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Evolution of the universe prior to inflation in loop quantum cosmology
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Abstract: We studied the dynamics of pre-inflation with generic potentials, namely V(¢) < ¢* and V() < (1 + )2,
in the context of loop quantum cosmology, where the initial singularity is resolved by a non-singular quantum
bounce. Initially, the background evolution is dominated by either kinetic or potential energy at the quantum bounce.
In the case of kinetic energy dominated evolution at the bounce, we found three generic phases, namely bouncing,
transition, and slow-roll inflation. The first two regimes vanish in the case of potential energy dominated evolution;
however, slow-roll inflation remains. Therefore, we found physically viable initial conditions of the inflaton field,
which must have a minimum number of e-folds of 60 to be compatible with observations. Additionally, we ana-
lyzed the phase space diagram for the models under consideration; we found that all the trajectories of the inflaton
field start from the bounce and move toward stable attractor points.
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I. INTRODUCTION

The theory of inflation was suggested in 1980. Since
then, it has been notably successful in solving many rel-
evant problems of the Big Bang cosmology, such as the
horizon and flatness problems. Cosmic inflation explains
the origin of inhomogeneities and the structure formation
of the universe [1, 2]. However, knowledge on its past is
incomplete owing to the initial singularity, known as the
Big Bang singularity, where all quantities become infin-
ite. Over the past two decades, loop quantum cosmology
(LQC) has been employed to resolve the Big Bang singu-
larity in cosmological models. Within the framework of
LQC, quantum geometric effects play a crucial role, re-
placing the initial singularity with a non-singular
quantum bounce [3—5]. LQC is a successful application
of loop quantum gravity (LQG) [6,7]. Based on
Ashtekar's variables and the Hamiltonian formalism,
LQG is a canonical quantization of Einstein's theory of
gravity [8]. LQC is built by applying LQG methods on
cosmological models in the context of the supermini-
space methodology [3]. LQC addresses the Big-Bang sin-
gularity through a generic approach [9]. The use of LQC
in inflationary cosmology is motivated by its ability to re-
solve the initial singularity and provide a more compre-
hensive understanding of the universe's origins. Let us
explore some of these motivations in detail. The first key
motivation is the resolution of the singularity. LQC of-
fers a framework that replaces the Big Bang singularity

CSTR: 32044.14.ChinesePhysicsC.49035102

with a quantum bounce. In this scenario, the universe un-
dergoes a phase of contraction to an extent before ex-
panding again. This bounce offers a natural mechanism
for transitioning from a pre-inflationary phase to an infla-
tionary phase, which is essential for inflationary models.
The second motivation lies in the incorporation of
quantum gravitational effects. LQC accounts for these ef-
fects at high densities, significantly influencing the early
universe's dynamics. This can address longstanding is-
sues such as the flatness and horizon problems. Further-
more, LQC provides insights into the behavior of scalar
fields during inflation and how quantum fluctuations may
manifest in cosmic microwave background radiation.
Concerning the implications of LQC for inflationary cos-
mology, the dynamics of inflation can be affected by the
bounce. This can, in turn, modify the predictions about
the scalar power spectrum and tensor-to-scalar ratio. Ad-
ditionally, the bounce introduces novel quantum effects
that modify the spectrum of perturbations. By resolving
the initial singularity, LQC offers a new perspective on
the universe's initial conditions. Rather than emerging
from a singular state, the universe transitions from a pre-
bounce state, which can influence the scalar field config-
urations and the duration of inflation. Recently, an ex-
tensive study on the modified Loop Quantum Cosmo-
logy (mLQC) was reported [10—15]. Two fundamental
gradients were adopted to derive mLQC: the first one is
the supermini-space assumption; the second one is the
classical relation between the Euclidean and Lorentzian
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terms. However, none of them exhibit the essence of
LQG, in which the quantizations of the Euclidean and
Lorentzian terms usually follow different processes [9],
and the operations of symmetry reduction and quantiza-
tion are not communicated. In Ref. [16], the effective
Hamiltonian was obtained by closely following the pro-
cesses of LQG. Later, a systematical derivation of the ef-
fective Hamiltonian was reported in Refs. [17—19]. In this
context, various scalar field models were systematically
studied in the post-bounce phase [20—22].

