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Abstract: We present an analysis of a recent approach for determining the average pairing matrix elements within a
specified interval of single-particle (sp) states around the Fermi level, denoted as A. This method, known as the uni-
form gap method (UGM), highlights the critical importance of the averaged sp level density g(e). The pairing mat-
rix elements within the UGM approach are deduced from microscopically calculated values of p(e) and gaps ob-
tained from analytical formulae of a semi-classical nature. Two effects generally ignored in similar fits are ad-
dressed: (a) a correction for a systematic bias introduced by fitting pairing gaps corresponding to equilibrium de-
formation solutions, as discussed by Moller and Nix [Nucl. Phys. A 476, 1 (1992)], and (b) a correction for a system-
atic spurious enhancement of p(e) for protons in the vicinity of A, caused by the local Slater approximation com-
monly employed in treating Coulomb exchange terms (e.g., [Phys. Rev. C 84, 014310 (2011)]). This approach has
demonstrated significant efficiency when applied to Hartree-Fock + Bardeen-Cooper-Schrieffer (BCS) calculations
(including the seniority force and self-consistent blocking for odd nuclei) of a large sample of well and rigidly de-
formed even-even rare-earth nuclei. The experimental moments of inertia for these nuclei were reproduced with an
accuracy comparable to that achieved through direct fitting of the data [Phys. Rev. C 99, 064306 (2019)]. In this
study, we extended the evaluation of our method to the reproduction of three-point odd-even mass differences
centered on odd-N or odd-Z nuclei in the same region. The agreement with experimental data was found to be com-
parable to that obtained through direct fitting, as reported in [Phys. Rev. C 99, 064306 (2019)].
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I. INTRODUCTION

A simple method for determining average pairing
matrix elements from averaged single-particle (sp) level
densities for the ground states of well and rigidly de-
formed nuclei was recently proposed in Ref. [1] and
found to be highly effective. These matrix elements, de-
noted as V, (where g represents the charge state, i.e.,
neutron or proton), correspond to their average values
around the Fermi energies, denoted as A,. They are inten-
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ded for use in a microscopic Hartree-Fock-plus-Bardeen-
Cooper-Schrieffer (HF+BCS) approach, where pairing
correlations are treated using the seniority force approx-
imation. This method involves solving the BCS variation-
al equations within a restricted sp space around the Fermi
energy, under the assumption that the pairing matrix ele-
ments remain constant within this interval.

The method accounts for the strong dependence of the
V, values on the sp level densities at the Fermi energy,
denoted as g,(4,), averaged using the Strutinsky ap-

Received 18 June 2024; Accepted 28 October 2024; Published online 29 October 2024

* T. V. Nhan Hao, P. Quentin and D. Quang Tam acknowledge the support by the Hue University under the Core Research Program, (NCM.DHH.2018.09). Anoth-
er co-author (M.H. Koh) would also like to acknowlege Universiti Teknologi Malaysia for its UTMShine grant (Q.J130000.2454.09G96)

¥ E-mail: tvnhao@hueuni.edu.vn
 E-mail: quentin@cenbg.in2p3.fr
$ E-mail: kmhock@utm.my

©2025 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese
Academy of Sciences and IOP Publishing Ltd. All rights, including for text and data mining, Al training, and similar technologies, are reserved.

034101-1


http://orcid.org/0000-0002-9356-4483
http://orcid.org/0000-0003-1470-0764
http://orcid.org/0000-0002-2243-5916

T. V. Nhan Hao, N. N. Bao Nguyen, D. Quang Tam e al.

Chin. Phys. C 49, 034101 (2025)

proach, which serves as a reliable substitute for a semi-
classical approximation. It also builds on the notion that
fitting nuclear energies —particularly those related to
pairing correlations—in terms of nucleon numbers effect-
ively corresponds to such a semi-classical approximation.
Consequently, experimental data are incorporated
through standard analytical formulae expressing the nuc-
leon-number dependence of odd-even mass differences,
denoted here as 6F (see, e.g., Refs. [2, 3]), while consid-
ering the critical corrective contributions presented in [4].

