as the inter-nucle-
on distance decreases. For *Fj, the phase shifts exhibit a
negative trend, initially increasing from 1 MeV to 300 MeV,
after which they decrease. This trend resembles a negat-
ive parabola. As a result, the obtained inverse potentials
encompass both repulsive and attractive components.
However, beyond a distance of 1.62 fm, the nature of the
potential shifts predominantly towards repulsion, mirror-
ing the change in the nature of the phase shifts. The depth
of the obtained potential, denoted as V,, is measured to
be 42.86 MeV at a distance r; equal to 0.62 fm, as illus-
trated in Fig. 2(d).

5. There are two states, namely 'G, and 3G4, having
single channel scattering for ¢ = 4. For both states, the
phase shifts are positive, and hence, the obtained inverse
potentials are attractive. For 'G, and *G,, the depths V,
are 27.95 MeV and 38.75 MeV, observed at distances r;,
of 0.28 fm and 0.62 fm, respectively, as depicted in
Fig. 2(d).

B. Optimization of potentials for

multi-channel scattering

In the np system, there exist four channels where
coupling is observed. The degree of this coupling is de-

701 o 1S, (Granada -2016)
60
50
» 404
@
= 304
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()
T 20
©
10
04
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=20 T T T T T T T
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(a) r (fm)
1
10 4 e Py
A 3P0
3
P,
0+
—
0
[
e -~
o -10 1 Sag
3 S~
©

=20

-30

T

T T T T T T
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(b) E,.p (MeV)

(color online) Inverse potentials along with scattering phase shifts for single channel scattering for S and P waves.

lineated by the mixing parameters, denoted by e, which
elucidate the interaction between two states within a spe-
cific channel. For many channel scattering, we incorpor-
ated the mixing parameter using "Stapp Parametrization"
[10] and solved the three coupled non-linear differential
equations. From these equations, we optimized 30 para-
meters and constructed three inverse potentials corres-
ponding to individual states and their mixing parameters.
The potentials corresponding to the mixing parameter are
the tensor potentials, which we obtained directly by solv-
ing the coupled equations. Constructing these three po-
tentials simultaneously is a challenge as we have a 30 D
parameter space. Adjusting the bounds of these paramet-
ers is a crucial task in the GA. To obtain the most optim-
al solutions, we adjusted the bounds by solving the
single-channel phase equation and determined where the
possible solutions of the equation occurs. Thus, after ob-
taining an approximate idea about the bounds, we read-
justed them to solve the multi-channel scattering equa-
tions. To obtain the best possible potentials, we calcu-
lated the MSE of three equations individually and optim-
ized the mean of these MSEs by adjusting their weights.
Initially, the S, D, and mixing channels were given equal
weightage in determining the mean of their MSE values.
While the outputs of .S and D channels closely matched,
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those of the mixing channel did not. This is because the
phase shift values for S and D channels were signific-
antly larger than those owing to their coupling. We ob-
served that the relative error in phase shifts due to coup-
ling were much higher than those due to individual chan-
nels without mixing. Hence, we doubled the weightage
for the MSE obtained for mixing parameters in the for-
mula for the mean of MSEs, which improved the results.
The optimized model parameters for multi-channel scat-
tering are given in Table 2. The obtained MSEs for these
channels are on the order of 1072. The constructed in-
verse potentials along with their corresponding phase
shifts are depicted in Fig. 3 and Fig. 4. The following ob-
servations are made:

1. For J = 1, coupling exists between S, and *D,
states. The constructed inverse potentials corresponding
to these states are shown in Fig. 3(e). The phase shift val-
ues of the 35, state are in decreasing order and hence ex-
hibit both repulsive and attractive natures having a depth
of 87.90 MeV at distance r; to be 0.86 fm. The values of
phase shifts of the 3D, state is negative, and hence, the
potential is repulsive in nature. The values of mixing
parameter € is negative, and hence, the potential is at-
tractive in nature having depth of 309.97 MeV at dis-
tance r; to be 0.40 fm.

