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Abstract: Phase transition is important for understanding the nature and evolution of the black hole thermodynam-

ic system. In this study, we predicted the phase transition of the third-order Lovelock black hole using the winding
numbers in complex analysis, and qualitatively validated this prediction by the generalized free energy. For the
7<d<12-dimensional black holes in hyperbolic topology and the 7-dimensional black hole in spherical topology, the
winding number obtained is three, which indicates that the system undergoes first-order and second-order phase
transitions. For the 7<d<12-dimensional black holes in spherical topology, the winding number is four, and two

scenarios of phase transitions exist, one involving a purely second-order phase transition and the other involving
simultaneous first-order and second-order phase transitions. This result further deepens the research on black hole

phase transitions using the complex analysis.
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I. INTRODUCTION

A black hole is an extreme celestial body predicted by
the general relativity [1]. Inspired by the presentation of
the Bekenstein's entropy [2] for the black hole, Hawking
concluded that when the quantum effect is taken into ac-
count, a black hole emits thermal radiation just like a nor-
mal black body. This means that the black hole has a tem-
perature. The concept that black holes possess entropy
and temperature is undoubtedly one of the most import-
ant discoveries of the 20th century and has been a topic of
discussion for decades.

A central element of black hole thermodynamics is
the phase transition, i.e., the transition from one state to
another, accompanied by abrupt changes in physical
quantities such as energy, entropy, and volume under dif-
ferent parameter conditions. Hawking and Page first in-
vestigated the thermodynamic properties of the Anti-de
Sitter (AdS) black hole and found that there is a phase
transition between the Schwarzschild AdS black hole and
pure AdS thermal radiation, i.e., the famous Hawking-
Page phase transition [3]. Subsequently, the black hole
thermodynamics ushered in groundbreaking achieve-
ments under the pioneering work [4]. The extended phase
space of the AdS black hole thermodynamics was intro-
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duced, where the negative cosmological constant is con-
sidered as the effective thermodynamic pressure of the
black hole and its conjugate quantity is the thermodynam-
ic volume, which initiated the recent surge of interest in
the extended black hole thermodynamics. The small-large
black hole phase transition presented by the charged AdS
black hole thermodynamic system has a more direct and
precise overlap with the van der Waals system [5—11].
Currently, the study of the phase transition of black holes
in the extended phase space has been widely applied to
various complex scenarios [12—17].

In addition, the holographic thermodynamics [18—21]
and restricted phase space thermodynamics [22—25] have
been proposed to give a holographic interpretation of the
black hole thermodynamics and to make it more like or-
dinary thermodynamics. Moreover, the topology has
emerged as a new way to describe the type of the phase
transition in black holes. In a study [26, 27],it is de-
scribed in detail how to use the ¢-map topological flow
theory to construct a topological number that is independ-
ent of the endogenous parameters of black holes. The to-
pological number can be used to distinguish between loc-
ally stable and locally unstable black hole phases as well
as to topologically classify the same class of black holes
[28—32]. These studies can deepen our understanding of
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black hole physics and contribute to the search of clues to
reveal the nature of black holes and quantum theory of
gravity.

The analysis of the type and criticality of the thermo-
dynamic phase transition in black holes currently domin-
ates the investigations. The swallowtail diagrams of the
Gibbs free energy can provide certain answers about the
macroscopic thermodynamic processes of the black hole
phase transitions, but they overlook the details of the
phase transitions. Some ideas have been proposed to use
the free energy landscape [33—35] and Landau free en-
ergy [36] to explore the evolutionary processes associ-
ated with the black hole phase transitions.

