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I. INTRODUCTION

The critical phenomena in gravitational collapse dis-
covered by Choptuik demonstrate the rich dynamics of
the Einstein equations [1]. Consider the gravitational col-
lapse of generic families of a massless scalar field, whose
initial data are parameterized by p. The parameter p
measures the strength of the gravitational interaction.
Strong interactions (high p) result in black hole forma-
tion, whereas weak interactions (low p) disperse the mat-
ter field to infinity, and flat spacetime remains. By fine-
tuning p to the threshold of black hole formation, p = p.,
critical collapse occurs.

In supercritical collapse, a tiny black hole forms, the
mass of which has the scaling relation mpgy o< |p—p.|?,
where y ~0.37. The critical collapse solution exhibits a
universality feature, namely, the spacetime produced by
different families of critical initial data approaches the
same solution after a finite time. The solution also dis-
plays discrete self-similarity: it is invariant after rescal-
ing the spacetime by a certain factor. Since this discov-
ery, similar results have been obtained in many other
models (see Ref. [2] for a review). The critical behavior
in the 3D scalar collapse was studied in Ref. [3]. The crit-
ical phenomena in the collapse of electromagnetic waves
were simulated in Refs. [4, 5]. The interplay between
multiple near-critical fields in spherical scalar collapse
was investigated in Ref. [6]. The critical phenomena in

the bald/scalarized black hole phase transition occurring
in Einstein-Maxwell-scalar theory were reported in Ref.
[7]. In simulations, near the threshold, all the intermedi-
ate solutions are attracted to the critical solution and re-
main in this state for a long time. The system resembles
the behavior of quasinormal modes. In the late stage, the
intermediate solutions decay into Reissner-Nordstrom
black holes for subcritical cases or scalarized charged
black holes for supercritical cases, resembling the quas-
inormal modes.

Analytic interpretations are important for understand-
ing the dynamics of gravitational collapse. In Refs.
[8—10], critical collapse was treated as an eigenvalue
problem. By imposing discrete self-similarity, the global
structure of the critical collapse spacetime was construc-
ted with the pseudo-Fourier method. The rescaling factor
A became an eigenvalue and was solved with high preci-
sion. The scaling law of the black hole mass in supercrit-
ical collapse was recovered analytically via the perturba-
tion approach in Ref. [9]. Critical collapse was analyzed
using a renormalization group method in Refs. [11, 12].
In Ref. [13], using an explicit approximate solution, a
true solution was shown to exist. In Ref. [14], using a
typical log-periodic formula in discrete scale invariance
systems, the authors obtained an approximate analytic
solution for the spacetime near the center. Approximate
analytic expressions for the metric functions and matter
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field near the central singularity in black hole formation
were obtained in Refs. [15, 16]. In Ref. [17], the equa-
tions for the matter field in critical collapse were ana-
lyzed with certain terms in the equations dropped. Fur-
thermore, approximate expressions for certain combina-
tions of the metric functions and derivatives of the scalar
field were obtained.

In this study, considering the significance of analytic
results, we obtain approximate analytic expressions for
the metric functions and matter field in the large-radius
region using numerical data. We also investigate the dy-
namics in the central region. We find that owing to the
boundary conditions at the center, the equation of motion
for the scalar field in the central region is reduced to the
flat-spacetime form.

This paper is organized as follows. In Sec. II, we de-
scribe the methodology for simulating critical collapse. In
Secs. III and 1V, we study the dynamics in the large-radi-
us and central regions, respectively. Finally, the results
are summarized in Sec. V.

