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Abstract: In this paper, we present an algebraic construction of the fused model for the ABJM spin chain by glu-

ing two adjacent quantum spaces and two original auxiliary spaces. We prove the integrability of the fused model by

demonstrating the validity of the Yang-Baxter equation. Owing to the regularity property of the fused R-matrix, we

successfully construct the boost operator for the fused model and obtain the third-order charge accordingly. We also

investigate the open spin chain Hamiltonian for the fused model and indicate the general common structures of the

boundary terms which are further used to analyze the integrability of the flavored ABJM Hamiltonian.
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I. INTRODUCTION

ABIM theory is a three-dimensional superconformal
Chern-Simons theory with gravity dual as the type IIA
superstring theory on an AdS,xCP? background; it was
proposed by Aharony, Bergman, Jafferis, and Maldacena
in 2008 [1]. Soon after the discovery, the integrability of
ABJM theory was determined, where the anomalous di-
mension matrix of the single trace operator composed of
bi-fundamentals was mapped to an integrable closed spin
chain of alternating types at planar two-loop order in the
SU(4) subsector [2, 3]. The integrability was later exten-
ded to the complete Osp(6]4) sector and to all-loop order
[4-6].

Intensive studies on the integrable models have resul-
ted from the original ABJM spin chain with various non-
trivial boundaries. For instance, in the orbifold ABJM
theory, we have an integrable closed spin chain with a
twisted boundary condition [7]. In the study of determin-
ant-like operator in ABJM theory, we will treat an open
spin chain Hamiltonian [8], whose integrability is proved
by determining a concrete projected K-matrices in the
framework of algebraic Bethe ansatz (ABA) [9]. In the
flavored ABJM theory [10—12], we can construct the
gauge invariant operator using fundamental/anti-funda-
mental flavors at two ends without the trace, and such an
operator will correspond to an open spin chain, which is
argued to be integrable using a coordinate Bethe ansatz
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(CBA) [13].

In the constructions of integrable models, the so-
called boost operator has become an important object that
connects different conserved charges through a recursive
relation [14—16]. The boost operator can be also used to
generate an integrable long range spin chain from a
nearest-neighbour spin chain [17]. For the integrable
model with a regular R-matrix, the boost operator can be
easily established [18, 19]. However for the non-regular
R-matrix, such as two of the four R-matrices adopted in
the original ABJM spin chains, the existence of the boost
operator is yet unknown. One of the major motivations
for the present work is to determine a suitable boost oper-
ator for the ABJM spin chain model.

Motivated by Reference [20], in which a general al-
gebraic treatment for medium-range spin chain was pro-
posed, in this paper, we reformulate the original ABIM
spin chain model with a local three-site interacting
Hamiltonian by combining two adjacent quantum spaces
into a new single one and thus obtain the fused ABJM
model with nearest-neighbour interactions. We demon-
strate the integrability of the fused model by presenting
the concrete R-matrix and checking the validity of the
Yang-Baxter equation. Owing to the regularity of the
fused R-matrix, we can obtain the boost operator for the
fused model and then use it to analyze the structure of the
higher charges. We also discuss the existence of the boost
operators in two sub-chains of the original ABJM model.
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Finally, we investigate the fused model for an open spin
chain and attempt to determine some common structures
of the boundary terms through a careful calculation of the
open spin chain Hamiltonian.

The remainder of this paper is organized as follows:
In section II, we briefly review the ABJM spin chain
model. In section III, we present the details of the con-
struction of the fused model for the ABJM spin chain and
discuss the boost operator in the fused and original AB-
JM models. In section IV, we study the fused model for
the open spin chain and present the concrete spin chain
Hamiltonian. We also analyze the structures of the
boundary terms and discuss the integrability of the
flavored ABJM spin chain from the algebraic aspects. In
the final section, we present the conclusion and indicate
some future research directions.

II. REVIEW OF THE ABJM SPIN CHAIN

In this section, we review the spin chain model ori-
ginating from ABJM theory [2, 3]. The quantum space in
each site of the spin chain is a representation space of the
SU(4) group, alternating from fundamental representa-
tion "4" to an anti-fundamental one "4".

