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Abstract: We apply a universal two-zero texture (UTZT) to all mass matrices for matter in its flavor space within
the SO(10) GUT framework. This texture can be realized by assigning different charges to each family in a  sym-
metry. By fixing the charged fermion masses at  their best-fit  values,  we fit  the remaining nine precisely measured
observables (three angles and one CP-violating phase in quark mixing, three angles in lepton mixing, and two neut-
rino mass-squared differences) with seven model parameters. The model fits all data on fermion masses and mixing
accurately,  and the leptonic CP-violating phase is  predicted to lie in the range . The model further pre-
dicts the right-handed neutrino masses, with the lightest and heaviest ones being on orders of  and  GeV, re-
spectively. Gauge unification and proton decay were checked under the assumption of a breaking chain with two in-
termediate  symmetries  above  the  electroweak  scale.  The  result  indicates  that  varies  in  the  range  of
(0.022,0.032) as long as the assumption of an economical choice of Higgs contents is fulfilled, and  should be
bigger than  GeV to meet the Super-K bound. We report on the effective mass  for neutrinoless double
beta decay, which provides a possibility to test grand unification with neutrinoless double beta decay experiments.
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I.  INTRODUCTION

The flavor puzzle is a long-standing unresolved prob-
lem in particle physics. We are still unclear on the reason
for the  large  difference  between  lepton  and  quark  mix-
ings or  whether  the  many  independent  mixing  paramet-
ers could  be  correlated  through  an  underlying  mechan-
ism beyond the Standard Model (SM).

The texture-zero approach [1−3], which was first pro-
posed  to  calculate  the  Cabibbo  angle  and  reduce  free
parameters in  the  quark  sector,  provides  an  efficient  ap-
proach to  address  the  flavor  puzzle.  This  approach  as-
sumes that some entries of the quark Yukawa matrices (or
equivalently,  mass  matrices)  vanish,  and  the  approach
connects quark masses with the CKM mixing parameters.
Thus,  the number of free parameters for quark flavors is
efficiently reduced. A competitive pattern is the so-called
four  texture  zeros  [4−6],  in  which  both  up- and  down-
type quark Yukawa matrices are Hermitian and their (1,1)

and (1,3) entries are zeros: 

M f ∼

Ü
0 × 0

× × ×
0 × ×

ê
(1)

f = u,d (3,1)for ,  where  the  entry  is  also  zero  owing  to
the assumption of Hermitian Yukawa matrices.  This is  a
natural  extension  of  the  original  Fritzsch  texture,  which
includes a third zero in the (2,2) entry [7−9]. This texture
features  analytical  simplicity  [10, 11] and  can  be  em-
ployed for  solving  the  strong CP problem [12];  see  Ref.
[13].

Ml Mν

Texture  zeros  have  been  applied  to  the  lepton  sector
by  first  assuming  the  light  neutrino  mass  matrix  taking
the form of  Eq.  (1)  expressed  in  the  charged  lepton  fla-
vor  basis  [14−16].  A universal  two-zero  texture  (UTZT)
in  the  lepton sector, i.e.,  both  and  have two zero
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entries  in  the  same  position,  was  proposed  in  [17].  The
lepton flavor model with the UTZT in the seesaw frame-
work was constructed in [18] within the context of Abeli-
an discrete symmetries [19].

SO(10)

Both  four  texture  zeros  in  the  quark  sector  and  the
UTZT in the lepton sector have fit the relevant flavor data
accurately  so  far.  Motivated  by  their  phenomenological
successes,  we  propose  unified  two-zero  textures  in  both
the quark and lepton sectors, representing completely uni-
versal  two-zero  textures  for  all  fermion  mass  matrices.
Specifically,  the  subscript f in  Eq.  (1)  will  span  for  all
quarks and leptons. To achieve this, we propose to work
within the GUT framework. The grand unified version of
the  UTZT  has  another  advantage.  It  helps  to  reduce  the
large dimensionality of the parameter space in the flavor
space. We assume the gauge symmetry to be  [20]
and exploit one of its key features: all quarks and leptons
including  the  right-handed  neutrino  are  assigned  in  the
same sixteen-dimensional chiral representation. As a con-
sequence, strong corrections of masses and mixing of all
quarks  and  leptons  are  predicted  [21, 22];  see  Refs.
[23−26] , which consider recent precision data.

SO(10)×Z6

Z6

The  proposed  model  is  constructed  in 
with  the  Pati-Salam  symmetry  [27]  as  an  intermediate
symmetry after GUT breaking and before its breaking to
the SM gauge symmetry. The texture zeros are realized in

 symmetry  following  the  method  developed  in  [18].
Abelian discrete symmetries have been applied for realiz-
ing flavor texture zeros in GUT models [28−31].

SO(10) Z6

SO(10)
Z6

The rest of this paper is organized as follows. In Sec.
II, we construct the UTZT in  GUTs with a  fla-
vor symmetry. In Sec. III, we discuss the analytical prop-
erties of the UTZT in GUTs and report on the numerical
analysis  of  fermion  masses  and  mixing.  In  Sec.  IV,  we
explore the  parameter  space  of  intermediate  scales  al-
lowed by gauge unification and proton decay constraints
under a certain breaking chain from  to SM, where
different copies of Higgs fields introduced along with 
are considered. We conclude the paper with Sec. V. 

II.  REALIZATION OF UNIVERSAL TWO-ZERO
FLAVOR TEXTURES

We construct  the UTZT for fermion masses with the

SO(10)
Z6

gauge  and  flavor  symmetries  assumed  to  be  and
, respectively. We focus on the breaking chain, 

SO(10)
MGUT−→

54
GC

422 = SU(4)c×SU(2)L ×SU(2)R×ZC
2

M2−→
45

G3221 = SU(3)c×SU(2)L ×SU(2)R×U(1)X

M1−→
126

GSM = SU(3)c×SU(2)L ×U(1)Y ,

(2)

ZC
2

SO(10)×Z6

SO(10)
Z6

where symbols  above and below each arrow refer  to  the
energy scale of the corresponding symmetry breaking and
the Higgs multiplet responsible for the breaking, respect-
ively,  and  is  the  parity  symmetry  between  left
particles and right charge-conjugate particles. All particle
arrangements  in  and the  corresponding roles
are listed in Table 1. In addition, a CP symmetry, which
will  be  spontaneously  broken  later,  is  introduced  above
the GUT  scale.  Next,  we  first  review  some  general  fea-
tures  of  fermion  masses  in  and  then  discuss  the
construction of  the  UTZT by imposing a  flavor sym-
metry. 

SO(10)A.    Fermion masses in  GUT and CP
SO(10)

16 SO(10)

16×16 = 10S+126S+120A

SO(10)
10H 126H 120H

In  GUTs,  all  fermions,  including  quarks  and
leptons as well  as right-handed neutrinos,  are introduced
to  explain  light  neutrino  masses  and  unified  in  a  single
matter field multiplet  of . The matter field mul-
tiplet  follows  the  representation  product  decomposition

, where subscripts S and A cor-
respond  to  symmetric  and  anti-symmetric  combinations.
To  generate -invariant  Yukawa  interaction,  three
Higgs  multiplets  are  included, , ,  and .  In
general,  Yukawa  couplings  to  generate  fermion  masses
can be arranged as 

−LY = (A)αβ 16αF16βF10H + (B)αβ 16αF16βF126H

+ i (C)αβ 16αF16βF120H +h.c. , (3)

α,β = 1,2,3
3×3

where  denote three copies of flavors. In gen-
eral, A, B, and C are  coupling matrices, with A and
B being  symmetric  and C being  antisymmetric.  The  CP
symmetry  requires  them  to  be  real,  as  explained  below;
otherwise,  they  are  complex.  Here,  we  do  not  consider

 

SO(10)×Z6Table 1.    Particle content in .