Since the pioneering research reported in Ref. [5],
standard practice has been to adjust the strength of pair-
ing correlations to reproduce experimental data on SE,
and, to a lesser extent, moments of inertia denoted as 7,
deduced from the first 2* excitation energies of well and
rigidly deformed even-even heavy nuclei. A recent study
[6] demonstrated that, in (or close to) the region of rare-
earth deformed nuclei (referred to hereafter as rare-earth
nuclei), separate fits to §E and J produced similarly ac-
curate results for the parameters used in HF+BCS (seni-
ority force) calculations of pairing correlations. This find-
ing confirms their strong dependence on an accurate de-
scription of pairing properties, underscoring their relev-
ance for such fits.

In both cases (6E and J), these fitting approaches
may be affected by accidental local deficiencies in the sp
level distribution near the Fermi energy. However, the
use of semi-classical quantities derived from a given mi-
croscopic theoretical framework can, in principle, mitig-
ate this problem. The validity of the analytical expres-
sions describing the (N,Z) dependence of the average
JEdifferences, as well as the accuracy of the averaged sp
level density of the canonical basis states, remains to be
evaluated.

The method proposed in Ref. [1] has been validated
by comparing its results for moments of inertia of well
and rigidly deformed rare-earth nuclei with those ob-
tained through a specific fit on the J data as reported in
Ref. [6]. A comparable level of accuracy was achieved in
reproducing these spectroscopic data.

The goal of this study was to conduct a similar com-
parison for the §E data, focusing on the results obtained
using the method proposed in Ref. [1] and on those from
the direct fit of these differences performed in the same
nuclear region, as detailed in Ref. [6].

In Section II, we briefly summarize the approach in-
troduced in Ref. [1], and Section III outlines the details of
the calculations performed in this study. The results are
analyzed and discussed in Section IV, and Section V
presents the conclusions and potential future directions of
the study.

II. BRIEF OVERVIEW OF THE APPROACH
The method employed in this study was detailed ex-

tensively in Ref. [1]; here, we provide only a brief out-
line of its main characteristics.

The approach begins with an sp spectrum for a charge
state g generated using any microscopic framework. In
this study, the spectrum was derived from self-consistent
HF+BCS calculations by applying the seniority force ap-
proximation for the pairing matrix elements.

We can calculate an approximate semi-classically av-
eraged sp level density g(e) as a function of the sp en-
ergy e through a standard Strutinsky energy averaging
method (see Refs. [7, 8]) using the following equation:

e—e

Y

puor=" [ perr(“5)ae. 1)

As discussed in Ref. [1], for the nuclei considered,
which are sufficiently far from the neutron drip line, the
averaging width is taken as y = 1.2 iw, where the energy
scale as a function of the nucleon number 4 is given by
the usual expression Aw=41A""3 MeV [9]. The f(x)
term corresponding to the curvature correction is defined
as

J(x) = P(x)w(x) 2)
and the expression for the weight factor w(x) is

(.
W(X)=ﬁe , 3)

and a polynomial P(x) is considered here to be the gener-
alized Laguerre polynomial L{} for the variable x*> of or-
der M =2, expressed as

M
P(x) = Lyt (") = Y ay, X, )

n=0

with coefficients a,, given, e.g., in Table 2 of Ref. [1].
For N, nucleons of the charge state g, we can com-
pute the Fermi energy A, using the following expression:

A4
m:/‘m@@. 5)

According to the uniform gap method proposed in Refs.
[7, 10], given a suitable average gap A, (see below), the
average pairing matrix element V, employed in our
HF+BCS approach is given by

1 /;qurQ
Vq - 14—

[)q(e)

—— (6)
(-2 +A,
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It is well known that the value of this matrix element
depends on the energy interval 2Q centered around the
Fermi energy, which includes the sp states active in the
BCS variational determination of occupation probabilit-
ies. In this study, similar to Ref. [1], we set Q =6 MeV.

The dependence of the nucleon-number N, on the av-
erage gaps A, can be obtained a priori from standard for-
mulas (e.g., those reported in Refs. [2, 3]). However,
Moller and Nix [4] indicated that such estimates
are biased owing to the selection of nuclei at equilibrium
deformation, which systematically corresponds to lower-
than-average quantal sp level densities. Based on their
findings, they proposed the following parametrization of
the average gaps:

rB;

B,= 2
q N(}/?