In this study, we investigated the evolution of the uni-
verse with different potentials in the context of LQC and
numerically obtained initial conditions of the inflaton
field at the bounce. Furthermore, we thoroughly studied
the initial conditions of the field to check the slow-roll in-
flation. All inflationary models, in the case of the classic-
al theory of General Relativity (GR), are affected by the
Big Bang singularity, which is inevitable [23, 24]. Hence,
it is difficult to know when and how to set the initial val-
ues of the field. To be consistent with observations, the
number of e-folds should be at least 60 during the slow-
roll inflation for each value of the inflaton field; if this is
not the case, such a value of the field would be discarded.
The number of e-folds, in some cases, exceeds 70 [25]. In
this study, we used only background cosmology to
demonstrate the numerical evolution of the universe. In
the case of kinetic energy dominated (KED) initial val-
ues of the inflaton field, the universe is divided into three
distinct regimes: bouncing, transition, and slow-roll infla-
tion. Conversely, the bouncing and transition regimes are
absent in potential energy dominated (PED) initial condi-
tions of the inflaton field. To review the dynamical beha-
vior of pre-inflation and inflation, readers may consult
Refs. [26—34]. The choice of power law potentials (see
models 1 and 2) in the context of LQC is often motivated
by their simplicity and mathematical tractability, rather
than their direct observational agreement with current
cosmological data. Power law potentials are among the
simplest types of potentials used to study inflationary dy-
namics in cosmology. Their straightforward mathematic-
al forms lead to relatively simple solutions for field dy-
namics in both classical and quantum gravity contexts. In
LQC, these potentials serve as a good starting point for
understanding how quantum gravity influences inflation,
even if they do not necessarily align with current observa-
tions. While present observations (e.g., Planck data) fa-
vor smaller field potentials such as the Starobinsky poten-
tial, the study of models 1 and 2 remains important for
theoretical exploration. The fact that these potentials may
be ruled out by observations does not invalidate their role
in LQC studies. Instead, they offer valuable insights into
the structure of inflationary models, even if they do not
perfectly align with observational data. In this sense,
studying these potentials acts as a stepping stone for un-
derstanding a broader range of potential behaviors within

LQC.

This paper is organized as follows. In Sec. II, the
evolution equations of LQC with a spatially flat Fried-
mann—Lemaitre—Robertson—-Walker (FLRW) universe is
discussed. In sub-sections II.A and II.B, we examine the
numerical evolution of the models with V(¢)x¢* and
V(¢) < (1+¢)> and check whether the desired slow-roll
inflation with at least 60 e-folds exists. Sec. III is de-
voted to phase space analysis. The results are summar-
ized in Sec. IV.

II. EVOLUTION OF PRE-INFLATIONARY
UNIVERSE

In this section, we review the dynamics of pre-infla-
tion in a homogeneous and isotropic FLRW background
with a spatially flat metric described by

ds? = —df* + a(t)dx;dx’, (1)

where ¢ is the cosmic time and a(r) represents the expan-
sion factor of the universe. The modified Friedmann
equation with a spatially flat FLRW universe in the
framework of LQC is given by [7]

=g p(1-2), @)

where m7, = 1/G denotes the Planck mass; p and p,. rep-
resent the energy density of the scalar field and the critic-
al energy density, respectively; p. is approximated as
pe=0.41m), [35, 36]; H=a/a is the Hubble parameter;
and dot (.) denotes differentiation with respect to cosmic
time. In this paper, we consider single field inflation, for
which the Klein-Gordon equation is expressed as

dv(g) _

¢+3Hp+ o

0. 3)