In a recent study [37], the author constructed a
thermal potential to study the black hole phase transition.
The thermal potential or generalized free energy is

Uz/(Th—T)dS, (1)

where T, is the Hawking temperature of the black hole, T’
is the canonical ensemble temperature, and S is the en-
tropy of the black hole. Parameters U, T}, and S are the
functions of radius of the event horizon r;,, and T is just a
positive constant, which can be assigned in any way.
When a standard system is determined to be a black hole,
the ensemble temperature of the system should be the
Hawking temperature of the black hole, i.e., T = T),. Sim-
ilar to the fluctuation, the thermal potential shows that all
other possible thermodynamic states of the system devi-
ate from the black hole states. The above thermal poten-
tial or generalized free energy is a undefinite integration.
Here, we assume the integration constant to be zero. If it
is non-zero, we absorb it into U without changing the
qualitative results in the present paper. We are currently
conducting a comprehensive analysis of phase transitions,
only extracting the qualitative behavior of phase trans-
itions and not strictly requiring quantitative results.

From Eq. (1), it follows that the extremum of the po-
tential represents all possible black hole states,

du
=0 = T=T. )

More importantly, the concave (convex) nature of the
thermal potential represents the stable (unstable) state of
the black hole,

OTy(ra) > (0, stable case;
6<d—U ) _ ) 0S(rw) |r=r, 3)
) or
ds |r_g, () <0, unstable case.
a8 (rh) T=T),

A diagram of thermal potential described by Eq. (1) is

shown in Fig. 1. It is certain that the lowest point (the red
point) is the most stable state in the entire canonical en-
semble. As the different parameters of the black hole
change, the extreme point of the thermal potential con-
stantly changes, which corresponds to the changes
between the black hole state and other unknown states in
the ensemble. In the framework, we studied the micro-
scopic phase transition mechanism of the charged AdS
black holes [38] and found that the phase transition of
large and small black holes exhibits severely asymmetric
features, which fills the gap in the analysis of stochastic
processes in the first-order phase transition rate problem
of AdS black holes.

In the four-dimensional spacetime, Einstein gravity
can give the most appropriate explanation. While in high-
er dimensions, when the energy approaches the Planck
energy scale, the high-order curvature terms of spacetime
cannot be neglected, and Einstein's general relativity the-
ory requires some modifications. One of the widely ac-
cepted and valid candidates is the Lovelock gravity. Nat-
urally, Lovelock gravity is an extension of Einstein grav-
ity in a higher dimensional spacetime, and it proposes
that the quantities acting in higher dimensional gravity
should contain high-order gauge terms. The black hole
solution in this gravity and the associated thermodynam-
ic properties have been extensively studied [39—43].
When we consider the third-order Lovelock gravity, its
action contains four terms: the cosmological constant
term, Einstein action term, Gauss-Bonnet term, and third-
order Lovelock term. The black hole thermodynamics un-
der third-order Lovelock gravity has also been widely
studied [44—48]. Thus, the specific details behind its
phase transition become the main object to study. This in-
spires us to explore and analyze the microscopic pro-
cesses of the phase transition of small and large black
holes in third-order Lovelock black holes. Through the
thermal potential and complex analysis, we study how a
black hole transforms from one black hole state to anoth-
er under the influence of temperature 7" and pressure P in
order to obtain its specific transition processes. We wish

U
Fig. 1. (color online) Diagram of thermal potential, where o

represents the global minimum, e represents the local maxim-
um, and e represents the local minimum.
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to further enrich the black hole phase transition dynamics
process.

The structure of this paper is as follows: In Sec. II, we
present a brief introduction to third-order Lovelock black
holes. Then, the winding number is related to black hole
thermodynamics using the complex analysis approach. In
Sec. III, the phase transition in the hyperbolic case is
studied, focusing on d=7.In Sec. IV, the phase trans-
ition in the spherical case is further studied, focusing on
the analysis of d =7 and d =9 cases. Finally, Sec. V is
devoted to a summary and discussion.