o 1D, (Granada-2016) - — a— —a
-

25 -
2 3py(Granada-2016),, <
A

N

153
|
N

-

o
1
N

5 (degrees)
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50 100 150 200 250 300 350
(c) E/a, (MeV)
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s 3F3 (Granada-2016)
1G4 (Granada-2016) Pt
_-
+ 364 (Granada-2016), . 4~

8 (degrees)

T

T T T T T T
50 100 150 200 250 300 350

(d) E/a, (MeV)

(color online) Inverse potentials along with scattering phase shifts for single channel scattering for D, F, and G waves.

2. For J = 2, coupling exists between 3P, and 3F,
states. The potentials of 3P, and *F, are both repulsive
and attractive, with depths V, equal to 72.75 MeV and
3.34 MeV at distances r,; of 0.24 fm and 2.24 fm, respect-
ively, as depicted in Fig. 3(f). The values of mixing para-
meter ¢, are negative, and hence, the nature of the tensor
potential is repulsive.

3. For J =3, coupling exists between *D; and 3G;
states. Both *D; and *G; states have a repulsive potential.
Regarding the mixing parameter e;, the constructed in-
verse potential is attractive in nature, as depicted in Fig.
4(g).

4. For J =4, coupling exists between *F, and 3H,
states. In the *F, state, the phase shift values increase
positively, resulting in an inverse potential exhibiting
both repulsive and attractive characteristics, with a depth
V, of 13.71 MeV at a distance r, of 1.41 fm. Conversely,
for the *H, state, the phase shifts are positive, indicating
an attractive nature of the potential, with a depth V, of
14.99 MeV at a distance r; of 0.64 fm, as illustrated in
Fig. 4(h). The mixing parameter ¢, takes negative values
in increasing order, implying attraction up to 0.64 fm,
beyond which repulsion emerges. Consequently, the
tensor potential exhibits a more repulsive nature corres-
ponding to &, as clearly depicted in Fig. 4(h).
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Table 2. Optimized model parameters for channels exhibiting many-channel scattering.

States o 431 @ ro r r X1 X2 Dy
38, 1.7864 3.5192 1.2176 2.2299 0.8673 7.9764 0.0218 1.6569 23.0292
€1 1.0242 2.5235 1.3197 2.0600 0.4000 0.0100 0.0100 2.3578 57.7110
3D, 0.3691 1.6372 1.0521 3.4736 0.0108 0.0119 0.3218 3.6187 29.1949
3p, 1.0257 3.1263 1.1437 2.6544 0.5451 4.9708 0.0100 1.4440 23.3281
5] 1.7441 0.3447 0.7514 0.0103 0.4897 14.2702 0.4074 0.5890 93.5844
3F, 0.6345 0.6979 2.0917 1.6293 0.1262 2.2408 0.5927 1.9031 12.2068
3Ds 0.5912 1.5485 1.6835 1.9402 2.3206 3.0536 0.0956 1.9256 72.7436
€ 0.3993 1.6200 1.0660 1.4897 0.0424 0.0129 0.0141 3.6925 32.5026
3G3 0.1773 1.5757 1.3185 5.2381 0.5666 1.0581 0.7447 2.6793 19.4466
3Fy 0.9507 2.8765 0.6763 2.1921 1.4048 8.2111 0.8588 3.7172 75.5033
€ 0.6376 1.4582 0.5219 0.0123 1.3187 16.1720 1.0822 4.7992 50.7831
3H, 0.5228 1.2174 1.8201 0.7222 0.6374 0.2356 0.3636 2.1788 86.7397
300 l 200
—3 o 35, (Granada-2016
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Fig. 3.