SO(10)Particles in Z6Charges in Roles in the theory

Fermions (161
F ,162

F ,163
F ) {0,2,1} Contains SM fermions & RH neutrinos

Higgses

(101
H ,102

H ,103
H) {4,3,2} Generates fermion masses

(1201
H ,1202

H ,1203
H) {4,3,2} Generates fermion masses

(1261
H ,1262

H ,1263
H) {4,3,2} Generates fermion masses & triggers LR symmetry breaking

54H 0 Triggers GUT symmetry breaking

45H 0 Triggers PS symmetry breaking
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10H

120H 10 120 SO(10)
10H 120H

SO(10) 10H

120H

copies of  the  Higgs  in  the  flavor  space;  these  are  spe-
cified  in  the  next  subsection.  We  work  within  the  non-
SUSY  framework.  The  complex  conjugates  of  and

 transform  as - and -plets  of .  In  the
case that both  and  are real, Eq. (3) provides the
most  general  Yukawa  couplings  in .  If  and

 are complex, there might be additional couplings 

(A′)αβ 16αF16βF10∗H + i (C′)αβ 16αF16βF120∗H +h.c. (4)

U(1)
appearing in the Lagrangian. In this case, we forbid them
by imposing an additional Peccei-Quinn (PQ)  sym-
metry [32], as described in [33−35]. In each case, Eq. (3)
(following  the  proof  in  Appendix  A)  leads  to  Dirac
Yukawa coupling matrices taking the following structure
[21, 22, 36, 37]: 

Yu = H+ r2F + ir3G , Yd = r1(H+F + iG) ,

Yν = H−3r2F + icνG , Ye = r1(H−3F + iceG) , (5)

A∗ B∗

C∗

10H 120H

Mν

where H and F are symmetric matrices, whereas G is an
antisymmetric matrix. H, F, and G are identical to , ,
and , respectively, up to the overall coefficients, if both

 and  are real. These Yukawa coupling matrices
are  expressed  in  the  left-right  convention  given  that  we
are working within the non-supersymmetric GUT frame-
work.  Dirac  masses  for  quarks  and  leptons  are  obtained
after Higgses gain VEVs. The light neutrino mass matrix

 is obtained from the Type-(I+II) seesaw mechanism, 

Mν = −mL F +mR YνF−1YT
ν , (6)

mL mRwhere  and  are free and small mass parameters in-
duced by Higgs VEVs. Here, we have parameterized the
RH neutrino mass matrix as 

MR =
v2

2mR
F . (7)

SU(4)c×SU(2)L×SU(2)R ⊂
SO(10) 16F SO(10)

ψL ψC
R

It is convenient to express Yukawa coupling terms in
the  Pati-Salam  notation.  In 

,  the  fermion  multiplet  of  is decom-
posed  into  two  multiplets  of  the  Pati-Salam gauge  sym-
metry.  These  multiplets  are  denoted  as  and , re-
spectively, and 

(ψL)ai ∼ (4,2,1) , (ψC
R)a

j ∼ (4,1,2) , (8)

C

SU(2)L ×SU(2)R

where  in the superscript of a fermion represents charge
conjugation.  All  Higgs  multiplets  are  decomposed  into
bi-doublets of . More explicitly, 

10H ⊃ (1,2,2) ≡ ϕi j ,

126H ⊃ (15,2,2) ≡ ϕ̃a
bi j ,

120H ⊃ (1,2,2)′+ (15,2,2)′ ≡ ηi j+ η̃
a
bi j . (9)

SU(4)c

SU(2)L SU(2)R

(A)αβ 16αF16βF10H+

i (C)αβ 16αF16βF120H +h.c.

In  Eqs.  (8)  and  (9), a and b denote  entries  of  the
 fundamental  representation,  and i and j denote

entries  of  and  fundamental representa-
tions,  respectively.  In  the  Pati-Salam  symmetry,  the
Yukawa  coupling  terms, e.g., 

, are reduced to
 

(ψαR)a
j (ψ

β
L)ai εii′ε j j′

[
(A)αβϕi′ j′ + i (C)αβ ηi′ j′

]
+ (ψβL)a

i (ψαR)a j εii′ε j j′
[
(A)∗αβϕ

∗
i′ j′ − i (C)∗αβ η

∗
i′ j′
]
, (10)

ϵ = iσ2

SU(2) SO(10)
ZC

2

SU(2)L ×SU(2)R

where  has been used for singlet contraction from
two doublets  of .  The  gauge symmetry  in-
cludes an internal matter parity symmetry . This parity
is  also  called  D parity  in  the  reference.  Explicit  rules  of
the parity transformation in SO(10) and Pati-Salam group
theories are reported in [38] and not repeated here. Gen-
erally,  this  parity  in  appears  to  be  the
following transformation: 

(ψL)ai↔ (ψC
R)a

j ,

ϕi j↔ ϕ ji , ϕ̃a
bi j↔ ϕ̃b

a ji , ηi j↔−η ji , η̃a
bi j↔−η̃b

a ji .

(11)

SU(2)L×
SU(2)R

We  impose  a  CP  symmetry  above  the  GUT  scale.
Coupling matrices A, B, and C are forced to be real in this
symmetry  [39].  The  CP  transformation  in 

 appears as 

(ψL)ai↔ (ψC
L )a

j ,

ϕi j↔ ϕ∗ji , ϕ̃a
bi j↔ ϕ̃b

a
∗
ji , ηi j↔−η∗ji , η̃a

bi j↔−η̃b
a
∗
ji

(12)

120
ηi j η̃a

bi j ZC
2

in  the  Pati-Salam  convention,  where  transformation  of
spatial  coordinates  is  dismissed.  The  CP  symmetry  is
spontaneously broken by the VEV of  [39], i.e., VEVs
of  and .  The  CP  symmetry  combined  with 
forms a Klein symmetry. The latter includes an addition-
al parity transformation: 

(ψL)ai↔ (ψR)ai ,

ϕi j↔ ϕ∗i j , ϕ̃a
bi j↔ ϕ̃b

a
∗
i j , ηi j↔ η∗i j , η̃a

bi j↔ η̃b
a
∗
i j .

(13)

This parity enables the permutation of left- and right-
handed  fermions  and  keeps  the  Yukawa  couplings  as
Hermitian [12]. 
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SO(10)×Z6B.    Texture zeros in 
Z6

Z6

10k
H k = 1,2,3

We introduce a  discrete symmetry in the flavor sector
and aim to obtain the UTZT for all Yukawa matrices. In
general, texture zeros can be realized in Abelian discrete
flavor symmetries [19]. We follow the charge alignments
given  in  [18]  by  assuming  a  flavor  symmetry.  In  a
straightforward extension,  we  extend  each  Higgs  mul-
tiplet  into  three  copies, e.g.,  for ,  etc.  The
renormalizable Yukawa couplings in Eq. (3) are then ex-
tended into 

−LY = (Ak)αβ 16αF16βF10k
H + (Bk)αβ 16αF16βF126k

H

+ i (Ck)αβ 16αF16βF120k
H (14)

k = 1,2,3 Ak Bk Ck 3×3
Ak Bk Ck

Z6

for , where ,  , and  are all  coupling
matrices  with  and  being  symmetric  and  being
antisymmetric.  We  consider  to  arrange  charges  for
both matter and Higgs fields as 

16αF ∼ {0,2,1} ,
10k

H

126k
H

120k
H

 ∼ {4,3,2} ,
(15)

α,k = 1,2,3 Z6for , respectively. To be invariant under , all
non-vanishing  couplings  in  these  terms  should  take  zero
charge (mod 6). We checked each term in Eq. (14) to de-
termine whether  such  a  condition  is  satisfied.  We  con-
clude that coupling matrices take the following textures: 

A1,B1 ∼

Ü
0 × 0

× 0 0

0 0 ×

ê
, C1 ∼

Ü
0 × 0

× 0 0

0 0 0

ê
,

A2,B2 ∼

Ü
0 0 0

0 0 ×
0 × 0

ê
, C2 ∼

Ü
0 0 0

0 0 ×
0 × 0

ê
,

A3,B3 ∼

Ü
0 0 0

0 × 0

0 0 0

ê
, C3 = 0.

(16)

Z6

Here, a cross represents a non-vanishing entry in the mat-
rix, referring to a zero  charge in the relevant Yukawa
coupling.

Y f f = u,d,e, ν

We checked whether the UTZT is satisfied in all fer-
mion Yukawa/mass  matrices.  All  Dirac  Yukawa  coup-
ling matrices  (for ) are linear combinations
of the matrices in Eq. (16). Thus, they take forms of two-
zero  flavor  textures,  as  in  Eq.  (1).  Note  that  these

MR B1 B2

B3

matrices  are  Hermitian  as  the  CP  symmetry  is  imposed.
In  the  neutrino sector,  the  Majorana mass  matrix  for  the
RH  neutrino  is  a  linear  combination  of , ,  and

.  It  is  a  real  and symmetric  matrix  with  two-zero tex-
ture, as  in  Eq.  (17).  All  Yukawa  matrices  can  be  expli-
citly expressed as 

Y f = ζ f

Ü
0 C f 0

C∗f B̃ f B f

0 B∗f A f

ê
, (17)

f = u,d, ν,e A f B̃ f B f

C f A f > 0
ζ f = ±1

where , the entries  and  are real, and 
and  are complex. We keep  by extracting a sign
parameter  out.

Mν

Mν

For  the  light  neutrino  mass  matrix ,  one  can
demonstrate using the Type-(I+II) seesaw formula in Eq.
(6) that  the  light  neutrino  mass  matrix  inherits  the  tex-
tures in Eq. (17) through the Type-(I+II) seesaw mechan-
ism [40, 41]. However,  is not Hermitian but complex
and symmetric.