II. REVIEW OF THE THIRD-ORDER
LOVELOCK BLACK HOLE

First, the d-dimensional Lovelock Lagrangian density
is [39, 49, 50]

N
L= a2, )
n=0
1 o .
‘£’1 - ? \/__g(s;l];rlRl]l]l;z o Rl/zznfl]l;i ? (5)
where
g— 1, for even d,
N= d-1 (6)
- forodd d,

and n is the order, «,, and 2 are the coupling constants for
each of the Lagrangian density functions, g is the determ-
inant of metric g,,, R',,, is the Riemann tensor, R%,, =
g’ R%,,, and 0}"% is the generalized Kronecker delta of
order 2n. For the calculation, here, we list the first four
items of the Lagrangian:

'EO = V& (7)
1 iviy pJiJ
Ly= 5 V=0 LRI = V-8R, ®)
1 iVinizi 172 pJ3i
-£2 = Z \/__g(sjll ;23'334R{11i122R{331{14
= V=8 (Rupor R — 4R, R" + R*) 9)

1 o
_ - — 111213141516 J1J2 pJ3J4 plsie
L= gV g6j1j2j3j4j5jﬁRi1iz Ri3i4 Risis

— \/—_g(R3 + ZRMVUKR{TKPTRﬁ; + 8R/1v Ra-KRp-r

optvt

+ 24R" R 11y RE 4+ 3RR* Ry
+24R™ R, Ro, + 16R“ R,y RS — 12RRR,).  (10)

From Egs. (4) and (6), it is known that n-order Lagrangi-
an £ depends on different dimensions d.

e When d =4, order n is 1. The 1-order Lagrangian
contains L, and £;, and it is also called the Einstein-Hil-
bert Lagrangian in 4 dimensions (£, and £, are the cos-
mological constant term and Einstein term, respectively).

® When d=5 and d=6, order n is 2. The 2-order
Lagrangian includes £y, £;, and £, and it is also called
the Einstein-Gauss-Bonnet Lagrangian (£, is the Gauss-
Bonnet term) [51, 52].

e By analogy, for n= 3, the 3-order Lovelock Lag-
rangian contains Ly, £y, L, and L3, and it exists in 7
and 8 dimensions (£; is the third-order Lovelock term).

e The contribution of higher-order Lovelock terms
becomes smaller gradually to the point where it can be ig-
nored. Hence, the n(n > 4)-order Lagrangian can be ap-
proximated as the one with the order of 3, and then the 3-
order Lovelock theory is used to study black holes in
d > 7 dimensions naturally.

Hence, the geometric action of the third-order Love-
lock black hole is written as [47, 48]

T dx (%Lo ra L+l Lot L)

~ 167G

= TG dX(R=2A + @y Lo +3.L3), (11)

and we have taken the liberty of making ay=—2AA%,
a; =1, & = a,22, and @; = a3A°. In the following formu-
lation, we choose « instead of &, and &;,

a a?

&2: - &3 = . (12)

@d-3)d-4)’ 72(“7)

The static spherical symmetry metric for d > 7 is ex-
pressed as [39—41]

b

2 _ 2
ds” =-V(r)dr + Vo

dr? + 7dQ2, (13)

6Aa 3a/m> ﬂ

7‘2
V(r)=k+; {1— (1+ d-Dd-D + e

(14)

where m is a parameter related to the mass of a black
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hole, and £ is the topology of the spacetime curvature and
can take —1, 0, and 1.

The Hawking temperature of the third-order black
hole in terms of the radius of the event horizon r, is

1 487 Pré
= ' +3(d - 3)kr}
" 2+ ka)? { (d—2) T3k

+3(d—5)ak2r,2,+(d—7)cz2k}, (15)

where P is the pressure via P =—-A/(87G). Usually, the
black hole entropy satisfies the area formula, i.e., the
black hole entropy is equal to one quarter of the event ho-
rizon area. However, in higher derivative gravity, the area
law of entropy is not satisfied in general. The thermody-
namic method is the simplest way to obtain the entropy of
the higher derivative gravity. Indeed, we can also obtain
the entropy from the Wald's Noether charge technique
[53, 54]. Here, we derive the expression for the entropy
of a black hole from a thermodynamic perspective [55].