(7

where B, was setto 1 and r =4.8 MeV.

While we accept this value for neutrons, we noted in
Ref. [1] that this is not applicable to protons. In most mi-
croscopic approaches, such as the HF+BCS, Hartree-Fo-
ck-Bogoliubov (HFB), and relativistic mean-field models,
the treatment of exchange terms from the long-range
Coulomb interaction is simplified using the local Slater
approximation [11]. Studies have established [12] and
further confirmed [13, 14] that the Slater approximation
systematically and significantly overestimates the quan-
tal sp level density near the Fermi energy, particularly at
equilibrium deformation.

To ensure the safe use of the Slater approximation in
our approach, we must reduce the parameter r in Eq. (7)
by a factor R,, which is the ratio of the pairing gaps ob-
tained from two separate quantal BCS calculations (exact
and approximated using the Slater method). Ref. [1]
demonstrated that the dependence of this ratio on the in-
tensity of pairing correlations can be approximately de-
scribed by

R,=0.0181E" ,+0.781, ®)

con

where E” . is the average pairing condensation energy
(defined as the part of the total energy involving expli-
citely the abnormal BCS density), expressed in MeV.

Its value is estimated using the quantal gap obtained
from HF+BCS calculations with an initial ansatz for
the proton matrix element V, (see Appendix A in Ref.

[1D):
AZ
Eé’ond = 72’ (9)

where A, is the BCS proton pairing gap (in MeV).
In principle, this should involve an iterative process to

define new Moller-Nix average gaps and, consequently, a
new V, value. However, Ref. [1] showed that, by select-
ing an initial value of V,, approximated by a constant
matrix element with an initial pairing strength G, =
19MeV (see Sec. III A; a range that is easily delineated),
these iterations do not result in significant modifications
in the resulting matrix elements owing to the approxim-
ate nature of the corrective process described above.
Therefore, here, we limit ourselves to a non-iterative
method for estimating the pairing matrix elements.

III. CALCULATION DETAILS

A. Canonical basis

In our approach, the sp canonical basis states are de-
rived from self-consistent HF+BCS calculations. Note
that, throughout this study, the BCS correlations were de-
termined using the seniority force approximation. As an
alternative representation for the values of the average
matrix elements V,, we provide G, parameters intro-
duced in Ref. [15] to approximately remove the depend-
ence of these matrix elements on N, values:

G

= 1. 10
Vs 11+N, (10)

The particle-hole interaction used is of the standard
Skyrme type. Calculations were performed with the SIII
parametrization [16], which has been shown in numerous
studies to provide a reasonable description of the spectro-
scopic properties of well and rigidly deformed nuclei
(e.g., see [17] for a recent account). The averaged pairing
matrix elements V, are given for each nucleus according
to the method summarized in Section I, specifically for
even-even nuclei. For odd-Z (odd-N) nuclei, the retained
matrix element values are interpolated between those of
the neighboring isotones (isotopes).

The axial and intrinsic parity symmetries were im-
posed on the solutions. Therefore, the nuclei were charac-
terized by the projection K of their angular momentum
onto the symmetry axis and their parity z. To solve the
Schrodinger equation governing the canonical basis
states, we expanded these states in terms of eigenstates of
an axially symmetrical harmonic oscillator Hamiltonian.
This Hamiltonian is defined by a basis size parameter
Ny = 16 that selects relevant basis states depending on the
deformation, corresponding to the consideration of 17
shells at sphericity. The basis is truncated according to
the method outlined in Ref.[18]:

1
hwl(nl+1)+hwz(nz+§)shw0(No+2), (11

where n, and n, are the numbers of oscillator quanta in
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the symmetry-axis direction (z-axis) and perpendicular
direction, respectively, and Ny+1 corresponds to the
number of spherical shells.