II. METHODOLOGY

We simulate the critical collapse of a spherically sym-
metric massless scalar field ¢ in polar coordinates,

L

ds® = —A(r, e d7 +
s =—Alne AGrD)

dr? +r*dQ2. )

The energy-momentum tensor for the scalar field is
T =¢,u0,—(1/2)8,8"Pops. Some components of the
Einstein and energy-momentum tensors for ¢ are shown
below.
.1
G'= S(rA, ~1+A),
r

1
Gl =——(-rA, +2rAs,+1-A),
r

1
T =-T" = —EA(Pz +0%,
T = Ad,d,.

Here, () and () denote partial derivatives with respect to
the coordinates r and ¢, respectively.
We define

onH=¢,, Prt= A‘le%,,, 2)

and set G =1. Then, the equations G} =8xT/ and G, =
81T respectively generate

1-A
A, = —— —4nrA(P* + Q%), 3)
r

A, =-81rA%°PQ. “4)
The combination of G, = 87T/ and Eq. (3) yields

8, = —4nr(P? + Q). (5)
With Eq. (2), we obtain

Q,=(Ae’P),. (6)

From the conservation of the energy-momentum tensor,
Tty =0, we have

1
P,= ﬁ(rer_(sQ),r' @)
The Misner-Sharp mass is defined as [18]

m=

(1= g"r,r,) = ga —A). ®)

N~

The initial conditions for ¢ are set as
@l = aexp[—(r/o)*] and ¢, = 0. The regularity of Eq. (3)
at the center requires that A(r=0,r)=1. We choose
o6(r=0,7) =0, which implies that the coordinate time is
equal to its proper time at the center. In the simulation,
we integrate Egs. (3) and (5)—(7) using the fourth-order
Runge-Kutta method. A mesh refinement algorithm is
implemented. We approach the critical solution by fine-
tuning the initial profile of the scalar field via the bisec-
tion method. For details on the numerics, see Ref. [19].

III. RESULT I: DYNAMICS IN THE LARGE-
RADIUS REGION

We rewrite the metric (1) as
ds? = —a@?(r,H)de? + B2(r, H)dr? + r*dQ2. 9

For convenience, we adjust the time coordinate such that
t = 0 when the naked singularity forms and define X(r,7) =
V2r(r/B)¢,, Y(r,0) = \2n(r/a)p,, p=Inr, T = In(~t), and
u=t/r. Then, the equations for ¢ (6) and (7) can be re-
spectively rewritten as

BX), = —aY +(aY),—u@Y),, (10)

065104-2



New results on the dynamics of critical collapse

Chin. Phys. C 48, 065104 (2024)

BY) = aX +(aX),—u(aX),. 11

In critical collapse, the period in terms of the coordin-
ate time ¢ exponentially decreases. Consequently, the
metric functions and matter field in the late stage of col-
lapse and large-radius region for which [t/r| < 1 appear to
be "frozen" rather than propagating [20, 21]. In Ref. [17],
the authors offered one ansatz: in this region, the last
terms in Egs. (10) and (11) are negligible in comparison
with the first terms. Moreover, treating o and £ as con-
stant, the authors obtained the following solutions:

X =~ Bsin[w(p—au)—7vy], Y ~ Bsin[w(p—au)], (12)

where

1 2
1+72=B,

siny = —
w Y wp’

1
cosy = —E. (13)

The expressions (12) are consistent with the numerical
results. However, some treatments in the above have not
been fully justified. In addition, although approximate ex-
pressions for X and Y were obtained, the results for the
metric functions and scalar field remain absent. We ad-
dress such issues below.

In Ref. [17], some terms in Egs. (10) and (11), that is,
—u(@Y),, —u@X)., B.X, a,Y, B,Y , and @, X, were
dropped. In fact, as shown in Figs. 1 and 2, in the large-
radius region (r > 1073), the absolute values of the terms
-ua,Y, —ua,X, a,Y , and a,X can sometimes be great-
er than those of other terms. However, the terms dropped
approximately cancel. Consequently, the equations con-
structed by the remaining terms roughly hold:

IBX,M ~ —Q’Y + aY,[n (14)
BY.,~aX+aX,. (15)
—In(—t) =9.0798
=102l [BuX| === |aY | ----]aY,] luaY,|
5 1BX ] —|a, Y| ---|ua, Y|
RS
=
Q .
SRR P
z
R
1072 Al [EBAE )
1076 1074 102 10°
”
(a)
Fig. 1.

From this perspective, treating a and £ as constant in Ref.
[17] is effectively valid.