Black hole mass M, temperature 7, and entropy S sat-
isfy the first law of thermodynamics dM=TdS, where
mass M per unit volume X; can be expressed as
(d-2)m/(16nG), and X, represents the volume of the
(d - 2)-dimensional submanifold,

_ _ -3 2 2

Mo d-2)m _ (d-2)rt (k+ 167Pr;, +a7£<+aiic).
167G 1671 d-1)d-2) r;, 3r,

(16)

Integrating the first law and starting the horizon radius
from zero, we can obtain entropy per unit volume X; con-
jugated to the temperature [55] as

()
S= [ T,'——dr="—[1+
/0 h @rh T 4

(d-2)ka?
@d-6)r; 1
(17)

2d - 2)ka
(d-%r;

The entropy is not only one quarter of the surface area
of the horizon but also reproduces the expression for the
entropy of Lovelock black holes derived by Hamiltonian
methods in [56, 57], which state that the entropy includes
a sum of intrinsic curvature invariants integrated over a
cross section of the horizon.

In thermodynamics, we know that entropy and mass
are extensive variables, whereas temperature is an intens-
ive variable. Here, we introduce mass M per unit volume
%, and entropy per unit volume X; to analyze the thermo-
dynamic properties of black holes. The overall thermody-
namic properties of the system can be replaced by the
thermodynamic properties per unit volume to obtain the
qualitative characteristics of the thermodynamic system
of a black hole. This avoids the uncertainty of volume of
the sub-manifold X, in the hyperbolic case.

Therefore, thermal potential per unit volume X, of the
third-order Lovelock black hole is expressed as

d-7

- _ =T
U—/(Th T)dS @~

{4871Pr2
+(d - 1)(d—2)(3kr} +3ak*r} + azkﬂ

2(d - 2)ka
(d- 4)r,2l

-2
—Trd {1+

d-2)k*a? }
4

(d—6)r} (18)

According to Egs. (1) and (2), we define function
f(ry) as the first derivative of the generalized free energy
with respect to the horizon radius,

dU(ry)
ds(ry)’

Sflrn) = (19)

At this point, the information of the black hole thermody-
namic system is reflected by the characteristics of zeroes
of function f(r,) because if f(r;,) =0, we obtain 7 =T},.
The different states of a black hole thermodynamic sys-
tem are at the extreme points of the generalized free en-
ergy. Thus, we can turn the thermodynamic problems in-
to solving the zeroes of real function f(r,). To see the full
picture of the problem, we need to change real function
f(ry) to complex continuation function f(z), and use the
method of complex analysis [58].

In complex analysis, the Argument Principle is an ef-
fective method to calculate the number of zeros of analyt-
ic functions. If f(z) is a meromorphic function in simple
closed contour C and is analytically nonzero on C, then

l 4
NGO - PULC) = —— ¢ L4

= Acarg f(z)
2ni Jo f(2)

2

(20)

where N(f,C) and P(f,C) are respectively the number of
zeros and poles of f(z) in C, f’(z) is the first order deriv-
ative of f(z), and argf(z) is the argument of f(z). Making
transformation w = f(z), the above equation is then ex-
pressed as the number of rotations of w around the origin
of curve C’ as complex variable z moves around com-
plex envelope C, where C’ is the image curve of C after
the transformation. The winding number is denoted by

1 [do 1 [[f@Q

T oniJo w27 Je f(2)

dz. 1)

If analytic function f(z) does not have poles within the
complex perimeter, the winding number of the origin is
W = N(f,C). When complex variable z varies on contour
C, the image of argument function 6 = argf(z) can be a
Riemann surface. The winding number of the origin cor-
responds to the foliations of the Riemann surface of the

095101-4



Thermodynamic phase transition and winding number for the third-order Lovelock black hole

Chin. Phys. C 48, 095101 (2024)

complex variable function.

In [58], we have preliminarily summarized an empir-
ical correspondence through several typical thermody-
namic systems of black holes (Schwarzschild, Schwarz-
schild AdS, Reissner-Nordstrom, charged AdS, and 6-di-
mensional charged Gauss-Bonnet black holes), that is, the
correspondence between winding number W and the
phase transition of black holes. Specifically, when W =1,
there is no phase transition; when W =2, it corresponds
to the second-order phase transition; and when W =3, it
means that the first-order phase transition will occur, ac-
companied by the second-order phase transition. Through
this empirical conclusion, we can predict the phase trans-
ition characteristics of other black hole thermodynamic
systems.