The inverse-length » and deformation ¢ parameters
are defined as follows, with m representing the average
nucleonic mass [18]:

p= 0 =Y (12)
h w,

These two parameters are related to the angular fre-
quencies on the (x,y) plane, w,, and along the z-axis, w,,
whereas w} = w? w, is the angular frequency at sphericity.
The parameters b and g were optimized for even-even
nuclei to minimize the energy of each equilibrium solu-
tion, whereas for odd-A4 nuclei, they were interpolated
from the values obtained for even-even nuclei. Integrals
involving the local densities were computed using the
Gauss-Hermite and Gauss-Laguerre approximate integra-
tion methods, with 50 points along the symmetry axis and
16 points in the perpendicular direction, respectively.

B. Odd-even mass differences

The data on odd-even mass differences were extrac-
ted using a three-point formula. As discussed in Refs.
[19, 20], differences in 6", centered on an odd-neutron or
odd-proton nucleus, are reliable indicators of the degree
of pairing correlations. They are largely independent of
single-particle filling effects and are given, for example,
for an isotopic series by

DY

SO(N) = — {E(N +1,Z)=2E(N,Z)+ E(N — 1,2)}
_1\W
= ;) [S.(N.2)- S, (N +1,2)], (13)

where N is odd, and S, (N,Z) is the neutron separation en-
ergy of a nucleus composed of N neutrons and Z protons
whose total energies are denoted as E(N,Z). Similar ex-
pressions are easily deduced from the above equations for
odd-proton nuclei.

These energies were compared with those extracted
directly from the calculated binding energies within the
HF+BCS approach. For odd-4 nuclei, we performed self-
consistent blocking calculations, where a nucleon was
placed in the relevant sp orbit specified by the K~
quantum numbers. The breaking of time-reversal sym-
metry introduces new (time-odd) local densities in the
Hamiltonian density expression, resulting in additional
terms in the corresponding Hartree-Fock potential. As ex-
plicitly detailed in Ref. [21], when using the SIII interac-
tion, we considered a restricted set of time-odd potential
fields while preserving Galilean invariance, specifically
the vector spin field S(r) and vector current field A(r), as

per the usual notation. This choice is referred to as the
minimal scheme in Ref. [21].

In the context of the Bohr-Mottelson unified model,
which is well-suited for these deformed nuclei, we asso-
ciate the nuclear angular momentum and parity quantum
numbers [" to those values of K™ of the blocked nucleon
sp state. This approach is not free from perturbations in
the low-energy nuclear spectra owing to possible Coriol-
is coupling, which is ignored here. Particular cases in-
volve solutions where K =1/2, with a decoupling para-
meter a outside the range —1 < a < 4. These cases are spe-
cifically discussed in Section IV, where we show that
they have no significant effect on the natural rotational
band ordering of states. The decoupling parameter a is
defined [22] through the relation

a=—(i\J, i), (14)

where J, is the usual angular momentum ladder operator
(sum of orbital and spin angular momenta) in % units, and
li) is the canonically conjugate single-particle state of the
blocked state [i). These two states are such that
Tiy = Qliy and Jji) = —Qji). In our HFBCS code with
self-consistent blocking, the time-reversal symmetry is
broken in the one-body sector. The definition of the two
sp states forming the equivalent Cooper pairs in our
BCS wavefunction is provided in Appendix A in Ref.
[23].

We systematically calculated solutions for odd-4 nuc-
lei corresponding to the experimental values of the
ground state I” [24], as well as cases in which the calcu-
lated energies are either below or, in some instances (as
discussed in Section V), above these values, generally by
up to a couple of hundred keV.

C. Choice of sample nuclei

We selected odd-4 nuclei from the rare-carth region,
including Hafnium isotopes (collectively referred to as
rare-earth nuclei hereafter), specifically odd-proton iso-
topes from Europium to Lutetium and odd-neutron iso-
topes from Samarium to Hafnium. These nuclei were se-
lected since they were well and rigidly deformed, and
they were sufficiently far from the transition region
between deformed and soft nuclei. The first criterion en-
sures that we can approximate the collective dynamics as
a pure rigid rotation within the Bohr-Mottelson unified
model, which enables us to limit our analysis to a single
BCS state, thereby neglecting quantal shape fluctuations.
The second criterion is employed to avoid significant
shape variations (and consequently large sp spectrum
changes) between the three isotopes (isotones) involved
in the calculation of energy differences 6 (6¢").