In the analytic results (12) obtained in Ref. [17], only
the phases in the sine functions are functions of » and ¢,
and the amplitudes are constant. We examine the numer-
ical results for ¢ and find that besides the phase, the amp-
litude for ¢ is also a function of » and ¢#. We find that the
field ¢ admits the following approximate expression:

o(r,t) = C1(1 + Co[H(r,t)]) cos(wInr + C3[H(r,1)] + ¢p).

(16)
The quantity [H(r,t)] has the following features:
(i) We first define H(r,?) in the usual manner:
Herty= 2% = A el 17)
r r
Then, we have
wa wait wat
H =—+—+——. (18)
r r r
(i1) [H(r,1)] is defined as
wat
[H(r,0)] = — (19)

Here, @ and @ are constant values of w(r,t) and a(r,1).
This is related to the treatment of a and f as constant in
the discussions of Egs. (14) and (15).

(ii1) From Eq. (16), we obtain the expression for ¢,

¢, ~ Cy \/C?+C3[H],cos(wlnr+ C3[H] + ¢y +¢1),
(20)

where tang; = C;/C,. Regarding the quantity H,(= wa/r+

102 —In(—1) =9.0798

—[BX | - —|aY,|
Y| ——|residuall

10°

1072 L
10 6

”
(b)

(color online) Numerical results for Egs. (10) and (14). (a) Results for Eq. (10). (b) Results for Eq. (14). In the large-radius re-
gion (r>1073), the absolute values of @,Y and ue,Y are sometimes greater than those of other terms in Eq. (10). However, the three
terms B.X, —a,Y and u(aY), roughly cancel. Then, Eq. (14) approximately holds.
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—In(—t) =9.0798

7‘5.111/‘ T |aX‘ o IQX-PI
18Y ] —— o, X| ----Jua,X|

102 L luaX |

100 "

Terms in EoM for YV

Fig. 2.

wa,t]r+w,at/r), the numerical results show that |wa /7|
is sometimes greater than wa/r. However, comparing ex-
pression (20) with the numerical results for ¢,, we al-
ways obtain

1
[H], ~ 2% = wA2e =
r r

21)

This implies that in [H], , the contributions from wa t/r
and w,at/r are negligible. This should be related to the
fact that the respective reductions of Egs. (10) and (11) to
Egs. (14) and (15) are equivalent to treating a and
B(= V1 +w™?) as constant.

(iv) The numerical results in Fig. 3(a) show that in the
large-radius region, the equation of motion for ¢ (7) is re-
duced to

A_le[;(ﬁ,n = _(A_leﬁ),t‘ﬁ,r (22)

Using Eq. (22) and the numerical results of |6, > |A,]|, we
have

bu =00, (23)

102 —In(—t) =9.0798

7|ﬂY”‘ o ‘aX-ﬂl
|aX| ——|residuall

10°

1072 -
10—()

”
(b)
(color online) Numerical results for Egs. (11) and (15). (a) Results for Eq. (11). (b) Results for Eq. (15).

Combining Egs. (20), (21), and (23) and the numerical
results of |6,| > H, generates

wa,

[H], ~

~-6,[H],. (24)
Namely, we treat a effectively as constant at the first-or-
der accuracy, and the dynamical feature of o begins to

take effect since the second-order temporal derivative of
[H(r,0)].

(v) As shown in Fig. 3(b), at the late stage of critical
collapse, in the large-radius region at which |¢/r] <1,
|H| <« 1, |H| < |wlnr|, and |H,| < 1/r. Therefore, with Eq.
(16), [H] mainly contributes to the temporal derivatives
of ¢, rather than to the field ¢ and its spatial derivatives.

The numerical results show that C; ~0.058,
C3+Ci=~1, and ¢, ~1.08. As shown in Figs. 4(a) and
(b), the expressions for ¢ (16), ¢, (20), and ¢, (23) agree
well with the numerical results. Note that when we com-
pare the analytic expressions with the numerical results in
the large-radius region, the tail part, e.g., the region for
r> 1 in Fig. 4, is excluded.