Here, we consider only zeros that are real and posit-
ive, and these correspond to physical values for radius r;,.
Next, we expect to use this method to predict the struc-
ture of the phase transitions of the third-order Lovelock
black hole. In planar topology k =0, the temperature of
the black hole can be expressed as T, = 4Pr;,/(d -2), res-
ulting in the equation of state P=T,/v with v=4r,/
(d—2). It is the same as that of an ideal gas. There are no
phase transitions in the planar topology for any dimen-
sions. Therefore, we will focus on two cases k= -1 and
k=+1.

III. HYPERBOLIC TOPOLOGY

In this case, we have k= —1. For the Lovelock black
hole in the hyperbolic case, analytic function f(z) is cal-
culated by Egs. (18) and (19) as follows:

1 4871 P70
12rz(Z2—a)? L (d-2)

f)= -3(d-3)7

+3(d-5)a? —(d-T)a? - 12nzT(Z* —a)?|. (22)

Whether d =7 or 7<d <12, this analytic function has
three zeros at most in the entire complex plane C with the
singularities removed. The only difference between them
is that the singularities are ++/@ for d =7, whereas for
7 <d <12, the singularities are 0 and ++/a. Hence, we
obtain winding number W =3 and its complex structure
is the Riemann surface with three foliations, as shown in
Fig. 2. Based on the results of the study [58], we predict
that the black hole will undergo the phase transitions with
the first and second orders.

Since d = 7 is of the same type as d > 7, let us make a
long story short and use d = 7 as an example to verify the
above viewpoint. We know that there is only one set of
critical points in the hyperbolic case, and we obtain the
critical points for d =7 from [47, 48]

Fig. 2.
second-order phase transitions for the black hole system.

(color online) Riemann surface of the first-order and

5 1
T

4
o_ > cT A —» c= =z . 23
8na 2n Y Ve (23)

5

For the sake of discussion, we introduce the following di-
mensionless thermodynamic quantities:

L P fom T _ Iy
p = PC, —TC, X—rc,
T, S U
t, = —, = = . 24
vEr ST T @9

The validity of the method is now checked with an ana-
lysis of the behavior of the thermal potential. After a
series of calculations, we obtain the dimensionless
thermal potential for d =7,

_i 6 4 §(5 Q3 )
u—16(px 3xt+3x7-1) 81‘ X 3x+5x. (25)

From Eq. (25), it can be observed that the two key para-
meters (p and ¢) affect the behavior of the thermal poten-
tial. Here, we fix parameter ¢ to observe the variation of
the thermal potential with p. In Fig. 3, we show the u—x
plot at d =7. According to Egs. (1) and (3), we know that
the black hole state can be placed at an extreme value of
the thermal potential. An unstable black hole state is at
the local maximum point, and a stable black hole state is
at the minimal point. The lower the potential, the higher
the probability that the black hole is at that point and the
more stable is the system.

From diagrams (a) and (b) in Fig. 3, we find that at
fixed temperature ¢ = 0.2 (for any value 0 <t <1, we al-
ways obtain the same result), a global minimum and loc-
al minimum start to change as pressure p increases from
p=0 to p=p,, at which point the global minima of the
thermal potential are equivalent. Specifically, at
0 < p < pu, the thermal potential of the large black hole
phase is lower than that of the small black hole phase, im-
plying that the system tends toward the large black hole
phase. When p increases to p,,, the large and small black

095101-5



Yu-Shan Wang, Zhen-Ming Xu, Bin Wu

Chin. Phys. C 48, 095101 (2024)

0.5 1.0

1.0 15 20 oo 0.2 0.6 0.8

X X

(©)p > pm

Fig. 3. (color online) u-x plots of +=0.2 for d =7. The

-phase in the diagram represents the small black hole state, -phase repres-

ents the large black hole state, and e-phase represents the unstable black hole state. Pressure p increases from left to right in the p > p,,

plots.

hole phases are in equilibrium. Similarly, it is clear from
diagrams (b) and (c) that as p increases, the two equival-
ent global minima begin to change. The small black hole
phase is at the global minimum, whereas the large black
hole phase changes to be in the local minimum until it
disappears. Specifically, the thermal potential of the small
black hole phase is lower than that of the large black hole
phase, which means that the system tends toward the
small black hole phase at p > p,,.