U(1)

Zn 16αF
{10,126,120}kH qF

α qH
k

qF
α qH

k

qH
k

Before ending this section, we discuss other possibil-
ities  to  realize  the  UTZT  through  discrete  symmetries.
We first  prove  that,  given  the  PQ  symmetry,  three
copies of  Higgs  constitute  the  minimal  requirement.  In-
deed,  given  any  symmetry  with  fermion  and
Higgs  charges  arranged  with  and 
(both  and  are  integers  less  than n),  the  two-zero
textures can  be  achieved  by  applying  the  algebras  de-
scribed next. For any Higgs, their charges  must satisfy 

2qF
1 +qH

k , 0 (mod n) ,qF
1 +qF

3 +qH
k , 0 (mod n) ; (18)

qH
k1

qH
k2

and there must be some Higgses with charges , ,...,
satisfying 

qF
1 +qF

2 +qH
k1
= 0 (mod n) , qF

2 +qF
3 +qH

k2
= 0 (mod n) ,

2qF
2 +qH

k3
= 0 (mod n) , 2qF

3 +qH
k4
= 0 (mod n) . (19)

qF
1 , qF

2 , qF
3 , qF

1

n ⩾ 3
To  distinguish  flavors,  (mod n)  and

.  Taking  this  property  into  the  above  equation,  we
obtain 

qH
k1
, qH

k2
, qH

k3
, qH

k1
, qH

k2
, qH

k4
, qH

k3
(mod n) . (20)

qH
k1

qH
k2

qH
k3

qH
k2

qH
k3

qH
k4

qH
k1
= qH

k4

Zn

Z6

This  means  that , ,  and  as  well  as , ,  and
 should  be  distinguishable  charges.  In  the  minimal

case, ,  and  as  a  consequence,  we  are  left  with
three  copies  of  Higgses.  Although  three  copies  are  the
minimal  requirement  for  the  UTZT,  there  are  plenty  of
choices for  and charged assignments to satisfy the al-
gebras described by Eqs.  (18)  and (19).  In particular, 
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Z5

is not unique in achieving the texture alignment. For ex-
ample,  can  realize  the  UTZT  with  matter  and  Higgs
fields arranged as 

16αF ∼ {1,2,4} ,
10k

H

126k
H

120k
H

 ∼ {2,4,1} (21)

10∗H
120∗H

qH
k1

qH
k2

qH
k3

Z6

Z5

In  the  case  without  PQ  symmetry,  the  number  of  Higgs
copies  can  be  reduced  to  two.  This  is  because  and

 join  in  the  Yukawa  couplings,  as  in  Eq.  (4).  The
three different charges, ,  , and , can be arranged
as follows:  two  of  them  are  charges  of  two  distinguish-
able  Higgses,  and  the  third  charge  refers  to  the  charge
conjugation of one of these Higgses. Applying this argu-
ment  to  our  model  in  Eq.  (15),  the  third  copy  of
Higgses is not necessary because it can be replaced by the
charged  conjugation  of  the  first  copy.  Regarding  the

model in Eq. (21), the third copy is not necessary either
because  it  can  be  replaced  by  the  charge  conjugation  of
the second copy. Reducing the copy of Higgses results in
additional restriction on the Yukawa correlation between
quarks and leptons, which is worth studying in the future. 

III.  FERMION MASSES AND MIXING

In  this  section,  we  discuss  correlations  between
masses and  mixing  of  quarks  and  leptons  both  analytic-
ally and  numerically.  The  heavy  neutrino  masses  re-
quired  to  generate  light  neutrino  data  via  the  seesaw
mechanism are also predicted. 

A.    Analytical derivation

SO(10)

A remarkable advantage of the two-zero texture is its
analytical  calculability,  which  enables  us  to  diagonalize
the Yukawa  matrices  analytically  in  terms  of  the  eigen-
values and largest entry of the Yukawa matrix [11]. Giv-
en  that  all  fermions  are  embedded  in  the  same 
multiplet,  all  fermion  masses  are  correlated.  It  is  a  non-
trivial  task  to  match  fermion  masses  and  mixing  with
their  experimental  data.  We  present  Eq.  (5)  again  in  the
following form: 

Ye = −
4r1

r2−1
ReYu+

r2+3
r2−1

ReYd + iceImYd ,

Yν = −
3r2+1
r2−1

ReYu+
4r2

r1(r2−1)
ReYd + i

cν
r1

ImYd , (22)

r1 ImYu = r3 ImYd Z6where  is  satisfied.  Restricted  by  the 

Y fsymmetry,  all  Dirac  Yukawa  coupling  matrices  are
Hermitian with two texture zeros, i.e., 

Y f = ζ f

Ü
0 C f 0

C∗f B̃ f B f

0 B∗f A f

ê
, (23)

f = u,d, ν,e A f B̃ f B f C f

A f > 0 ζ f = ±1
Mν MR

where ;  and  are  real;  and  are
complex; ;  and .  The  light  neutrino  mass
matrix  and heavy neutrino mass matrix  are given
in Eqs. (6) and (7), with 

F =
ReYu

r2−1
− ReYd

r1(r2−1)
. (24)

Mν 3×3
MR

The  resulting  is  a  complex  symmetric  matrix
with two-zero textures, and  is real.

Yu

Bu Cu

Pu = diag{1,eiϕu ,eiϕ′u }
Yu

We  parameterize  the  quark  sector  as  follows.  In  the
Yukawa matrix , which is in general complex, a minus
sign of  or  can be rotated away by performing phase
rotation  with  a  phase π.  This  transformation  does  not
change the real property of F, H, and G. With a phase ro-
tation , the  Hermitian  Yukawa  mat-
rix  can be transformed into a real and symmetric mat-
rix: 

Yu ≡ PuYuP∗u =

Ü
0 |Cu| 0

|Cu| B̃u |Bu|
0 |Bu| Au

ê
. (25)

ζu = +1 B̃uWithout  loss  of  generality,  we  can  set ,  and 
could  be  either  positive  or  negative.  They  are  correlated
with  up-type  quark  Yukawa  couplings  as  follows  [10,
13]: 

B̃u = −ηuyu+ηuyc+ yt −Au ,

|Bu| =
√

(Au+ηuyu)(Au−ηuyc)(yt −Au)/Au ,

|Cu| =
√

yuycyt/Au , (26)

ηu = ±1where  is an  undetermined  sign.  The  real  ortho-
gonal matrix, which is used in the diagonalization 

Yu = OuŶuOT
u (27)

Ŷu = diag{−ηuyu,ηuyc,yt}
Au yu yc yt

with ,  can  be  explicitly  expressed
in terms of , , , and  as [10, 13] 
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Ou =



 
ycyt(Au+ηuyu)

Au(yu+ yc)(ηuyu+ yt)
ηu

 
yuyt(Au−ηuyc)

Au(yu+ yc)(yt −ηuyc)

 
yuyc(yt −Au)

Au(ηuyu+ yt)(yt −ηuyc)

−ηu

 
yu(Au+ηuyu)

(yu+ yc)(ηuyu+ yt)

 
yc(Au−ηuyc)

(yu+ yc)(yt −ηuyc)

 
yt(yt −Au)

(ηuyu+ yt)(yt −ηuyc)

ηu

 
yu(yt −Au)(Au−ηuyc)
Au(yu+ yc)(ηuyu+ yt)

−
 

yc(yt −Au)(Au+ηuyu)
Au(yu+ yc)(yt −ηuyc)

 
yt(Au+ηuyu)(Au−ηuyc)
Au(ηuyu+ yt)(yt −ηuyc)


. (28)

Yd Pd = diag{1,eiϕd ,eiϕ′d }The  down-type  quark  Yukawa matrix  is  in  general  complex.  With  a  phase  rotation ,  it  can  be
transformed into a real and symmetric matrix:
 

Yd ≡ ζdPdYdP∗d =

Ü
0 |Cd | 0

|Cd | B̃d |Bd |
0 |Bd | Ad

ê
. (29)

Yu OdOn the right-hand side, one can perform a transformation similar to that for  with the orthogonal matrix  given by
 

Od =



 
ysyb(Ad +ηdyd)

Ad(yd + ys)(ηdyd + yb)
ηd

 
ydyb(Ad −ηdys)

Ad(yd + ys)(yb−ηdys)

 
ydys(yb−Ad)

Ad(ηdyd + yb)(yb−ηdys)

−ηd

 
yd(Ad +ηdyd)

(yd + ys)(ηdyd + yb)

 
ys(Ad −ηdys)

(yd + ys)(yb−ηdys)

 
yb(yb−Ad)

(ηdyd + yb)(yb−ηdys)

ηd

 
yd(yb−Ad)(Ad −ηdys)
Ad(yd + ys)(ηdyd + yb)

−
 

ys(yb−Ad)(Ad +ηdyd)
Ad(yd + ys)(yb−ηdys)

 
yb(Ad +ηdyd)(Ad −ηdys)
Ad(ηdyd + yb)(yb−ηdys)


. (30)

Specifically, 

Yd = ζdP∗dOdŶdOT
d Pd , (31)

Ŷd = diag{−ηdyd,ηdys,yb}where .  The CKM mixing matrix
is given by 

VCKM = OT
u PuP∗dOd . (32)

Au Ad

Au = yt(r+ ϵ) Ad = yb(r− ϵ)
It  is  useful  to  parameterize  and  again  in  the

form  and .  From  numerical

|ϵ| < 0.03
analysis,  we found that,  to  satisfy experimental  data,  the
restriction  must be satisfied. From experimental
quark  data,  the  following  hierarchical  relations  exist
among mixing parameters: 

yu : yc : yt ∼ θ8
C : θ4

C : θ0
C ,

yd : ys : yb ∼ θ8
C : θ6

C : θ3
C ,

θ
q
13 : θq

23 : θq
12 ∼ θ3

C : θ2
C : θ1

C ,

(33)