With Egs. (16) and (20), we can rewrite Eq. (4) as

101()
-
— N
S v -
= 10 ) i
= ’ 54\ =
mo —_— \A’l ﬁﬁ(?b_ftl f ) S
g N (A1) ] | -
2 100 H... ‘\(Aej)f(p_r\ g oo |
= [Ae™"¢ | ER S
(<} P . 4.3
= |2 AT | ] *, )
107° L= I I L
10 1074 1072 10°
”
(a)

—In(—t) =9.0798

108

—In(—t) =9.0798

10t

—|CsH |
-——w/r

T2

|C5H |
—meslwIny|

10[) L

104
10-¢

1072

(b)

104

Fig. 3. (color online) Numerical results for the equation of motion for ¢ (7) and the transition region. (a) Results for Eq. (7). In the
large-radius region (r > 1073), A~ 'e%¢ , ~ —(A~'e%) ,¢,. This is very different from the flat-spacetime form ¢, = r2(+*¢,),. In the central
region (r<107), A%, ~ Ae°r2(r?¢,),. Considering that in this region A~1 and 6~0, ¢, ~r2(r*¢,),. (b) Transition region
between the central and large-radius regions:[ry, r2]. At r=ry, |C3H| ~ |wlnr|. At r=ry, |C3H,| ~ w/r.
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Fig. 4.

—In(—t) =10.6693
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(color online) Comparison of the analytic and numerical results for the scalar field and metric functions in the large-radius re-

gion. (a) Results for ¢ (16) and ¢, (20). (b) ¢ ~ —6,¢,. (c) Results for m/r (27). (d) Results for J (30).

1 0A
T = 8700, ~ CilH) [sinQwlnr +2C;[H)

+2¢o+¢1) —sing], (25)

where C, = 4nwC? \/C3 + C2. Via integration, we have

C
InA~— ﬁ cosQQwlnr +2C5[H] +2¢o + 1)
3

- C4 Sil’l(p] [H] + C5. (26)

Then, using Eq. (8) and the fact that |H| < 1, we obtain
2 ¥ CocosQuinr+2C5[H1 + 260 +91) + C1, (27)
,

where Cg ~ €5C,/(4C3) ~ eSS nwCi \/C3+C%/Cs and C; =
(1/2)(1—€%). As shown in Fig. 4(c), the expression for
m/r (27) is consistent with the numerical results. The fit-
ting results are Cg=0.013360+0.000009 ~1/75 and
C; ~ 0.065480 + 0.000007 ~ 1/15.

With Eq. (8), we can rewrite Egs. (3) and (5) as

m, =22 A(P* + Q?), (28)
06 2
S,= 20 % . 29
"0 SIny 1_2ﬂm’ 29)
,

Then, the solution for d can be expressed as

6zC81nr+ln(l—2—m)

r

+CosinQuwlnr +2C3[H] + 200+ 1) +60(1),  (30)

where  Cg~-2C;/(1-2C7)-2C%? and Co~—(Ce+
8CsC7)/w. As shown in Fig. 4(d), the expression for J
(30) is consistent with the numerical results.

In Ref. [17], the quantities a and f were treated as
constant. The approximate expressions for X and Y ob-
tained in this manner agree well with the numerical res-
ults. Then, it was stated that in this circumstance, the
spacetime is effectively flat. In fact, X and Y are combina-
tions of the metric functions and derivatives of the scalar
field, rather than the scalar field. To check whether the
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spacetime is effectively flat, it may be more appropriate
to directly investigate the behavior of the equation of mo-
tion for the scalar field (7). As shown in Fig. 3(a), in the
large-radius region, Eq. (7) is reduced to Eq. (22), which
is clearly different from the flat-spacetime form ¢, =
r2(r’¢,),. Therefore, the spacetime in this region is not
effectively flat.

IV. RESULT II: DYNAMICS IN THE CENTRAL
REGION

As shown in Fig. 3(a), in the central region, the abso-
lute values of the terms (A~'e%),¢, and (A~'¢%), ¢, in Eq.
(7) are considerably lower than those of A~'€°s,,
Ae™%¢,., and (2/r)Ae™°¢,. Moreover, in this region, A ~ 1
and 6 ~ 0. Consequently, Eq. (7) is reduced to the flat-
spacetime form

1
¢,n‘ ~ ﬁ(rz(ﬁ,r),r' (3 1)

Regarding Eq. (31), we discuss the following:

(1) Equation (31) implies that in the central region, the
scalar field ¢ evolves almost as in flat spacetime, not ex-
periencing gravitational effects.