Thus, it is clear from the above analysis that in the
k = —1 hyperbolic case, the system has a first-order phase
transition from a large to small black hole. From Eq. (23),
it follows that there is a critical point, which is the inflec-
tion point of the curve; therefore, the system also has a
second-order phase transition. This is exactly what we
predicted.

IV. SPHERICAL TOPOLOGY

In this case, we have k= +1. For the Lovelock black
hole in the spherical case, the analytic function is calcu-
lated by Eqgs. (18) and (19),

+3(d=-3)*+3(d -5

1 487 Pz°
@)= { 4

12722 +a)R L (d-2)

+(d-Ta? - 12n7T(F + a')z} .
(26)
Here, we note that the zeroes of the cases in d =7 and
d > are not equal across the complex plane with all sin-

gularities removed, which leads to different winding
number and Riemann surfaces. Thus, the spherical case is

not as straightforward as the hyperbolic one and needs to
be discussed differently.

In particular, at d = 12, there is only one zero point;
thus, the winding number is 1 and it is a single-foliation
Riemann surface. As a result, the system does not under-
go a phase transition. This conclusion is already well-
known and is not elaborated here.

A. d=7

For d =7, we can obtain its analytic function from
Eq. (26) as

(8Pr7 + 102 +5a2) — 10nT(Z + @)?|.
(27)

f@=

10m(z% + a)?

Similarly, there are three zeroes at most on complex

plane C\{+ +/ai}, so that winding number W =3 and the

complex structure is similar to the hyperbolic case in

d =7with three foliations. Hence, we predict that the

second-order and first-order phase transitions will occur.

Next, we verify its correctness by the thermal potential.
First, from [48], we obtain critical points

Pcl - O’ Tcl = O’ Vel = 0’ (28)
and
17 1 4
A2 = 5 2 — ) 2=z 5 . 29
2= 200ma 2= e Ve Ve (29
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Then, using Eqgs. (18) and (24), we can obtain the expres-
sion for the dimensionless thermal potential in d =7,

1
u= Z(l7px6+75x4+ 1522 + 1) = #(15x° + 102 + 3x). (30)

Surprisingly, its behavior is extremely similar to that
in the hyperbolic case. From diagrams (a) and (b) in Fig.
4, we find that at fixed temperature ¢ = 0.8 (we always
obtain the same results when taking any value 0 <7< 1),
when pressure p starts increasing from 0 to p,,, a global
minimum and local minimum start to become two equi-
valent global minimum values of the thermal potential.
Specifically, the thermal potential of the large black hole
phase is initially lower than that of the small black hole
phase, which means that the black hole system tends to-
ward the large black hole phase. Gradually, a clear up-
ward trend in the large black hole phase appears and fi-
nally, the large black hole phase is at the same level as
that of the small black hole phase. From diagrams (b) and
(¢), as the pressure increases from p,,, the two equivalent
global minima start to change, with the small black hole
phase being a global minimum and the large black hole
phase becoming a local minimum until it disappears. This
means that the black hole system tends toward the small
black hole phase at p > p,,.

When p < p,,, the whole black hole system is com-
pletely in the large black hole phase, and conversely, the
system is completely in the small black hole phase at
p > pn. There is also a critical point, Eq. (29), under this
dimension. Therefore, it is concluded that the system will

have first-order and second-order phase transitions. This
is the same result as that calculated by the winding num-
ber.