Table 1 lists the values of ratio R, for the excitation
energies of the first 4* and 2* states [24] of the 22 even-
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Table 1.
sidered in this study. The calculated total energies Ey, are ex-

Static properties of the 22 even-even nuclei con-

pressed in MeV. The experimental intrinsic axial quadrupole
moments for the charge distribution are derived (using the
unified model relations for rotational band states) from Refs.
[25] ([26]) for the first spectroscopic 2* state data denoted as
Qn(sp.) moments (the moments deduced from reduced B(E2)
data are denoted as Qiz‘g(BEZ)). They are compared with the
corresponding calculated moments Qifi(th.). All these mo-
ments are expressed in barn.

Nucleus Eh. Rap Q%(sp.) Q%(BEZ) Q%‘(th.)
"Sm -1276496  3.290  5.85(7) - 6.81
158gm  —1288.582 3301  6.55(14) - 6.99
160§ —1299.953 3292 - - 711
100Gq  —1305.533 3302 728(14) 7.265(42) 725
162Gq  —1318.251 3302 - - 7.40
16464 —1330.079 3295 - - 751
166G —1341.067  3.300 - - 758
l2py  —1319.955  3.294 - 7.33(8) 7.38

164py  —1333.969 3.301  7.28(53)  7.503(33) 7.56
18py  -1347.128 3310 - - 7.69
18py  -1359.411 3313 - - 776
168g;  —1361.733  3.309 - 7.63 (7) 7.84
1M0g, 1375231 3310 6.65(70)  7.65(7) 7.93
12g;  -1387.702 3314 - - 77
10yy  —1374077 3293 7.63(11)  7.63(9) 7.90
2yp  -1388.724 3305 7.77(14)  7.792(45)  7.98
74yp  —1402460 3310 7.63(18) 7.727(39)  7.77
6yp 1415595 3310 7.98(21)  7.30(13) 7.58
8yp  —1427.957 3310 - - 746
T8f  —1429290 3291 7.07(7) 6961 (43) 7.2
10gf 1442851 3307 7.00(7)  6.85(9) 7.08
182 -1455.193  3.295 - - 6.85

even nuclei bracketing the odd-4 nuclei, whose energy
differences 67 were evaluated in our calculations. They
appear to satisfy the first criterion reasonably well given
that Ry, > 3.29 in all cases.

In this table, the intrinsic axial charge quadrupole mo-
ments Q' (th.) obtained from our calculations are com-
pared, when available, with the corresponding experi-
mental values. These values are either deduced from re-
duced B(E2) data [26] referred to hereafter as Qt(BE2),
or from the spectroscopic moments Q3 of the first 2+
state [25], using the unified model relation for I=2,
K =0, namely Qi (sp.) =-3.5 Q% . A good reproduction
of the Qi data is observed with the SIII interaction in
use, as demonstrated in earlier studies [27], although the
fit is slightly less accurate for '3%1¥Sm isotopes).

IV. RESULTS

While this study focused on testing the calculated
odd-even mass differences 6(43), we first discuss the nature
and relevance of the configurations used in the comparis-
on of our results with experimental data. By configura-
tion, we refer to the nuclear spin (which, as noted, is as-
sumed to be equal to the projection of the angular mo-
mentum on the quantization axis) and parity (well defined
in our solution owing to the imposition of intrinsic reflec-
tion symmetry). The choice of configuration, which de-
termines the location of the unpaired nucleon in the sp
spectrum, directly affects the relevant separation ener-
gies. However, to prevent the value predicted by our ap-
proach from being unduly overestimated, we limited our
comparison with the data to theoretical solutions that pos-
sess the experimental ground-state spin and parity values,
even if they do not correspond to the lowest calculated
total energy. Nevertheless, it is interesting to examine
how well the spin and parity of the calculated ground
states align with experimental data. Similarly, given that
the ordering of sp states around the Fermi level depends
significantly on the deformation of the mean field, we
checked the agreement between our calculated axial mo-
ments and the intrinsic moments extracted from two ex-
perimental data sources: reduced E2 transition data and
spectroscopic moment data.