The equation of state (EOS) w(¢) for the scalar field is
defined as

_$2-V()

= = ~ —1, in the slow-roll phase. 4
P12+ V(@) P @

w(o)

In LQC, the Big Bang singularity is resolved and re-
placed by a non-singular quantum bounce [3—5, 16]. At
p =p., the quantum bounce occurs where the Hubble
parameter becomes zero (H =0) (see Eq. (2)). The nu-
merical evolution of the background for various poten-
tials has been investigated in the literature [26, 28, 30, 32,
34]. An important result is that the desired slow-roll infla-
tionary regime is achieved. In the present study, we chose
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generic potentials of the form V(¢)x¢* and V(¢)
(1+¢)* and investigated the dynamics of the pre-infla-
tionary universe. Before addressing these potentials, let
us discuss the background described by Egs. (2) and (3)
for a general form of the potential V(¢). Egs. (2) and (3)
can be solved by imposing initial conditions on a(r), ¢(),
and ¢(¢) at the bounce (f = t3); therefore, at the bounce,
we have

p = pca
1.
58°(t5)+ V(9(ip) = pe
a(tg) =0, (%)
which yields
d(ts) = £ 1/2(pe = V(9(13))), (©)
a(ty) =1 (suitable choice). (7

For the sake of simplicity, hereafter, we express ¢(7z),
@(tp) and a(tp) as ¢p,¢p and ap, respectively. The +sign
in Eq. (6) means that ¢z >0 (positive inflaton velocity;
PIV) or ¢5 <0 (negative inflaton velocity; NIV) at the
bounce. Next, we define several quantities that are used
in the paper.

The analytical expression of the scale factor a(r) in
the bouncing regime is given by [37, 38]

s\ 1/6
a(f) = ag (1 +5;7) , (3)

Pl

where ag =1, 6 =24np,./mj, is a dimensionless paramet-
er, and tp; denotes the Planck time. The slow-roll para-
meter ey and number of e—folds N,,, are defined as

H
=" < 1,1in the slow-roll phase )
Aend Tend
Niyr=In(—=) = H(ndt
/ ”( P ) i ©)
Pend H oi \%
- [ [ e (10)
[ ¢ dend V¢

where a; and a.,g represent the scale factor at the onset
and end of the inflation, respectively, i.e., d(f;) 20 and
wy(end) = —1/3. In the following sub-section, we invest-
igate the initial conditions of pre-inflation using the mod-
els under consideration for ¢ > 0 at the quantum bounce.
A similar analysis can be conducted for ¢z < 0, but we re-

strict ourselves to ¢ > 0 only.

A. Model 1: V(¢) «x ¢*

Let us study the bounce and slow-roll inflation with
quartic potential:

v,
V(g) = Zoq)“. 1)

We set V, =2.01559 x 107"*m3, (see Appendix). Next, we
numerically analyze the background described by Eqgs.
(2) and (3) for the quartic potential given by Eq. (11). The
results are shown in Fig. 1. In case of KED initial condi-
tions of the inflaton field (top panels), the behavior of the
expansion factor a(¢) is universal during the bouncing
phase because it is independent of the initial values of the
field and potential. This is also consistent with the analyt-
ical solution of Eq. (8). The only reason behind this state-
ment is the negligible contribution of the potential en-
ergy compared to the kinetic energy in the entire boun-
cing region. Hence, it exerts no effect on the background
evolution in the bouncing phase. Next, we analyze the nu-
merical evolution of w(¢) (top panels). Note that the
background evolution is divided into three different re-
gions, namely bouncing, transition, and slow-roll infla-
tion. After comparing the three regions, we observe that
the period of the transition phase is much shorter than
that of the bounce and slow-roll phases. The EOS is ex-
pressed as w(¢) ~+1 in the bouncing phase and moves
from +1 to —1 during the transition phase, remaining as
w(¢) ~—1 until the end of slow-roll inflation. Con-
sequently, ey >1 in the bouncing regime and reduces
from €5 >1 to €y ~0 in the transition regime. Finally,
ey ~ 0 until the end of slow-roll inflation. In case of PED
initial conditions of the inflaton field at the bounce (bot-
tom panels), the universality of the expansion factor a(r)
is lost. In this regard, the bouncing and transition phases
do not exist any more. However, slow-roll inflation still
exists. Values of several inflationary parameters such as
€u, w(¢), and N,,, are listed in Table 1. The slow-roll in-
flation and number of e-folds were determined for differ-
ent initial values of ¢z. At least 60 e-folds are needed to
obtain the desired slow-roll inflation presented in Table 1.
According to this table, ¢ increases with Nr.