θCwhere  is the Cabibbo angle. Using these relations, we
approximately derive the three mixing angles as

 

sinθq
12 ≈

∣∣∣∣ηd

…
yd

ys
−ηu

…
yu

yc

[
(1− r)eiϕ2 + reiϕ1

]∣∣∣∣ ,
sinθq

13 ≈
∣∣∣∣∣
√

ydys

yb

…
1− r

r
−ηu

…
yu

yc

ï√
(1− r)r

(
eiϕ1−eiϕ2

)
+

ϵ

2
√

(1− r)r

(
eiϕ1+eiϕ2

)ò∣∣∣∣∣ ,
sinθq

23 ≈
∣∣∣∣∣ ϵ
(
eiϕ1 + eiϕ2

)
2
√

(1− r)r
+
√

(1− r)r
(
eiϕ1 − eiϕ2

)∣∣∣∣∣ , (34)
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ϕ1 = ϕu−ϕd, ϕ2 = ϕ
′
u−ϕ′d Ye

Yu Yd

r1 r2 ce Ye

where . According to Eq. (22), 
can be expressed in terms of  and  with coefficients

,  , and . The entries of  satisfy correlations simil-
ar to those in Eq. (26), 

B̃e = −ηeye+ηeyµ+ yτ−Ae ,

|Be| =
√

(Ae+ηeye)(Ae−ηeyµ)(yτ−Ae)/Ae ,

|Ce| =
√

yeyµyτ/Ae , (35)

Ae (3,3) Yewhere  is  the  absolute  value  of  the  entry  of .
This  parameterization  simplifies  the  numerical  analysis
presented in the next subsection.

Mν

Mν

Mν

MR

ReYu ReYd

OR

Ou,d,e

MN1 MN2

MN3

In the neutrino sector, however,  is a complex and
symmetric matrix,  and  the  phase  rotation  cannot  trans-
form  into a real matrix. The unitary matrix to diagon-
alize  has to  be obtained numerically.  For  RH neutri-
nos, the Majorana mass matrix , which is proportional
to F as a linear combination of  and , is a real
matrix with two texture zeros. It can be analytically diag-
onalized  by  a  real  orthogonal  matrix ,  which  takes  a
form  similar  to  that  of  but  replacing  the  Yukawa
couplings by relevant RH neutrino masses , , and

; it is not repeated here. 

B.    Numerical analysis
We describe our numerical analysis in this subsection.

To simplify the analysis, we fix the numerical best-fit (bf)
values of the charged fermion Yukawa couplings, 

ybf
u = 2.54×10−6, ybf

c = 1.37×10−3, ybf
t = 0.428,

ybf
d = 6.56×10−6, ybf

s = 1.24×10−4, ybf
b = 5.7×10−3,

ybf
e = 2.70341×10−6, ybf

µ = 5.70705×10−4,

ybf
τ = 9.702×10−3.

(36)

1σ

We  do  not  consider  the  errors  for  these  values,  which
means  that  the  pulls  for  all  charged  fermion  Yukawa
couplings are explicitly fixed at zero. Best-fit and  val-
ues of three mixing angles and one CP-violating phase in
the CKM mixing matrix are assumed to be 

θ
q
12 = 13.028◦±0.034◦ , θq

23 = 2.783◦±0.034◦ ,

θ
q
13 = 0.241◦±0.007◦ , δq = 69.52◦±3.09◦ . (37)

2×1016These  values  were  calculated  at  the  GUT scale  (
GeV) from a non-SUSY scenario, as reported in [42].

r1 ImYu =

r3 ImYd
Im(Yu)12

Im(Yd)12
=

Im(Yu)23

Im(Yd)23
=

r3

r1
ϕ′d

{ϕu,ϕ
′
u,ϕd} y f f = u,c, t,d, s,b

Yu Yd

{Au,Ad,ϕ1,ϕ2}
{ηu,ηd, ζu, ζd} ζu = 1

ζd

In  the  quark  sector,  because  the  condition 

 is always satisfied, which means that 

,  the  value  of  is  fully  determined  by
. Once Yukawa couplings  for 

are  fixed  at  their  best-fit  values,  and  are fully  de-
termined  by  the  free  parameters  up  to  the
sign  parameters ,  where  is  fixed
without  loss  of  generality;  does  not  influence  masses
and  mixing  in  the  quark  sector  but  contributes  to  the
lepton sector  via  Eq.  (22).  We explore  the  following  in-
tervals:
 

Au/yt,Ad/yb ∈ (0,1) , ϕ1,ϕ2,∈ (0,2π) . (38)

Yu Yd

Ye Ae Be B̃e Ce r1 r2

ce ye yµ yτ r1 r2

ce

ηe Ye

Ue U†e YeUe =

diag{ye,yµ,yτ}

After  and  are  determined  by  the  above  fitting
procedure in the quark sector, all non-vanishing entries of

, i.e., , ,  and , become functions of , , and
. We fix , , and  at their best-fit values, and , ,

and  are  determined  with  the  help  of  Eq.  (35)  up  to  a
sign difference . Then,  is fixed, and we can determ-
ine the unitary matrix  in the diagonalization 

.

Yν cν
Mν

mL mR

In the neutrino sector, according to Eq. (22), the only
undetermined  parameter  in  is .  In  Eq.  (6),  the  light
neutrino mass matrix, , is determined by two addition-
al  parameters,  and .  We  explore  these  parameters
in the following regions:
 

cν ∈ (10−2,10) , mL,mR ∈ (10−1,102) eV (39)

Mν

V†ν MνV∗ν = diag{m1,m2,m3}
Vν

UPMNS = V†e Vν

using the logarithmic scale to obtain . Then, the diag-
onalization  provides the  neut-
rino mass eigenvalues and unitary matrix . Finally, the
PMNS  matrix  is  given  by ,  and  the  three
lepton mixing angles are expressed as
 

sinθl
13 = |(UPMNS)e3|, tanθl

12 =

∣∣∣∣ (UPMNS)e2

(UPMNS)e1

∣∣∣∣,
tanθl

23 =

∣∣∣∣ (UPMNS)µ3

(UPMNS)τ3

∣∣∣∣. (40)

1σ

∆m2
21 = m2

2−m2
1 ∆m2

31 = m2
3−m2

1

On the experimental side, we used their global bf values
(excluding  SK  atmospheric  data)  from  NuFIT  5.3  [43,
44]1) and  averaged  the  positive  and  negative  errors.
We  also  considered  two  mass-squared  differences,

 and 
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to , as well as a smaller deviation of  from the maximal mixing value, i.e., from  to . These differences have little influence to our scan and we keep
our fitting in v5.3.
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∆m2
21 = (7.41±0.21)×10−5eV2 ,

∆m2
31 = (2.511±0.027)×10−3eV2 ,

θl
12 = 33.66◦±0.73◦ , θl

23 = 49.1◦±1.3◦ ,

θl
13 = 8.54◦±0.11◦ , (41)

m1 < m2 < m3

δl δl = 197◦±41◦

δl

m3 < m1 < m2

for  the  normal  mass  ordering  (NO, i.e., ).
The up-to-date experimental  constraint  on the Dirac CP-
violating  phase , ,  which  is  still  weak,
was  not  included  in  the  fit.  Instead,  we  treated  as  a
model  prediction.  We  do  not  discuss  inverted  ordering
(i.e., )  in  this  paper  because  a  preliminary
analysis suggested that our model does not favor this con-
figuration. Furthermore, we do not consider the small fla-
vor-dependent RG  running  effect  owing  to  the  suppres-
sion of the charged lepton Yukawa coupling.

{Au, Ad, ϕ1, ϕ2}
{ηu,ηd}

{θq
12, θ

q
13, θ

q
23, δ

q}
{cν,mL,mR}

{ηe, ζd} {θl
12, θ

l
13, θ

l
23,∆m2

21,∆m2
31}

We count the number of free parameters introduced in
the model and the independent observables used to fit the
data. Once the charged fermion masses are fixed, we are
left  with  four  free  parameters  to  explore
and  two  signs  in the  quark  sector,  with  four  ob-
servables  to fit.  In the neutrino sector, we
analyzed three free parameters  and two signs

,  with  five  observables  to
fit.