C. Low energy scattering parameters

Using the obtained scattering phase shifts, we can cal-
culate the low energy scattering parameters for the S state
by utilizing the effective range approximation formula
[34], which is given as

T T T T T T
50 100 150 200 250 300 350
EZab (Mev)

(color online) Inverse potentials along with scattering phase shifts for the multi channel scattering of /=1 and 2.

11
keotdy = ——+ 2k +.... (29)

Ao

where £ is the centre of mass momentum, ¢, is the phase
shift for £ = 0, a, is the scattering length, and r is the ef-
fective range. Using the obtained phase shifts, we calcu-
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late the low energy scattering parameters as given in Ta-
ble 3. In Table 3, we compare our results with the most
successful high precision potential such as the Avgs po-
tential [1] and Granada-2016 [31]. The scattering para-
meters obtained for the 35, state exhibit a remarkable
alignment with experimental values, demonstrating a pre-
cise match with an error margin of less than 0.6%. For
18, the scattering length matches well with the experi-
ment within an error of 0.03%; however, for the effective
range, there is some discrepancy between our calcula-
tions and the experimental results. This may be owing to
any possible error in input phase shifts of 'S,. The effect-
ive range for 'S, given by the Avjz potential and
Granada-2016 are 2.69 fm and 2.67 fm , respectively.

D. Partial and total cross-sections

Utilizing the obtained phase shifts, we calculate the
partial cross-section o(E) [16, 36] for n-p scattering as

iy
TUES, D=5

1
§=0

|6+
( Z Qe+ l)sinz(ég(E;S,J))> , (30)

J=[-S|

and thus, the total scattering cross section (SCS), o7, [16]
is given as
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(color online) Inverse potentials along with scattering phase shifts for the multi channel scattering of /=3 and 4.

n

1 1
ST 074 1) 2J+ 1Do(E;S,J),
S @I+ 1) ; Sz:; o

G1)

or(E;S,J) =

Here, "n" is the number of ¢- channel data points avail-
able for the scattering system. In our study, we take n =5
for all five ¢ channels. The total scattering cross section
closely matches the experimental ones [37], as depicted
in Fig. 5, within an experimental error of less than 1%.
The inset of Fig. 5 represents the contribution of both 1§
and S, states in the total cross section. One can observe
that the contribution of 'S, is large at low energies be-
low 1 MeV, gradually decreases with increasing energy,
and becomes considerably small beyond 100 MeV. In
contrast, the contribution from the 3S, state increases
beyond 1 MeV , peaks at 10 MeV , and then decreases.
One can also observe that, as energy levels increases
from 100 MeV to 350 MeV, the contributions from P and
D channels become notably significant, whereas those
from F and G states remain comparatively less pro-
nounced within the same range. However, they become
increasingly important for accurately representing the ob-
served experimental total SCS. Contributions from the 1
H-state are minimal and have negligible impact on de-
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Table 3.
18 [1] and Granada-2016 [33].

Low energy scattering parameters of 'S, and 35 states. We compare our calculations with realistic potentials such as Av-

Scattering length 'ap' /fm

Effective range "r" /fm

States
Exp [35] Avig [1] Granada 2016 [33] Our work Exp [35] Avig [1] Granada 2016 [33] Our work
1S —23.749(8) —23.732 —23.735 -23.741 2.81(5) 2.697 2.673 2.63
39, 5.424(3) 5.419 5.441 5.445 1.760(5) 1.75 1.781 1.770
20

S >
N f

-
(]
1

Partial Cross Section (barn)
©
|

-
o
1

i T T T
107" 10° 10' 10?
E (MeV)

Total Cross Section (barn)
[6)]
1

Our Work
o4 * Arndtetal 2009

T AL AN T B
1072 107" 10° 10 102

E (MeV)
Fig. 5. (color online) Obtained total scattering cross section

(SCS) along with the experimental SCS [37]. The energy is
plotted on a log scale. The inset shows contributions due to
both 'S and 35 states.

termining the total SCS. Hence, the obtained total scatter-
ing cross sections closely align with experimental obser-
vations [37]. The computed partial and total cross-sec-
tion values at various energies, alongside experimental
values, are compiled in Table 4.