B. Model 2: V(¢) o< (1 +¢)?
Next, we consider the following potential:

V($) = Vo(1+¢). (12)

We set V =4.95868 x 107"?m3,, which is consistent with
observations (see Appendix). The numerical results are
shown in Fig. 2 and Table 2. The rest of the description
of the evolution of a pre-inflationary universe is similar to
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(color online) Numerical evolution of a(r), w(¢), and ey for the quartic potential given by Eq. (11) with ¢z > 0. Top and bot-
tom panels show results for KED and PED initial conditions of the inflaton field, respectively. We set Vo =2.01559x 10~#m}, and
mp; = 1. Owing to the symmetric nature of the potential, similar results can be obtained for ¢z < 0.

Table 1. Inflationary parameters for the quartic potential given by Eq. (11) with ¢z > 0.
dg/mp; Inflation t/tyr €H w(e) Ning
3 start 67871.8 0.999 -1/3 46.68
slow-roll 210133.0 4.99% 1073 -1.0
end 1.17x 107 0.312 -1/3
3.7 start 53496.4 0.999 -1/3 60.32
slow-roll 170712.0 1.35x 1074 -1.0
end 1.36x 107 0.330 -1/3
5 start 36537.5 1.000 -1/3 80.86
slow-roll 122235.0 3.04% 1077 -1.0
end 1.05x 107 0.288 -1/3
6 start 28390.7 1.000 -1/3 102.53
slow-roll 97914.1 4.06x1074 -1.0
end 1.03x 107 0.266 -1/3

that of model 1 (see subsection II.A). The numerical evol-
ution of N;,r vs. ¢ for both models is presented in Fig. 3.
We can now compare our results with those of the
quadratic, power-law for n <2, and Starobinsky poten-
tials examined in literature [30, 32, 37—40]. Starobinsky
inflation is observationally consistent for KED initial
conditions (except for a small subset) only and not for
PED initial conditions at the bounce, although both KED
and PED initial conditions are in good agreement with
observations for potentials with n<2 in terms of the
number of e-folds [32, 37]. In this study, we determined
physically feasible initial values of the inflaton field and

achieved the intended slow-roll inflation for both KED
and PED initial conditions in both models. Our findings
are comparable to those of the quadratic potential. The
common features of power-law potentials (either quadrat-
ic or quartic) are that the desired slow-roll inflation can
be obtained for all initial values of the inflaton field at the
bounce and that the output of such a viable slow-roll in-
flationary phase is generic. However, this is not possible
for all initial values of the inflaton field in the case of the
Starobinsky model. Furthermore, a common characterist-
ic of inflationary models is that the evolution prior to re-
heating is always separated into three distinct phases:
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els show results for KED and PED initial conditions of the scalar field, respectively.