In summary, there are seven free parameters: 

param ∈ {Au,Ad,ϕ1,ϕ2,cν,mL,mR} . (42)

These parameters  were  used  to  fit  nine  independent  ob-
servables: 

obsn ∈ {θq
12, θ

q
13, θ

q
23, δ

q, θl
12, θ

l
13, θ

l
23,∆m2

21,∆m2
31} . (43)

Other observables were treated as model predictions.
χ2 χ2We conducted a simple  analysis with the  func-

tion defined as 

χ2 =
∑

n

Äobsth
n (param)−obsbf

n

σ(obsn)

ä2
, (44)

obsn

param

χ2

χ2
q < 10

where  denotes  the  nine  independent  observables  in
Eq.  (43),  and  accounts for  the  eight  free  paramet-
ers  in  Eq.  (42)  with  the  exploration  intervals  defined  in
Eqs.  (38)  and (39).  We determined the  regions  to  fit  the
experimental  data  by  setting  an  upper  bound  to  the 
value.  Our  analytical  procedure  was  divided  into  two
steps.  First,  we  explored  the  quark  sector  by  setting

. Then, we used the quark data for further explora-

χ2
l < 10

χ2 = χ2
q+χ

2
l ≤ 10 χ2 > 10

tion aiming at finding points with  in the charged
lepton  and  neutrino  sector.  We  further  established  that

 and  excluded  points  at  which .
The results are shown in Figs. 1 and 2.

χ2

cν χ2

cν
χ2

Figure 1 shows the dependence of the  value on the
model  parameters  as  well  as  correlations  among  these
parameters. Note that  varies in the range (0,1.7) and 
reaches a minimum of 1.6 when the value of  is approx-
imately 0.11). The benchmark point at the minimum of 
is listed in Appendix B.

r1 r2Note  also  the  linear  correlation  between  and .
This relationship can be analytically derived with the help
of Eqs. (22) and (35), 

r2 =
4Y
X

r1+
Z
X
, (45)

X=ζe[−Ae+ yτ+ηe(yµ− ye)]+ ζd[Ad − yb+ηd(yd − ys)],
Y = Au− yt +ηu(yu− yc), Z = ζe[−Ae+ yτ+ηe(yµ− ye)]+3ζd

[−Ad + yb+ηd(ys− yd)]

where 
 

. According to the rest of the panels
in Fig. 1, the theory inputs hold the following hierarchic-
al relation: 

Ad ≪ Au, mR≪ mL, r1≪ r2 . (46)

mee

m1 mee

Figure  2 shows correlations  between  predicted  ob-
servables.  In  the  top  left  panel  of Fig.  2,  predictions  for
the effective mass  of the neutrinoless double beta de-
cay are represented as a function of the lightest  neutrino

 for NO. The effective mass  is defined as 

mee =

∣∣∣∣∣ 3∑
i=1

mi(UPMNS)2
ei

∣∣∣∣∣ . (47)

mee

m1

δl J

δl

(90◦,230◦) J 0
3.5

δl 180◦ δl

160◦ J 1.14

δl 10◦

The  predicted  values  of  are  mostly  distributed
between  3.45  and  5.2  meV,  and  the  values  of  are
smaller  than  2.33  meV.  Furthermore,  we  calculated  the
CP-violating  phase  and  Jarlskog  invariant ,  which
measures the strength of CP violation in neutrino oscilla-
tions  [46, 47].  As  shown  in Fig.  2,  the  CP-violating 
varies  in  the  interval .  ranges  from %  to

%  and  clearly  increases  as  the  Dirac  CP-violating
phase  deviates  from .  At  the benchmark point, 
is predicted to be  and  is equal to %. The up-
coming  long-base  neutrino  experiments  DUNE  [48]  and
Hyper-Kamiokande [49] are expected to achieve a resolu-
tion of  at  the  level  of .  Thus,  they are  expected to
exclude a large parameter space of this model.

Once all  free  parameters  are  determined,  we can ob-
tain  the  RH  neutrino  mass  matrix  through  Eqs.  (7)  and
(24),  whose  eigenvalues  are  three  RH  neutrinos  masses,

Gao-Xiang Fang, Ye-Ling Zhou Chin. Phys. C 49, 103107 (2025)
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MN1 MN2 MN3

(1 ∼ 3.3)×
1012

, , and . As shown in Fig. 2, the heaviest RH
neutrino mass is predicted to be approximately 

 GeV. In  Section  IV,  we  check  whether  this  is  con-
sistent with  gauge  unification  and  proton  decay  con-
straints.
 

IV.  GAUGE UNIFICATION AND PROTON
DECAY

SO(10)GUTs have many breaking chains. In the con-
text  of  a  specific  breaking  chain,  the  solutions  to  the
RGEs  and  the  requirement  of  gauge  unification  impose

 

χ2 ≤ 10Fig. 1.    (color online) Parameters for the model with .

 

χ2 ≤ 10
Fig. 2.    (color online) Effective neutrino mass prediction (top left panel) and two-dimensional correlations between predicted observ-
ables for .
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SO(10)→GC
422→G3221→GSM

M1

B−L
B−L

M1

M1

restrictions  on the  GUT scale  and establish  a  correlation
with the intermediate scales. Given that the proton decay
rate depends on the GUT scale, we can exploit the limits
on this observable to constrain the GUT scale as well  as
intermediate  scales.  Recall  that  our  breaking  chain  is

, as introduced in Sec. II. In
this  analysis,  we  go  beyond  the  hypothesis  of  minimal
particle  content  and  consider  the  influence  of  additional
Higgses on gauge unification. The scale of the lowest in-
termediate symmetry breaking, denoted as  in Eq. (2),
refers  to  the  breaking  scale.  Majorana  masses  for
right-handed neutrinos are generated after the  spon-
taneous  breaking  at . By  keeping  the  Yukawa  coup-
lings  in  the  perturbative  region,  all  right-handed neutri-
nos,  including  the  heaviest  one,  should  not  have  masses
greater  than . Next,  we check whether  gauge unifica-
tion  in  this  model  satisfies  the  experimental  constraint
from proton decay and examine whether there is any ten-
sion between  the  lowest  intermediate  scale  and  the  pre-
dicted right-handed neutrino mass. 

A.    Unification of gauge couplings
SO(10)

H1× · · ·×Hn

Hi

Any intermediate symmetry between  and SM
can be expressed as a product of Lie groups ;
the two-loop renormalization group running equation for
group  is given by 

dαi(t)
dt
= βi(α j) , (48)

t = log(µ/µ0) αi = g2
i /4πwhere , .  The β function  depends

on the field contents of the theory: 

βi =
1

2π
α2

i (bi+
1

4π

∑
j

bi jα j) . (49)

bi bi jHere,  and  are coefficients and can be expressed as 

bi = −
11
3

C2(Hi)+
2
3

∑
F

T (ψi)+
1
3

∑
S

T (ϕi) ,

bi j = −
34
3

[C2(Hi)]2δi j+
∑

F

T (ψi)[2C2(ψ j)+
10
3

C2(Hi)δi j]

+
∑

S

T (ϕi)[4C2(ϕ j)+
2
3

C2(Hi)δi j] ,

(50)

ψi ϕi

Hi C2(Ri)
Ri = ψi,φi

Ri Hi C2(Hi)
Hi

b j

2π
α j(t0)(t− t0) < 1

where  the ψ and ϕ indices  sum  over  the  fermions  and
complex scalar multiplets, respectively, and  and  are
their representations in the group , respectively. 
(for )  represents  the  quadratic  Casimir  of  the
representation  in group , and  is the quadratic
Casimir of the adjoint presentation of the group . If the
condition  is  satisfied,  these  equations

can be analytically solved: 

α−1
i (t) = α−1

i (t0)− bi

2π
(t− t0)

+
∑

j

bi j

4πbi
log
Å

1− b j

2π
α j(t0)(t− t0)

ã
. (51)

Hi+1

Hi MI

α−1
Hi+1

(MI)−
1

12π
C2(Hi+1) = α−1

Hi
(MI)−

1
12π

C2(Hi)

SU(2)R×U(1)X −→ U(1)Y
3
5

Ä
α−1

2R(MI)−
1

6π

ä
+

2
5
α−1

1X(MI) = α−1
1Y (M1)

54H ,45H ,10H ,126H ,120H

nH

10H ,126H ,120H

54H ,45H M2→ MGUT

(15,1,1) ⊂ 45H

SU(4)c×SU(2)L×SU(2)R×ZC
2 SU(3)c×SU(2)L×

SU(2)R×U(1)X 45H

nH = 0

The  one-loop  matching  condition  for  group 
broken  into  a  subgroup  at  scale  is  given  by  [50]

.  When
, we  have  the  matching  condi-

tion  [51] .  In  this
breaking  pattern,  are  needed  to
trigger symmetry breaking and generate fermion masses.
In  the  following,  is  used  to  represent  the  repetition
number  of  the  Higgs  field ,  and  the  copy
of  is always set to one. For , we as-
sume that only  contributes to RG running,
given  that  it  is  responsible  for  the  symmetry  breaking
from  to 

,  and  other  components  of  are as-
sumed  to  be  around  the  GUT  scale.  Therefore,  when

, we have the following β-coefficients: 

GC
422 : {b0

i } =

â
−28

3

−10
3

−10
3

ì
,

{b0
i j} =

â
−25

6
9
2

9
2

45
2

11
3

0

45
2

0
11
3

ì
,

G3221 : {b0
i } =



−7

−10
3

−10
3

4

 ,

{b0
i j} =



−26
9
2

9
2

1
2

12
11
3

0
3
2

12 0
11
3

3
2

4
9
2

9
2

7
2


. (52)

bi = b0
i +

nHδbi,bi j = b0
i j+nHδbi j

The  final β-coefficients  can  be  obtained  from 
.  Next,  we  analyze  three  scenarios
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103107-10



where unification constraints are notably different.
S1)

(1,2,2) ⊂ 10H (15,2,2)+ (10,3,1)+ (10,1,3) ⊂ 126H

(1,2,2)+ (15,2,2) ⊂ 120H GC
422 (1,2,2,0) ⊂ 10H ,

(1,2,2,0)+ (1,1,3,−1) ⊂ 126H ,2(1,2,2,0) ⊂ 120H G3221

(1,2,2) ⊂ 10H

(1,2,2) ⊂ 120H GC
422 (1,2,2,0) ⊂ 10H

(1,2,2,0) ⊂ 126H 2(1,2,2,0) ⊂ 120H G3221

(1,2,2) (1,2,2,0)

 We assume  that  the  components  of  the  Higgs  mul-
tiplets  that  are  unnecessary  for  symmetry  breaking  at
lower  scales  are  heavy  and  decouple  at  higher  scales.
Minimal  Higgs  content  for  each  intermediate  symmetry
breaking is  considered.  Specifically,  Higgs  contents  in-
clude , ,

 in , 
 in .