A. Discussion of the ground-state configurations ob-
tained in our calculations for odd-Z nuclei

Next, we compare the lowest-energy configurations
obtained in our calculations with the experimental values
of angular momentum and parity quantum numbers I”
provided in the current version of the NUDAT compila-
tion [24].

Table 2 shows that, for 8 nuclei out of 13 (*'Tb,
163Tb, 167HO, 169HO, lﬁng, ”le, 177Lu, and 179Lu), our
theoretical assignments agree with the data.

We confirm the suggested assignments for three nuc-
lei, namely '®>Tb and '®’Tb as 3/2%, and '*Tm as 1/2%.
No assignment was proposed in Ref. [24] for the '*'Eu
nucleus. We suggest a 5/2 configuration; however, note
that we obtained a 5/2* solution 179 keV above the 5/2~
configuration. In one case ('*’Eu), the experimental low-
est configuration 5/2* was obtained 145 keV above a
5/2" state. Finally, note that the decoupling constant val-
ues corresponding to the 1/2* state considered in the
three calculated isotopes of Thulium belong to the inter-
val[—0.64,-0.60], thereby ensuring that assigning the
band head spin as 1/2 is correct.

B. Discussion of the ground-state configurations ob-
tained in our calculations for odd-N nuclei
Table 3 shows that, for 9 nuclei out of 16 ('*°Sm,
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Table 2. Comparison of some spectroscopic properties of
the 13 odd-Z nuclei considered in this study. Along with the
calculated total energies Ey, , expressed in MeV, the intrinsic
configuration spins and parities K* of our solutions are repor-
ted. The corresponding experimental ground-state values I”
(proposed or suggested - in brackets - when available) for a
given nucleus are included for the sake of comparison, assum-
ing the validity of the unified model assumption, 7 = K, for the
band head states. The calculated values of 6$) and experi-
mental values of 681,, for odd-even mass differences (ex-
pressed in keV) are also reported.

Nucleus I"(exp.) I"(th.) gth 5 5o,
9gy 5/2* 52+ -1296.280 777 554

5/2~ —1296.425 633 -

16lgy - 5/2- —1308.524 579 -
5/2* -1308.345 757 466
161 32+ 32+ -1312.161 583 600
163y 32+ 32+ -1325.597 513 529
165Th (32%) 32+ -1338.149 455 550
167Th (32%) 32+ —1349.801 438 579
167Ho 72~ 712~ —1353.783 648 508
1090 712~ 712~ -1366.734 588 535
169Tm 12+ 12+ -1367.174 732 602
7Ty 12+ 12+ —-1381.392 585 471
173Tm 1/2%) 12+ —1394.585 496 458
7Lu 772+ 712+ —1422.045 397 579
7914 72+ 712+ —1435.055 348 669

161Gd, 19Dy, "'Er, 13Yb, 175Yb, 177Yb, '"Hf, and '$'Hf),
our theoretical assignments agree with the data.

We confirm the suggested assignment for one nucle-
us, namely '7Sm as 3/2°. No assignment was proposed
in Ref. [24] for the 'Gd nucleus. We suggest a 7/2*
configuration. Concerning '*’Dy, the ground-state config-
uration 1/2- suggested in Ref. [24] was calculated to be
only 58 keV above a 7/2* state. In one nucleus ('*Er),
the lowest configuration 1/2- experimentally obtained
was only 72 keV above a 7/2" state.

Three cases deserve a particular attention. In Ref.
[24], two assignments (5/27,7/2%) were suggested for
163Gd. We identified the latter (7/2*) as the ground state,
with the former (5/27) lying 579 keV higher and a 1/2-
configuration located at 59 keV. For Dy, the experi-
mental 7/2* ground state is accompanied by a 1/2~ iso-
meric state with an excitation energy of 108 keV. We
identified both states as the lowest ones but with an inver-
sion; the 1/2~ state was 48 keV lower in energy. A simil-
ar situation occurs for 7'Yb, with an experimental 1/2-
ground state and a 7/2* isomeric state 95 keV higher.
Again, we identified these states as the lowest but with an

Table 3. Same as Table 2 for the 16 odd-N nuclei con-
sidered in this study. Note that, for the '*Dy and "' Yb nuclei,
the experimental values of the spin and parity of a low-lying
isomeric state are also provided.