Ytp

(color online) Potential described by Eq. (12) with ¢ > 0. We set Vo = 4.95868 x 10~12m%, and mp; = 1. The top and bottom pan-

Table 2. Potential described by Eq. (12) with ¢5 > 0.
ép/mpy Inflation t/tpr €H w(®) Ninf
—-0.5 start 23158 0.999 -1/3 45.68
slow-roll 71388.8 6.41x 1075 -1.0
end 1.18 x 107 0.312 -1/3
0 start 19549.9 1.000 -1/3 60.94
slow-roll 62903.3 4.77%1075 -1.0
end 5.75% 100 0.999 -1/3
0.5 start 16894.1 0.999 -1/3 81.75
slow-roll 56355.2 739% 1073 -1.0
end 1.26x 107 0.999 -1/3
1 start 14865 1.000 -1/3 104.87
slow-roll 51136.6 1.45x 1074 -1.0
end 1.21x107 0.999 -1/3

bouncing, transition, and slow-roll inflation. This is espe-
cially true when the kinetic energy of the scalar field ini-
tially dominates the evolution of the universe, with the
exception of a very small set in the phase space for the
Starobinsky model. As long as the kinetic energy of the
scalar field at the bounce initially dominates, this univer-
sal trait is independent of both the initial conditions and

particular potentials

III. PHASE SPACE ANALYSIS

of the scalar field.

Phase space analysis is a mathematical tool used to

study the behavior of dynamical systems by visualizing
the trajectories in the phase space. It helps understand the
evolution and stability of cosmological models. The evol-

ution of the universe can be described by differential
equations that represent it as a dynamical system. This
dynamical system is essential for comprehending the
asymptotic behavior of cosmological models and is also
known as a subclass of autonomous systems [41, 42].
There are several reasons why a dimensionless set of
variables is selected for an autonomous system.

(1) A bounded dynamical system arises from these
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Fig. 3. Numerical evolution of N;,; vs ¢ for models 1 (left panel) and 2 (right panel).

variables.

(ii) They frequently have a clear physical interpreta-
tion and are well-behaved.

(iii) The symmetry of equations allows for a reduc-
tion in the number of equations; thus, a simplified system
is examined.

In the discussion to follow, let us consider the follow-
ing dimensionless quantities:

¢ n=-2

2
Mpj py

V(Y

-
Mpy

(V:

(13)

which are used to construct the following system of first-
order differential equations:

dy; mpY,

S Maly 14
dN  H(Y\,Y,)’ (1)
dy, mpy dV(y)

2o 3y, - , 15
dN : H(YI,YZ)[ day, ] (15)

where N =Ina. The Klein Gordon equation (Eq. (3)) is
used to obtain the equation for Y,. The function H(Y},Y>)
is expressed as

6

0.82

Y
041 J°
(16)

S [ ]|

We numerically solved Egs. (14) and (15) using Eq. (16)
for the models under consideration. The phase portraits
with KED and PED initial conditions of the scalar field
are represented in the (Y, = ¢/mp, Y, = ¢/m3) plane in
Fig. 4. For a better representation in Fig. 4, we set
Vo = 0.01m}, for the potentials described by Egs. (11) and
(12). Note that p, is the critical (maximum) energy dens-
ity that constrains the value of the inflaton field at the

bounce, such as |¢z|/m3, < 0.91 and ¢g/mp; € (—3.58,3.58)
in the case of quartic potential (Eq. (11)) and
¢p/mp € (=7.41,5.41) inthe case of the potential de-
scribed by Eq. (12). In both models, the black boundary
surface is totally finite owing to p. (see Fig. 4). At the
bounce, p = p,, all trajectories start and move toward their
minima, which are stable points. The higher energy dens-
ity belongs to the regions which are close to the bound-
ary at which quantum geometric effects exhibit domin-
ance, while the regions near the minima in the
(¢/mp1,¢/m3%)) plane correspond to lower energy density.