We also assume that Higgs bi-doublets  and
 in mix,  and ,

, and  in  mix too.
Therefore, there is only one  and one that
contribute  to  gauge  running.  The β-cofficients  of  these
Higgs fields are 

GC
422 : {δbi} =

Ü 50
3

17

17

ê
,

{δbi j} =

Ü 2908
3

168 168

840 321 93

840 93 321

ê
,

G3221 : {δbi} =


0
1
3
1
3
2

 ,

{δbi j} =

â
0 0 0 0

0
13
3

3 0

0 3 23 12

0 0 36 27

ì
. (53)

S2)

(6,1,1) ⊂ 10H GC
422 (3,1,1,−1

3
),

(3,1,1,
1
3

) ⊂ 10H G3221

 Except for the minimal Higgs contents in S1, we add
 in  and  its  decomposition 

 in .  Mixing of  Higgs bi-doublets  is
also  considered  here.  The β-cofficients  of  these  Higgs
fields are 

GC
422 : {δbi} =

Ü
17

17

17

ê
,

{δbi j} =

Ü
982 168 168

840 321 93

840 93 321

ê
,

 

G3221 : {δbi} =



1
3
1
3
1
11
6

 ,

{δbi j} =



22
3

0 0
2
3

0
13
3

3 0

0 3 23 12
16
3

0 36
83
3

 . (54)

S3)
10H ,126H ,120H

 We assume  that  all  components  of  the  Higgs  mul-
tiplets in  contribute to the running of the
gauge coupling. Mixing of Higgs bi-doublets is also con-
sidered here. The β-cofficients of these Higgs fields are 

GC
422 : {δbi} =

Ü 64
3
21

21

ê
,

{δbi j} =

Ü 3584
3

192 192

960 433 93

960 93 433

ê
,

G3221 : {δbi} =



64
3
61
3
61
3
64
3


,

{δbi j} =



2368
3

192 192
128
3

512
1273

3
87 64

512 87
1273

3
64

1024
3

192 192
512
3


. (55)

MGUT,M2,M1

αGUT

nH

αGUT

(6,1,1) ⊂ 10H GC
422

(3,1,1,−1
3

), (3,1,1,
1
3

) ⊂ 10H G3221

We explored the parameter space of  al-
lowed  by  gauge  unification  and  calculated  the  gauge
coupling  at unification scale for each scenario. The
results are shown in Fig. 3. Note that, as  increases, or
equivalently,  when  more  Higgs  fields  are  added,  the β-
cofficients  become  larger,  which  results  in  the  gauge
coupling  evolving to a relatively large number, even
becoming  a  Landau  pole.  Comparing  scenario  S1  with
scenario  S2,  we  conclude  that  in  and
its  decomposition  in 
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nH = 3 αGUT

αGUT ≤ 0.4 αGUT ≥ 0.4
M1

nH = 3 M1

MN3 (1,2,2) (1,2,2,0)

nH = 1
αGUT

nH = 1
M1 ≤ M2 ≤ MGUT

nH ≥ 2

can improve the  GUT scale  but  decreases  the  lowest  in-
termediate scale. Furthermore, when , in scen-
ario  S2  grows  faster  than  in  the  other  two  scenarios,  so
we  set  and  cut  off  the  part  where ,
leading  to  a  maximum  of  that  becomes  small.  As  a
result,  in  scenario  S2,  when ,  is  smaller  than

 in Fig. 2. We also conclude that  and 
can improve the lowest intermediate scale but reduce the
GUT scale.  To improve the  GUT scale,  we consider  the
mixing of Higgs bi-doublets to reduce the contribution of
Higgs bi-doublets  to  gauge running.  In scenarios S1 and
S2,  when ,  there  are  not  many  Higgs  fields,  and

 does  not  increase  rapidly,  varying  in  the  interval
(0.022,0.032).  In  scenario  S3,  there  are  already  many
Higgs fields when . We found no solution that sat-
isfies  the  energy  scale  hierarchy  when

.
In  conclusion,  we  should  be  careful  about  adding

Higgs fields, as an increased number of Higgs fields im-
plies  a  faster  evolution  of  the  gauge  couplings,  which
may increase excessively, a situation not favored theoret-

nH = 1
M1 4.6×1013

MN3 < 4.4×1013

χ2 ≤ 10

ically.  When ,  the  above  three  scenarios  restrict
,  which  should  be  smaller  than  GeV, con-

sistent  with  GeV in  Refs.  [25, 52]. Fur-
thermore,  viable  points  of  in  our  model  always
meet this requirement.
 

B.    proton decay
SO(10)

(3,2,−5
6

), (3,2,
5
6

), (3,2,
1
6

), (3,2,−1
6

)

Xµ,Yµ,X′µ,Y ′µ

In non-SUSY  GUTs, proton decay will be in-
duced  by  integrating  out  the  superheavy  gauge  fields

,  which  are  typically
denoted as ,  resulting in the following four
dimension-six operators [53]:
 

ϵ i jkϵαβ

Å
1
Λ2

1
(u jc

R γ
µQk

α)(dic
RγµLβ)+

1
Λ2

1
(u jc

R γ
µQk

α)(ec
RγµQi

β)

+
1
Λ2

2
(d jc

R γ
µQk

α)(uic
RγµLβ)

+
1
Λ2

2
(d jc

R γ
µQk

α)(νc
RγµQi

β)+h.c.
ã
, (56)

 

MGUT M1 M2 αGUT

π0e+

M1 ≤ M2 ≤ MGUT nH = 1
10H ,126H ,120H MN3

nH = 3

Fig. 3.    (color online) Predictions of GUT scale , intermediate scales,  and , gauge coupling at GUT scale , and par-
tial  lifetime  for  proton  decaying  to  in  three  scenarios:  S1  (left),  S2  (middle),  and  S3  (right).  The  energy  scale  hierarchy

 is  required;  (solid  curve)  and  3  (dashed  curve)  refer  to  the  repetition  number  of  the  Higgs  fields
{the predicted range of  in the last section is represented in the pink band as a reference}. S3 presents no solution

for  ; therefore, it is not shown in the right panel.
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i, j,k α,β
Λ1 ≃

√
2M(X,Y)/gGUT, Λ2 ≃

√
2M(X′ ,Y′)/gGUT

p→ M+ l
π0,π+,K0,K+, ν

e,µ,ν

where  ( )  denote  color  (flavor)  indices  and
 are  the  UV

completion scales of the GUT symmetry. These four op-
erators trigger proton decay in the form , where
mesons M can  be  and  leptons l can  be

 [54]. The partial decay width for such decay mode
can be written as [55, 56] 

Γ(p→ M+ l) =
mp

32π

î
1−
ÄmM

mp

ä2ó2
×A2

L

∣∣∣∑
n

AS nWnFn
0(p→ M)

∣∣∣2 , (57)

n = L,R mp mM

Wn

Fn
0 = ⟨M|(qq′)L,Rq′′L |p⟩

q,q′,q′′ = u,d, s

where ,  and  are  masses  of  proton  and
mesons,  denotes the Wilson coefficients of the operat-
ors in Eq. (56) that give rise to a specific decay channel,

 is the  revelant  hadronic  matrix  ele-
ment, and .