Table 4.

IV. CONCLUSIONS

The approach of inverse scattering theory realized
computationally through the reference potential approach
is equivalent to the physics informed machine learning
paradigm. Instead of adjusting weights in a neural net-
work to obtain the underlying optimization function that
best describes the expected data [33], here, the paramet-
ers of a piece-wise smooth Morse function are varied util-
izing the GA [21] to simulate all possible shapes of
curves that span a sample space from which one con-
verges to the best model potential. The resultant inverse
potentials for various ¢ channels are phenomenological in
the sense that they take into account all possible interac-
tions within the scattering particles. Our potentials are in
good agreement with existing high precision realistic po-
tentials, based on modeling various internal interactions,
thus validating our computational approach and paving
the way for an alternative methodology to understand the
inherent nature of interactions in various scattering scen-
arios. In particular, this reference potential approach leads
to an elegant solution for charged particle scattering [38],
where modeling the Coulomb interaction poses a major
challenge. In conclusion, our computational methodo-
logy to construct inverse potentials based on piece-wise
smooth Morse functions as a reference family of curves
using the GA for optimization is successful in explaining

Individual contributions of different channels to the overall calculated total elastic scattering cross-section (SCS). The per-

centage contributions of these channels to the total obtained SCS are indicated in parentheses.

E/MeV  oexp [37] (barn) os op oD OF oG OH Osim (barn)
1 4.253 4.283 (100%) 0.000 0.000 0.000 0.000 0.000 4.283
5 1.635 1.635 (99.8%) 0.002 (0.2%) 0.000 0.000 0.000 0.000 1.638
10 0.9455 0.9399 (99.3%) 0.0059 (0.6%) 0.0004 (0.1%) 0.0000 0.0000 0.0000 0.9462

25 0.3804 0.3673 (96%) 0.0124 (3.2%) 0.0030 (0.8%) 0.0001 0.0000 0.0000 0.3828
50 0.1684 0.1455 (85.5%) 0.0159 (9.3%) 0.0085 (5%) 0.0002 (0.1%) 0.00000 0.00000 0.1701
100 0.07553 0.04162 (55.1%)  0.01761 (23.3%)  0.01547 (20.5%)  0.00053 (0.7%)  0.00025 (0.3%)  0.00000  0.07549
150 0.05224 0.0148 (28.7%)  0.01837 (35.5%) 0.01734 (33.5%)  0.00069 (1.3%) 0.00052 (1%) 0.00000 0.05175
200 0.04304 0.00534 (12.6%)  0.01883 (44.3%) 0.01678 (39.5%)  0.00073 (1.7%)  0.00079 (1.9%)  0.00000 0.04248
250 0.03835 0.00169 (4.5%)  0.01905 (50.2%)  0.01547 (40.8%)  0.00069 (1.8%)  0.00103 (2.7%)  0.00000 0.03794
300 0.03561 0.00042 (1.2%)  0.01902 (53.8%) 0.01404 (39.7%) 0.00064 (1.8%) 0.00122 (3.4%) 0.00001 0.03535
350 0.03411 0.00019 (0.6%)  0.01878 (55.7%)  0.01270 (37.7%) 0.00066 (2%) 0.00136 (4%) 0.00001 0.0337
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the experimental outcomes of np-scattering. Our scatter-
ing parameters match closely with those obtained by Ar-
gonne and Granada researchers. The calculated total
cross-sections from the simulated scattering phase shifts
are highly similar to the experimental ones, thus validat-
ing our reference potential approach. The constructed po-
tentials can be utilized to determine the off-shell proper-
ties of the deuteron, such as its binding energy and struc-
tural electromagnetic form factors. These aspects will be
addressed separately. Moreover, these inverse potentials
for various neutron-proton scattering states would be use-
ful in nuclear ab-initio calculations.
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