B. d>7

Let us now study the cases of 8, 9, 10, and 11 dimen-
sions. From Eq. (26), it follows that the 8-, 9-, 10-, and
11-dimensional cases are similar. Therefore, we take the
case of d =9 as an example. The analytic function is ob-
tained by substituting d = 9 into Eq. (26), which reads as

fl@)= 24Pnz® + 637

Prz(2+a)?

+4207% + 7% - 2177 (2 + @)?|. (31)

There are four zeroes at most on complex plane
C\{+ +/ai,0}. Hence, the winding number is =4 and the
complex structure is the Riemann surface with four foli-
ations.

According to the basic elements of the corresponding
relationship between the winding number and phase
transition, we can find that W =4 can be decomposed in
two ways: (i) 4 = 2+ 2, which means that the system only
has two second-order phase transitions; and (ii) 4 =1+ 3,
which shows that the system has one first-order and one
second-order phase transitions. A clearer breakdown is
shown in Fig. 5. Thus, we conjecture that in d =9, there
will be two different types of phase transitions.

For the case of d > 7, there are two pairs of critical
points for the system. This makes dimensionless pro-

0.0 0.5 1.0 15 20 25 3.0

(©)p > pm

Fig. 4.

(color online) u—x plots of r=0.8 for d=7. The «-phase in the diagram represents the small black hole state, e-phase repres-

ents the large black hole state, and e-phase represents the unstable black hole state. Pressure p increases from left to right in the p > p,

plots.
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cessing more complicated, so we do not do this here,
which is slightly different from the previous analysis. The
two sets of critical points in d =9 were obtained from
[48], and they can be written as

_ 7[(17 V21— 105)a? + 6(17 V21 - T7)a + 147 - 27 V21]

- 87(367 V21 -1687)
T, = 3V3(V21-7) ’
var V6 - V21(V2T-21)
(32)
and
P, _ 7117 V21 +105)a” +6(17 V21 + 77)a ~ 147 - 27 V21)]
87(367 V21 + 1687)
3V3(V2I+7)

T, = ,
1T Jar Ve + Vai(Val+21)

4y V184321

a 21 ’

Ve2

(33)

The thermal potential is expressed with the help of Eq.
(18) as

117 (6
U= 1 {ﬁ (?ﬂPrf +3r8 +3ar] +0[2ri)
7

14 7
—T(r,z+?a'r,51+§a'2ri)}. (34)

For the sake of simplicity, we set both « = 1. By ana-
lysis, we find that the phase transition between the two
critical temperatures needs to be discussed on a case-by-
case basis.

4=2+2
a =
% Third order
S
' '5_'7 1 ovelock
5
‘ g hlack hole
< 2
4=1+3

Fig. 5.

a. Ty <T <T,, As can be observed from Fig. 6, there
is a gradual merging between the extremal points until
they disappear as pressure P increases. During this time,
the large black hole phase is always a global minimum
and there is no transition between the two minima. This
means that the system has no first-order phase transition.
Instead, the system has a second-order phase transition
due to the presence of the inflection point Eq. (32).

b. T=T,., From Fig. 7, it can be observed that the
thermal potential changes similarly to that of 7 < T,, at
both P < P,, and P > P,,. It is worth noting that at P=P,,,
the global minimum and local minimum become two
equal global minima, a phenomenon that does not exist
for T < T,,,. Therefore, T, is the point at which the phase
transition will begin to occur, which is still a second-or-
der phase transition.

¢. Tow <T <T, As can be observed from diagrams
(a) to (b) in Fig. 8, as pressure P starts to rise, the global
minimum of the large black hole phase and the local min-
imum of the small black hole phase change to two equi-
valent global minima. The black hole system changes
from a large black hole phase to co-existing large and
small black hole phases. From diagrams (b) to (d), the
pressure continues to increase from P,, and the two glob-
al minima are transformed into a global minimum and
local minimum until the local minima disappear. The
thermal potential of the small black hole phase is lower
than that of the large black hole phase, which means that
the system tends toward the small black hole phase. From
the above analysis, it is clear that the system has a first-
order phase transition. Meanwhile, due to the inflection
point Eq. (33), it also has a second-order phase transition.