AL

mp ∼ 1 MZ

AL = 1.247 AS L

AS R

MZ MGUT ≃ M(X,Y) =

M(X′ ,Y′)

AS L AS R

Furthermore,  represents the long range effect from
the proton scale (  GeV) to electroweak scale ( )
calculated at  the two-loop level  [57, 58]. 
and  represent  the  short  range  effects  obtained  from
RG  running  from  to  the  GUT  scale 

. Therefore, these two factors non-trivially depend
on the breaking chain.  and  are given by [59−62] 

AS L(R) =

MZ⩽MA⩽MX∏
A

∏
i

ï
αi(MA+1)
αi(MA)

ò γiL(R)
bi

, (58)

γi bi

γi

where  and  denote  the  anomalous  dimension  and
one-loop β coefficient, respectively, and  at given inter-
mediate scales can be found in [52].

p→ π0e+

Λ1 ≃ Λ2 ≃
√

2MGUT/gGUT

We focus on the golden channel , given that
. The decay widths of this  chan-

nel can be expressed as

 

Γ(p→ π0e+α) =
mp

32π

î
1−
Ämπ0

mp

ä2ó2
A2

L
g4

GUT

4M4
GUT

¶
A2

S L

∣∣∣(U ′Tu Uu)11(UT
d U ′e)1α+ (U ′Tu Ud)11(UT

u U ′e)1α

∣∣∣2∣∣∣⟨π0|(ud)LuL|p⟩
∣∣∣2

+A2
S R

∣∣∣(U ′Tu Uu)11(U ′Td Ue)1α+ (U ′Td Uu)11(U ′Tu Ue)1α

∣∣∣2∣∣∣⟨π0|(ud)RuL|p⟩
∣∣∣2© . (59)

U ′u =
Uu = PuOu,U ′d = Ud = PdOd, U ′e = Ue Ue

U†e YeUe = diag{ye,yµ,yτ}

p→ π0e+
4M4

GUT

g4
GUT

=
Ä M2

GUT

2παGUT

ä2

Uu,Ud,Ue

M1 nH

αGUT

(6,1,1) ⊂ 10H GC
422

(3,1,1,−1
3

), (3,1,1,
1
3

) ⊂ 10H G3221

τπ0e+ > 7.8×
1034 nH = 3

M1

2.3×108

MN3 nH = 1

An analysis of the fermion masses and mixing allowed us
to determine each unitary matrix in this formula for each
point  in Fig.  1.  In  particular,  as  Yukawa  coupling
matrices  are  Hermitian  in  our  model,  we  have 

,  and  can be  de-
rived  throgh  diagonalization .
Once we substitute the numerical results in Eq. (59),  the
proton decay lifetime of  is only proportional to

.  Predictions  for  the  proton  decay
lifetime in this channel for the aforementioned three scen-
arios  are  shown in Fig.  3. Here,  we  observe  that  the  ef-
fect of the flavor part  in Eq. (59) is small, and
the difference  between the  maximum and minimum val-
ues  of  the  proton  decay  lifetime  corresponding  to  the
same  value is within 5%. As increases, or equival-
ently,  if  more  Higgs  fields  are  added,  the  proton  decay
lifetime decreases owing to the increase in . In scen-
ario  2,  we  add  in  and its  decomposi-

tion  in  to  improve  the
GUT scale,  and its  proton decay lifetime can exceed the
future  Hyper-Kamiokande  (HK)  target  of 

 years [49] even when . However, the maxim-
um  of  the  lowest  intermediate  scale  allowed  by  the
Super-Kamiokande  (SK)  bound  decreases  to 
GeV, which is smaller than  in Fig. 2. When ,

τπ0e+ > 2.4×1034

M1

M1 ≤ 2.6×1012 M1 ≤ 1.2×1013

M1 ≤ 3.9×1013

MN3

all  three scenarios satisfy the SK bound 
years  [63];  the  constraints  on  for  three  scenarios  are
S1:  GeV,  S2:  GeV,  and
S3:  GeV.  It  is  clear  that  the  predicted
range of  in Fig. 2 consistently satisfies this require-
ment. 

V.  CONCLUSION

3×3

SO(10)

Z6

(90◦,230◦)

We  have  proposed  a  UTZT,  implying  that  all 
fermion Yukawa/mass matrices take two-zero flavor tex-
tures, in the  GUT framework to restrict the flavor
space of quarks and leptons. Through a concrete example,
we show that the UTZT flavor structure can be realized in
a  flavor  symmetry.  The  quark  and  lepton  mass
matrices  are  all  correlated  with  each  other  owing  to  the
grand unification. The light neutrino mass matrix, gener-
ated  via  the  Type-I+II  seesaw  mechanism,  is  shown  to
maintain  the  UTZT  property.  Together  with  the  relation
between the Dirac Yukawa coupling matrices in Eq. (5),
we explored seven free parameters to fit nine observables
(three  mixing  angles  and  one  CP-violating  phase  in  the
quark sector, three mixing angles, and two mass-squared
differences in the lepton sector).  The leptonic CP-violat-
ing  phase  was  treated  as  a  prediction  in  the  range

.  The upcoming long-baseline neutrino experi-
ments will have the potential to exclude part of the para-
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3.3×1012

SO(10) mee m1

meter space.  Our exploration results  show that  the right-
handed  neutrino  spectrum  can  be  strongly  constrained,
given  that  the  model  must  fit  all  flavor  data,  including
fermion  masses,  CKM  mixing,  and  PMNS  mixing.  The
heaviest  right-handed  neutrino  mass  is  predicted  to  be
less than  GeV, which is allowed by gauge uni-
fication  and  proton  decay  measurements  in  non-SUSY

 GUTs. The predicted region of  vs  in Fig.
2 for neutrinoless double beta decay experiments will al-
low us to test the grand unification.

SU(3)c

SU(4)c 10H

SO(10)

SU(2)L ×SU(2)R

nH = 1

M1

4.6×1013

αGUT ∈ (0.022,
0.032)

MGUT ≥ 4.5×
1015

We  performed  the  gauge  unification  for  a  specific
breaking chain  with  two  intermediate  scales  and  ex-
amined the range of allowed intermediate scales. The col-
or triplet Higgses of , which are decomposed from
sextet  of  and  further  decomposed  from  of

, were  found  to  improve  the  GUT  scale  but  de-
crease  the  lowest  intermediate  scale.  The  Higgs  bi-
doublets of  can improve the lowest inter-
mediate  scale  but  reduce  the  GUT  scale.  Therefore,  we
assume a few copies of Higgs bi-doublets at low energy,
leading  to  an  improvement  of  the  GUT  scale.  When

,  or  equivalently,  without  adding  too  many  Higgs
fields, all three aforementioned scenarios require that the
maximum  of  the  lowest  intermediate  scale  be  less
than  GeV,  which  is  consistent  with  predicted
observables  of  this  model  in Fig.  2.  Adding  too  many
Higgs  fields  causes  gauge  coupling  at  the  GUT scale  to
become too large,  which should be considered carefully.
Proton  decay  is  also  discussed.  As  long  as  too  many
Higgs  fields  are  not  added,  the  gauge  coupling  at  the
GUT scale will not become very large, i.e., 

.  Therefore,  the  GUT scale  is  always high enough
to  meet  the  SK  bound, i.e.,  approximately 

 GeV. 
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SO(10)

APPENDIX A: GENERAL FORM OF YUKAWA
MATRICES IN 

10H

120H 10H 126H 120H

n > 1
SO(10)

Next, we check the validity of Eq. (5) when  and
 are  complex.  The  copies  of , ,  and 

satisfy .  We  start  with  the  most  general  form  of
Yukawa terms in , 

−LY = (Ak)αβ 16αF16βF10k
H + (A′k)αβ 16αF16βF10k∗

H

+ (Bk)αβ 16αF16βF126k
H + i (Ck)αβ 16αF16βF120k

H

+ i (C′k)αβ 16αF16βF120k∗
H + h.c. , (A1)

k = 1,2, ...,n A′k C′k
10H 120H

126H

8n

where . The  and  terms are forbidden if
the Peccei-Quinn (PQ) symmetry is imposed; , ,

 are  decomposed  into  a  series  of  electroweak
doublets  in  the  SM gauge  symmetry,  and  these  doublets
mix together.  Up to  now,  we have a  total  of  pairs  of
Higgs doublets,
 

hu = (10u
Hk,120u1

Hk,120u2
Hk,126

u
Hk) ,

hd = (10d
Hk,120d1

Hk,120d2
Hk,126

d
Hk) , (A2)

1 2 120u
H 120d

H

G422 =

SU(4)c×SU(2)L×SU(2)R

where superscripts  and  of  and  denote the
SU(4) singlet and adjoint representation under the 

 decomposition.  The  Yukawa
terms after decomposition are explicitly expressed as
 

−LY = (10u
HkAk +10u∗

HkA′k)(quc+ lνc)

+ (10d
HkAk +10d∗

HkA′k)(qdc+ lec)

+
1√
3

126
u
HkBk(quc−3lνc)

+
1√
3

126
d
HkBk(qdc−3lec)

+ (120u1
HkCk +120u1∗

Hk C′k)(quc+ lνc)

+ (120d1
HkCk +120d1∗

Hk C′k)(qdc+ lec)

− 1√
3

(120u1
HkCk +120u1∗

Hk C′k)(quc−3lνc)

+
1√
3

(120d2
HkCk +120d2∗

Hk C′k)(qdc−3lec) . (A3)