(i1) Besides critical collapse, we check the evolution
of the scalar field in two other types of collapse (disper-
sion and black hole formation) and obtain similar results
as (31).

(ii1) The result (31) is closely related to the asymptot-
ic behaviors of the metric functions and scalar field near
the center. Under the smoothness requirement at the cen-
ter, the metric functions and scalar field have the follow-
ing power series expansions near the center [19]:

Ax1+A07, §~=6MOr, ¢~ +d(Dr.  (32)

With Egs. (3), (4), (5), (8), and (32), we obtain the fol-
lowing asymptotic expressions:

A=~ _167T¢,t¢2r2, 0, = _4ﬂ¢,tt¢.tr2,
’ ’ 87r
6, = GO+ Arx == (@)

6,r ~ —47T(¢’[)27‘, ¢,r ~ 2¢2(l)7‘, (33)

which are also shown in Fig. 5. With Eqgs. (32) and (33),
we can straightforwardly simplify Eq. (7) to (31).

(iv) It is known that in critical collapse, the Ricci

106 —In(—t) =9.0798

10*

10% ¢

100 ¢

First-order derivatives

1072 ¢

104
104:

Fig. 5.
atives for 4, 0, and ¢. As discussed in Eq. (33), near the cen-
ter, Agocr®, Spocr?, ¢+, Aycr, §yocr, and

¢rocr.

(color online) First-order temporal and spacial deriv-

curvature scalar R in the central region is very high and
will eventually diverge. This does not contradict the res-
ult in (31) because Eq. (31) is caused by the fact that the
first-order derivatives of the metric components asymp-
tote to zero. Conversely, as discussed below, the major
terms constructing R include the second-order derivat-
ives of the metric components, first-order derivatives of
the metric components divided by 7, and 2(1 —A) divided
by r?, which are very large and will eventually diverge.

For the metric (1), the Ricci curvature scalar can be
written as

4AS, 4A, 21-A A, e®
R= M0 s oas (A, Ade
r r ’ 72 ’ A?
2 A 2 .26 A 6 26
134,65, - 2A@, ) + 2 226 - iaf . (34)

With Egs. (3), (4), (5), (8), (32), and (33), we obtain
asymptotic expressions for all the terms on the right-hand
side of Eq. (34):

4A 4A 4
6,r I~ —ZD, - - =~ 7D’ 2A67r ~ _D’
r r 3 ’
2(1-A D
(1-4) ~-A, ~—, where D=38n(¢,"
r2 ' 3 ,
A 62(5
_ Xz ~ 167¢ yo 1,

3A,6, ~ 321%(¢,) 1,

—24(5,)* ~ =327°(.)*r,

2(AJ)2€26

G RSP0 ()T
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A,6,e%
-

~ —64T P 1 (h.) par”.

The first five terms are dominant and have the same
order of magnitude as 87(¢,)*, and the remaining terms
are proportional to 7 or r* and are negligible.

As shown in Fig. 3(b), the transition region between
the central and large-radius regions can be expressed as
relr, rnl. At r=ry, |C3H|~|wlnr|; at r=r,, |C:H,|~
w/r.

V. SUMMARY

Analytic solutions are important for understanding the
dynamics of gravitational collapse. Owing to the com-
plexity of the Einstein equations, seeking the analytic
solutions to the equations has been a very challenging is-
sue. In successful circumstances, the equations are usu-

ally reduced to ODEs. In critical collapse, the equations
remain as PDEs, whereas in the large-radius region and
late stage of evolution, the spatial and temporal contribu-
tions are separate to some extent. This enables us to ob-
tain approximate analytic expressions for the metric func-
tions and matter field.

The boundary conditions at the center play a key role
in the dynamics in the central region. In this region, ow-
ing to the boundary conditions, the terms related to grav-
itational effects in the equation of motion for the scalar
field are negligible, such that the equation is reduced to
the flat-spacetime form.
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