We conclude from the thermal potential diagrams that
there are indeed two different phase transition processes
ind =9, perfectly verifying the previous conjecture.

V. SUMMARY

In this paper, the complex structure of the third-order
Lovelock black hole phase transition is predicted by the

T+

second-order

phase transition

first-order and second-order

/ - <

= 4

(color online) Two decompositions with winding number W = 4.
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Fig. 6. (color online) U-r, plots of T =0.2075 for d =9. The «-phase in the diagram represents the small black hole state, -phase
represents the large black hole state, and e-phase represents the unstable black hole state. Pressure P increases from diagrams (a) to (e).
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Fig. 7. (color online) U -r;, plots of T =T, for d=9. The «-phase in the diagram represents the small black hole state, ¢-phase rep-

resents the large black hole state, and e-phase represents the unstable black hole state. Pressure P increases from left to right in
theP > P,, plots.

local winding number, and its accuracy is verified by the W =3 and the complex structure is the Riemann surface
behavior of the thermal potential. By transposing the with three foliations, which indicates that there are first-
complex analysis from mathematics to study the micro- order and second-order phase transitions in this system.
structure of the black hole thermodynamics and relating The winding number is W =4 in 7 < d < 12 for the spher-
the winding number to the type of phase transitions, it is ical case and the corresponding complex structure is the
easy to know the order of the different phase transitions four-foliations Riemann surface.
of the black hole. The thermal potential is next used to explore specific-
In the hyperbolic case of arbitrary dimensions and the ally how a black hole changes from one state to another.
spherical case of 7 dimensions, the winding number is The thermal potential of the systems with varying pres-
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(color online) U —ry, plots of T =0.21 for d =9. The «-phase in the diagram represents the small black hole state, e-phase rep-

resents the large black hole state, and e-phase represents the unstable black hole state. Pressure p increases from left to right in

theP > P, plots.

sure reveals different properties. Based on the nature of
the thermal potential, the phase transition processes of
Lovelock black holes under different topologies are ana-
lyzed.

For k= -1, the system has first-order and second-or-
der phase transitions.

For k = +1, the situation is slightly more complicated.
The phase transition process in 7 dimensions is similar to
that of the hyperbolic case, in which the first-order and
second-order phase transitions also occur. Meanwhile, in
8,9, 10, 11 dimensions, there is the key intermediate tem-
perature, T.,. When the temperature is T, <T < T,
there are only second-order phase transitions, and when
Tewm <T < T, the system has both second-order and first-
order phase transitions. The winding number indicates the
following:

(i) 4=2+2 states that only second-order phase trans-
ition occurs. It is of this type when the temperature is
between T,, and T, for the Lovelock black holes in the
spherical topology of d > 7 dimensions.

(i1) 4=1+3 indicates that the system has both first-or-
der and second-order phase transitions. It occurs when the

temperature is between T, and T, for the Lovelock
black holes in the spherical topology of d > 7 dimensions.

The results of the above thermal potential analysis
perfectly match the winding number prediction. By estab-
lishing the connection between the winding number and
black hole phase transition, we obtain the complex phase
transition structure. Complex analysis is an effective
method to further study the microstructure of black hole
systems. We hope that this work will provide new ideas
for the study of black hole thermodynamic phase trans-
itions, and thus further enrich the content of black hole
thermodynamics.

In addition, when the winding number is W =3, and
there exists a first-order and second-order phase trans-
ition according to the present work, why do we not con-
sider the case of W =3 as a third-order phase transition
directly? As far as our present work is concerned, on the
one hand, our correspondence between winding number
W and the phase transition of black holes is only a specu-
lative and empirical construct based on some typical
black hole thermodynamic systems, and the thermody-
namic phase transitions of these black holes are either

095101-10
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first-order or second-order. On the other hand, based on
the current understanding, we have not encountered an
example of the third-order phase transition in black hole
thermodynamic systems. If there are, we will explore the
situation where the system undergoes a third-order phase
transition and its corresponding winding number. This re-
quires further in-depth understanding and research in the

future.
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