ĥ
It is convenient to rotate the interaction basis h to the

mass basis  via a unitary transformation,
 

ha =

(‹hu

hd

)
a

→ ĥi =Wi,aha , (A4)

‹hu = iσ2h∗u
i = 1,2, ...,8n

a = jk

j = 1,2, ...8
k = 1,2, ...,n n > 1

hSM ≡ ĥ1

where , W is a unitary matrix, the subscript for
mass  states  is  arranged  following  the  mass
ordering, and the subscript for interaction states  is
further  split  into  two  subscripts,  and

,  with  respect  to  the  copy  for .  In  the
minimal  case,  only the  SM Higgs ,  which is  the
massless  Higgs  doublet  before  electroweak  symmetry
breaking, contributes  to  fermion  masses.  Then,  we  de-
compose Yukawa couplings in Eq. (62) into its SM parts
and obtain terms of fermion masses:
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−LY = (W1,1k Ak +W∗
1,1k

A′k)hSM(quc+ lνc)

+ (W∗
1,5k

Ak +W1,5k A′k)hSM(qdc+ lec)

+
1√
3

W1,4k BkhSM(quc−3lνc)

+
1√
3

W∗
1,8k

BkhSM(qdc−3lec)

+ (W1,2kCk +W∗
1,2k

C′k)hSM(quc+ lνc)

+ (W∗
1,6k

Ck +W1,6kC
′
k)hSM(qdc+ lec)

− 1√
3

(W1,3kCk +W∗
1,3k

C′k)hSM(quc−3lνc)

+
1√
3

(W∗
1,7k

Ck +W1,7kC
′
k)hSM(qdc−3lec) . (A5)

Based  on  these  terms,  we  can  parameterize  the  Dirac
Yukawa coupling matrices  of  fermions into  a  more con-
cise form:
 

Yu = H+H′+ r2F + i (r3G+ r∗3G′) ,

Yd = r1H+ r∗1H′+ r1F + i (r1G+ r∗1G′) ,

Yν = H+H′−3r2F + i (cνG+ c∗νG
′) ,

Ye = r1H+ r∗1H′−3r1F + i (cer1G+ c∗er∗1G′) , (A6)

where
 

H =W1,1k A∗k, H′ =W∗
1,1k

A′∗k , F =
W∗

1,8k√
3r1

B∗k,

G = −i
W∗

1,6k
+

1√
3

W∗
1,7k

r1
C∗k ,

G′ = −i
W1,6k +

1√
3

W1,7k

r∗1
C′∗k ,

r1 =
W∗

1,5k

W1,1k

, r2 =
W1,4k

W∗
1,8k

r1, r3 =

W1,2k −
1√
3

W1,3k

W∗
1,6k
+

1√
3

W∗
1,7k

r1,

ce =

W∗
1,6k
− 3√

3
W∗

1,7k

W∗
1,6k
+

1√
3

W∗
1,7k

, cν =
W1,2k +

3√
3

W1,3k

W∗
1,6k
+

1√
3

W∗
1,7k

r1 . (A7)

A′k C′k
A′k C′k

r1,r3,ce,cν

If the PQ symmetry is imposed,  and  are forbidden,
and  we  obtain  Eq.  (5).  If  and  are  present  and

 are real numbers, Eq. (65) is simplified as
 

Yu = (H+H′)+ r2F + ir3(G+G′) ,

Yd = r1(H+H′)+ r1F + ir1(G+G′) ,

Yν = (H+H′)−3r2F + icν(G+G′) ,

Ye = r1(H+H′)−3r1F + icer1(G+G′) , (A8)

10H 126H 120H

(1,2,2) ∈ 10H ,120H (15,2,2) ∈
120H ,126H

W1,1k A∗k +W∗
1,1k

A′∗k ,
W1,4k B∗k, W1,2kC

∗
k +W∗

1,2k
C′∗k , W1,3kC

∗
k +W∗

1,3k
C′∗k Yu,Yν

W∗
1,5k

A∗k +W1,5k A′∗k , W∗
1,8k

B∗k W∗
1,6k

C∗k+
W1,6kC

′∗
k , W∗

1,7k
C∗k +W1,7kC

′∗
k Yd,Ye

We obtain the same form as that of Eq. (5) again. In fact,
when we introduce , ,  to generate fermion
masses,  given  that  and 

 are  responsible  for  electroweak  symmetry
breaking  and  yield  fermion  masses,  these  four  Higgs
fields  only  lead  to  a  total  of  eight  independent  terms  in
Yukawa coupling  matrices:  four  terms 

 in 
and  four  terms , 

 in .

ĥ1 =W1,aha, ĥ2 =W2,aha

W∗
1, jk W∗

1, jk W∗
2, jk

The  discussion  can  also  be  extended  to  the  case  of
more Higgses  evolving  in  the  fermion  masses.  For  ex-
ample, in the two-Higgs-doublet model (THDM), by de-
noting  the  two  light  Higgses  as ,
the aforementioned eight terms can be rewritten by repla-
cing  with  certain  combinations  of  and ,
which will not be repeated here.

10H 120H 10∗H
10H 120H A′,C′ fi10u

Hk = 10d
Hkfl120u1

Hk = 120d1
Hk

fl120u2
Hk = 120d2

Hk

5n
1k,2k, ...,5k

In the case of  real  and ,  is  identical  to
, and so is . Terms of  can be absorbed into

terms  of A and C,  respectively;  in  addition, ,
,  and .  The  total  number  of

copies  of  doublets  is  reduced  to , and  thus,  the  sub-
script a denotes . 

APPENDIX B: BENCHMARK STUDY

χ2
Among  all  points  in  our  exploration,  we  found  that

the minimal value of  is 1.6. Inputs and predictions of
fermion  Yukawa  matrices  and  mixing  parameters  are
shown in Table B1. Yukawa matrices H, F, and G at this
point are given by 

H = 10−2 ·

Ü
0 −0.0745 0

−0.0745 6.18 −13.13

0 −13.13 33.4

ê
,

F = 10−2 ·

Ü
0 −0.1104 0

−0.1104 −0.1588 1.898

0 1.898 −4.781

ê
,

G = 10−2 ·

Ü
0. −0.0074 0

0.0074 0. −4.74

0 4.74 0.

ê
, (B1)

respectively.  Accordingly,  all  charged  fermion  Yukawa
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matrices and the light neutrino mass matrix are obtained:  
 

Yu =

Ü
0 (0.09−6.37i) ·10−5 0

(0.09+6.37i) ·10−5 0.0628 −0.1441−0.0411i

0 −0.1441+0.0411i 0.365

ê
,

Yd = 10−2 ·

Ü
0 0.0031+0.0001i 0

0.0031−0.0001i −0.1010 0.1885+0.0796i

0 0.1885−0.0796i −0.481

ê
,

Ye = 10−2 ·

Ü
0 −0.0043+0.0003i 0

−0.0043−0.0003i −0.1167 0.316−0.212i

0 0.316+0.212i −0.802

ê
,

Yν = 10−2 ·

Ü
0 −0.298−0.001i 0

−0.298+0.001i 5.86 −9.28−0.44i

0 −9.28+0.44i 23.73

ê
,

Mν = 10−2 ·

Ü
0 1.074 0

1.074 −3.72−1.50i −0.246+1.909i

0 −0.246+1.909i 1.844

ê
eV. (B2)

Then, applying the inverse of the Type-(I+II) seesaw
formula, the right-handed neutrino mass matrix becomes
 

MνR = 1012 ·

Ü
0 0.0598 0

0.0598 0.0860 1.028

0 1.028 2.589

ê
GeV. (B3)

1010 1011 1012

2.96×1012

B−L MB−L ≃ 4.6×1013

(nH = 1)

Three RH neutrino masses were predicted to be on or-
ders of , , and  GeV. In particular, the heav-
iest right-handed neutrino mass is  GeV, which
is below the  breaking scale,  GeV

 , and thus consistent with proton decay measure-
ments.

 

χ2Table  B1.    Inputs  and  predictions  of  neutrino  masses  and  mixing  parameters  for  minimal  in  our  exploration.  Charged  fermion
masses are all fixed at experimental best-fit values. Neutrino masses with normal ordering are predicted.

Inputs

Au Ad ϕ1 ϕ2

0.3665 0.0048 4.7379 1.4232

cν mL mR

0.0940 13.8057 eV 0.5588 eV

(ηu,ηd ,ηe, ζd)

(+, +, –, –)

Outputs

θ
q
12 θ

q
23 θ

q
13 δq

13.0356◦ 2.8011◦ 0.2366◦ 67.04◦

θl
12 θl

23 θl
13 δl

33.26◦ 48.52◦ 8.55◦ 160◦

χ2 = 1.6

m1 ∆m2
21 ∆m2

31 ⟨m⟩ee

0.491 meV 7.44 ·10−5 2.509 ·10−3 3.98 meV

MN1 MN2 MN3 J

1.07 ·1010 GeV 2.93 ·1011 GeV 2.96 ·1012 GeV 1.14%

Gao-Xiang Fang, Ye-Ling Zhou Chin. Phys. C 49, 103107 (2025)
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