IV. CONCLUSIONS

In this study, we used two potentials, namely
V(g) < ¢* and V(¢) < (1 +¢)?, to study the dynamical be-
havior of a pre-inflationary universe in the framework of
LQC. At the quantum bounce, we numerically obtained
the initial values of the inflaton field that generated the
desired slow-roll inflation with a sufficient number of e-
folds. We investigated the numerical evolutions of Egs.
(2) and (3) for V(¢) = 2¢* (with V, =2.01559 x 10~ m,
and V(¢) = Vo(1 +¢)* (with V, =4.95868 x 107>m},). The
numerical solutions for different initial conditions of the
inflaton field at the bounce are presented in Figs. 1 and 2.
In both figures, the top panels correspond to KED initial
values of ¢, whereas the lower panels correspond to
PED initial conditions. In the top panels, the numerical
evolution of the scale factor a(r) exhibits universality in
the bouncing regime and consistency with the analytical
expression given by Eq. (8). This is because of the negli-
gible contribution of the potential energy in contrast to
the kinetic energy. As time passes, the behavior of a(z)
becomes exponential. Consequently, it produces inflation,
whose effect can be observed in the evolution of the EOS
w(¢). Before preheating, w(¢) is divided into three differ-
ent regions, namely bouncing, transition, and slow-roll
inflation. During the bouncing phase, w(¢) is almost +1
and decreases to —1 in the transition phase, remaining
close to —1 until the end of the slow-roll inflation. Simil-
arly, we obtained that € > 1 at the bounce and evolves to
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(color online) Phase portrait for the potentials described by Eq. (11) (left panel) and Eq. (12) (right panel) in the (¢/mp;,¢/m3,)

plane. At p = p.(boundary curve), all trajectories (with arrowheads) start at the quantum bounce and move toward their minima. For

better representation, we set Vo = 0.01m;‘,l.

approximately zero during the transition phase, remain-
ing at this value until the end of the slow-roll inflation.
For PED initial values of the inflaton field at the bounce,
the universality of a() does not exist any more, and the
bouncing and transition phases vanish. However, slow-
roll inflation remains. To achieve the desired slow-roll in-
flation, consistent with observations, at least 60 e-folds
are required. Tables 1 and 2 list the values of important
inflationary parameters for different values of ¢p; inter-
estingly, N, increases with ¢5.

Finally, the trajectories of the phase portrait were rep-
resented with PIV and NIV and also for KED and PED
initial values of the inflaton field in the (¢/mp;,d/m>3))
plane. We set V,, = 0.01m}, for both models to achieve a
better representation. Both potentials are unbounded from
the above. Hence, p. constrains the values of ¢ and
provides the compact surface at the bounce. The bound-
ary curve shown in Fig. 4 constitutes the finite data sur-
face where |pp|/m3, <0.91 and ¢z/mp € (-3.58,3.58) in
the case of the quartic potential (Eq. (11)) and
¢p/mp € (=7.41,5.41) inthe case of the potential de-
scribed by Eq. (12). Figure 4 shows that all trajectories
begin from bounce and are attracted toward their respect-
ive minima, which are stable points.
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APPENDIX A: PHYSICAL QUANTITIES
The number of e-folds from Eq. (10) is given by

“ V()
N, inf = d , Al
f /¢end V/ (¢) ¢ ( )

where the values of the inflaton field at the start and fin-
ish of the slow-roll inflation are denoted as ¢. and @enq,
respectively. The slow-roll parameter e, is defined as

(A2)

€y

-5y

Here, M3, =m3,/8x, and mp, is the Planck mass. We set
ey = 1 at the end of the slow-roll inflation. Therefore, @enq
can be found using Eq. (A2). During the slow-roll infla-
tion, ¢* < V(¢). Hence, Eq. (2) becomes

8

2
3mip

H’ =~ V(g.). (A3)

The upper bound on H, during the slow-roll inflation is
given by the Planck 2018 results [43]:

%

<2.5x107° (95% Confidence level). (A4)

Pl

In this study, we set H,/Mp; =2.0x 1075, By inserting this
value into Eq. (A3), we can determine ¢, . Then, using the
values of ¢, and ¢e,q along with N, = 60 in Eq. (A1), we
can calculate the parameters for the potentials described
by Egs. (11) and (12).
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