Nucleus I"(exp.) I"(th.) Eth. 553) 63)}1
157Sm (3/27) 3/2- -1281.764 775 629
1598m 52 5/2~ -1293.550 718 535
161Gd 512~ 5/2- -1311.129 763 605

72% -1323.398 766

5/2- -1322.819 1346
163Gd (5/27,7/2%) 599

2% -1323.457 707

72 -1323.398 766
165Gd - 712+ -1334.916 657 507
163py 512~ 52~ -1326.097 864 694
165Dy 7/2%,1/2,, 7/2* —1339.788 760 664

12~ -1339.836 712 -
167py 1/27) 1/2- -1352.563 707 661

72 -1352.620 650 -
1695 1/2- 12~ -1367.745 737 627

72 -1367.817 665 -
1T Er 512~ 5/2- -1380.826 640 577
171yb 1/27,7/2;, 12~ ~1380.625 776 703

72+ -1380.698 703 -
173yb 512~ 5/2- ~1394.879 713 549
175yb 72 712~ —1408.299 728 522
177yb 9/2+ 9/2+ -1421.235 541 598
179Hf 9/2+ 9/2+ —1435.547 524 644
1814 1/2- 12~ —1448.366 655 512

inversion; the 1/2 state was 73 keV lower in energy.

C. Comments on our assignments of spin and parity

In our calculations for both odd-Z and odd-N nuclei,
we achieved agreement in 21 out of 29 cases for which
spin and parity assignments were reported or suggested in
Ref. [24]. We propose assignments for two nuclei. In two
instances where experimental isomeric states were ob-
served at excitation energies in the 100-150 keV range,
our calculations reproduced these states but with an in-
version in their ordering, resulting in discrepancies of
50-70 keV. Based on these results, encompassing a
sample of 29 odd-A4 nuclei and considering only intrinsic
states within the unified model, we conclude that our es-
timates of the low-lying bandhead spectra provide a reas-
onably accurate reproduction of relative energies, with
deviations generally within approximately 150 keV.

Finally, we discuss the decoupling constant values
corresponding to the 1/2 states considered in our calcula-
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tions for these odd-N nuclei. The decoupling constant was
found to be —0.61 for the 1/2 state of '©*Gd, —0.64 and
-0.65 for the 1/2- states of 'Dy and '’Dy, —0.73 for
the 1/2 state of '®Er, —0.76 for the 1/2~ state of '"'YDb,
and +0.24 for the 1/2- state of '8'Hf. In all cases, these
values confirm that the bandhead spin assignment of 1/2
is correct.

D. Discussion of the odd-even mass differences
obtained in our calculations

Tables 2 and 3 show the three-point odd-even mass
differences 67" for protons and neutrons. The rms differ-
ences between experimental (as deduced from the separa-
tion energies given in Ref. [24]) and calculated values in
all cases for the experimental /™ assignments are 165 keV
for protons and 141 keV for neutrons. We can compare

these values with those reported in Ref. [6], where direct
fits of the pairing matrix elements V, and V, were per-
formed on the odd-even mass differences 67 and 6 for a
similar sampling of nuclei. Therein, the rms deviations
were calculated to be 182 keV for protons and 78 keV for
neutrons. Given the expected accuracy on energies in our
approach, the accuracy of our current approach is com-
parable to that of the approach reported in Ref. [24].

Numerically assessing the impact of the two improve-
ments considered in this study, through two test cases,
would also be instructive: the Moller-Nix prescription
and the correction for the deficiency of the Slater approx-
imation.

Table 4 shows the average matrix elements V, and the
resulting odd-even mass-differences with and without the
R, corrective factor for two odd-mass nuclei using two
types of empirical formula, namely those of Jensen and

Table 4. Absolute values of the average neutron (V,) and proton (V,) pairing matrix elements together with the calculated total ener-
gies (Ep,) and odd-even mass differences 6;3) obtained using four different approaches for determining the pairing gap A, for the 177Yb

(odd-neutron with K7 =9/2%) and '"Lu (odd-proton with K™ =7/2*) nuclei. Two types of empirical formulas were considered in this

study, namely the Jensen and Moéller-Nix formulas. They were applied either in their original forms or with the Slater correction incor-

porated via Eq. (8).

Nucleus Gap formula zZ N A V, MeV V, MeV Eq. /MeV 6513) /keV
70 106 176 0.1582 0.2221 —1415.378
Jensen 70 107 177 0.1553 0.2205 —1421.230 351
70 108 178 0.1524 0.2188 —1427.784
70 106 176 0.1582 0.2093 —1415.237
Jensen + Slater corr. 70 107 177 0.1553 0.2075 —1421.110 401
70 108 178 0.1524 0.2057 —1427.784
177y
70 106 176 0.1681 0.2373 —1415.848
Moller-Nix 70 107 177 0.1664 0.2364 —1421.462 544
70 108 178 0.1646 0.2355 —1428.164
70 106 176 0.1681 0.2215 —1415.595
Moller-Nix + Slater corr. 70 107 177 0.1664 0.2210 —1421.235 541
70 108 178 0.1646 0.2204 —1427.957
70 106 176 0.1582 0.2221 —1415.378
Jensen 71 106 177 0.1603 0.2210 —1421.858 432
72 106 178 0.1623 0.2199 —1429.201
70 106 176 0.1582 0.2093 —1415.237
Jensen + Slater corr. 71 106 177 0.1603 0.2088 —1421.858 270
7 72 106 178 0.1623 0.2082 —1429.017
L 70 106 176 0.1681 0.2373 —1415.848
Moller-Nix 71 106 177 0.1683 0.2333 —1422.065 648
72 106 178 0.1685 0.2292 —1429.579
70 106 176 0.1681 0.2215 —1415.595
Moller-Nix + Slater corr. 71 106 177 0.1683 0.2190 —1422.045 397
72 106 178 0.1685 0.2164 —1429.290
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Moller-Nix.

We first compare the results obtained using the
Jensen and Moller-Nix formulas without applying the
Slater correction. When employing the Jensen pairing
gaps, the estimated absolute values of the neutron and
proton pairing matrix elements are consistently lower
than those obtained with the Moéller-Nix formula. This re-
duction, approximately 10 keV for both neutrons and pro-
tons, translates into a decrease in the odd-even mass dif-
ferences by approximately 200 keV.

For the odd-neutron '7Yb nucleus and neighbouring
even-even nuclei, using the Méller-Nix gaps, inclusion of
the R, corrective factor decreases the absolute value of
the proton pairing matrix elements (i.e., less pairing) by
approximately 10 keV, having no significant effect, as
expected, on the neutron odd-even mass difference
around the 7"Yb nucleus.

For the odd-proton '’Lu nucleus, the inclusion of the
Slater correction also yields a decrease of approximately
10 keV in the average pairing matrix elements, resulting
in a decrease of approximately 250 keV in the calculated
values of 6.

V. CONCLUDING REMARKS

This study extended the findings of Ref. [1] in the
rare-earth region using the SIII Skyrme interaction. Ref.

[1] demonstrated that the rms deviation between the cal-
culated and experimental moments of inertia, derived
from the energy of the first 2* level energy found in 11
well and rigidly deformed rare-earth nuclei, was
1.77%*MeV~", which corresponds to approximately 5%.
A similar value of 1.75 (A*MeV™") was obtained in Ref.
[6] through a direct fit of these moments of inertia in the
same region and interaction.

These findings, combined with the results presented
here, suggest that the method proposed in Ref. [1]
provides a treatment of pairing correlations that is as ef-
fective as, yet simpler than, the localized and labor-in-
tensive fitting processes typically required for each
particle-hole interaction. However, this method is inher-
ently suitable for describing pairing correlations at the
equilibrium deformation of well and rigidly deformed
nuclei. In practical applications, HF+BCS calculations
within the seniority force approach assume that the pair-
ing matrix elements derived in these specific conditions
can be generalized, for instance, in computing potential-
energy curves or surfaces as functions of deformation
parameters or multipole moments. Adopting the current
approach as a foundation for determining the strength of
pairing residual interactions could eliminate such ambi-
guities in HF+BCS or HFB calculations. This refinement
is currently under investigation.
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