There are four types of R-matrices:

Rab(u) = M]Iab + Pab’ Raf)(u) = _(M + 2)I[ai7 + Kain

Rap(u) = ulzy +Pap,  Rap(u) = —(u+2) + Kop,
where the subscripts a(a) or b(b) indicate they belong to
4(4) representation spaces. P and K are permutation and
trace operators defined using the standard basis matrices
{e[jsi’j = 192,3’4} as
P261j®€ji, K:eij@)e,-j, (2)
where the repeated indices are summed implicitly. These

R-matrices satisfy a total of eight Yang-Baxter equations,
which are expressed concisely as

Rap(As — Ap)Rac(As — Ac)Rpc(Ap — Ac)
= Rpc(Ap = Ac)Rac(Aa = Ac)Rap(A4 — Ap), 3)
where A = {a,a}, B={b,b}, C ={c,¢}.
For the closed alternating spin chain with 2L sites, we
have the following two monodromy matrices:
To(u) = Ro1 )Rz (1) - - - Ro a1 ()R 57 (1),

_ “
T5(u) = Ro1 (u)Ro3 () -+ Ro o1 ()R 57.(w),
where V, and Vj are auxiliary spaces, and the corres-
ponding transfer matrices are 7(u) = TroTo(u) and T(u) =
TryT5(u). Owing to the Yang-Baxter relations (3), the

transfer matrices commute with each other for arbitrary
spectral parameters:

[t(w), 7] =0, [T(w),7(]=0,
[t(w), 7(v)]=0. VYu,veC. (5)

The Hamiltonian of the ABJM spin chain model is ob-
tained from 7(u) and 7(u) as

, (6)

u=0

d d
HABJM = @ IOg T(I/t) + @ log ‘T'(I/t)
0

u=!

and a direct computation yields its concrete expression:

2L

1 1
Hapym = Z <Pl,l+2 - §K1,1+1P1,1+2 - 5P1,1+2K1,z+1> . (D
I=1

which, up to an overall prefactor and a constant term, is
exactly the anomalous dimension matrix of the dilatation-
al operator in ABJM theory. Furthermore, we observe
that Hagyy 1 a three-site interacting model with next-to-
nearest local Hamiltonian density,

1 1

Mo = Pro — 5K1,1+1P1,1+2 - EPZ,H—ZKI,HL 3

III. CONSTRUCTION OF THE FUSED MODEL

In this section, we present the algebraic construction
of the fused model of the ABJM spin chain by introdu-
cing the Lax operator, R-matrix, and boost operator.

A. Lax operator and R-matrix

In Eq. (6), the Hamiltonian of the ABJM spin chain is
expressed as the sum of the conserved charges from two
different transfer matrices. In the following, we construct
a fused model for the ABJM spin chain in which the
Hamiltonian H,gpyy is generated from a single transfer
matrix. First, we multiply the original two monodromy
matrices To(u) and Ty(u) to obtain a new one To(u) =
Tow)Ty(u). Subsequently, we rearrange the positions of
R-matrices in Ty5() to obtain:

Too(u) =(Ro1 (4)Ro; (W)Roz(u)Rpa (1)) - - -
X (Roaz-1()Rg 211 ()R 57 (WRy 57w)) . (9)

Thus, we find that if we treat the tensor product of two
nearest quantum spaces as an enlarged new quantum
space, such as V,, ;5 =V,;;®Vjz, and introduce a new
auxiliary space as V5 = Vp® Vi, we can define a new Lax
operator on the tensor product space Vy;3®V, 127 as
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L(()()),(zjflyzfj)(u) = RO,Zj—l(”)Royz*j(u)Rﬁ,Zj—l (M)R()Z(u)v (10)

or in a more general form,

Lia,wp) () = Rap ()R ()R ()R (1), (11)

and then Ty5(«) becomes

Top(w) = L(o()),(12)(“)-5(06),(31)(“) t 'L(oo)ygL,]ﬂ)(u) (12)

Hence, we can observe that Ty5(«) represents a new spin
chain of length L with isomorphic auxiliary and quantum
spaces in each site:

Voo =V, 5=404, j=12,--,L (13)

More importantly, the above spin chain is integrable be-
cause the following R-matrix

Riaay.op) () = Rop ()R, (u)Rp(u)Rap (1) (14)
makes the "RLL" exchange relation hold:

R(aa),(bz) (u— V)-E(a&),(ci')(u)L(b};),(cE) )

=£(hi;),(ca) (V)-&aa),(cé)(U)R(aa),(b}})(u —V). (15)

As a consistency condition, the R-matrix (14) itself
should satisfy the Yang-Baxter relation:

R(aa),(bé) (u— V)R(aa),(ca)(M)R(blz),(cz-) )
=R(b5),(cé) (V)R(az'l),(cé) (“)R(aa),(bé)(u V). (16)

Using the Yang-Baxter equations (3), the above RLL re-
lation (15) and Yang-Baxter relation (16) can be verified
straightforwardly. Notice that the Lax operator
Lz w51, although considerably similar to Rz o5 (%),
does not obey the intertwining relation:

L(aa),(bfv)(u - V)L(a&),(cf')(M)L(hi)),(cf)(v)
#Lwb). o) (V) Liaay. ey (W) Liaay, by U — V). (17)

We have thus far established a new integrable model,
which will be called the fused model because both the
auxiliary and quantum spaces are the fusion of two neigh-
boring representation spaces. The transfer matrix of the
fused model is simply the multiplication of two original
ones,

1(u) = TroyTop(u) = 7(u)7(u), (18)

and the Hamiltonian generated from #(u) iS Hapm-
However, from the perspective of the fused model, Hpm
becomes a nearest-neighbour interacting model:

L
Hui = Y Hoyy 55,0501 2720 (19)
j=1

where the local Hamiltonian density is

H

Qj-12)).2j+12j32) = h2j—1,27,21+1 + hfj,zj+l,2j+2'

(20)

Now, let us switch back to the original spin chain, where
the nearest two quantum spaces 4 and 4 are separate
sites. Subsequently, through construction, the transfer
matrix #(u) for fused model is two-site translation invari-
ant. However, we can observe that the Lax operator has
the factorized form

L(O(_)),(ijl,?j)(u) = -E(O(-)),Zj—l (u)L(OO),Tj(M)’ (2 1 )
where

Looy2j-1() = Rozj-1 (0R52-1 (w),
Lo357() = Ry 55()R; 5;(u),

(22)

and thus the transfer matrix can be expressed as

1(u) = TropLov).1 ) Liov)3) -+ Liovy.21-1 (u).[:(o(—))ﬂ(u), (23)

which is clearly a one-site shift invariant.

We mention one last point: We can also use
Raawiy(u) as the Lax operator to generate a new integ-
rable spin chain, as shown below:

f(u) = TTO()R(OO),(12)(“)&0@),(3&)(“) . 'R(oo),(zL_l,ﬁ)(M) (24)

The relation between #(«) and #(u) can be determined as
follows: Notice that

7Q(O(’)),(Zj—l,z*j) (M) = sz_ 1 ,27(0)-5(0()),(2]‘_1’27) (M)R;Jl_ 1 ,27(0)’ (25)

where the similarity transformation matrix R,; ,5(0)=
—-2+K,, ,7; has the properties

Ry 150 =R, 50), R, 5(0)'R,;,_ 5:(0)=4L,, 5,
(26)

and thus can be observed as a rotation in local quantum
space V>j-15; = V2j-1®V3;. Subsequently, we observe that
t(u) and #(u) are related by a global rotation in the entire
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Hilbert space ®"_,V,

j-1.3)"
() = At(w)A™, 27)
where
A =Ri3(0)R3:(0)---R,; _, 57(0), (28)

so is the Hamiltonian Hagpy obtained from #(x) and
Hapym:

Hup = AHappuA ™' 29

B. Boost operator

Now, we investigate the boost operator for the fused
model, which can be used to generate higher conserved
charges.

From the definition of the fused R-matrix in (14), we
obtain

R(aa),(hi;)(o) = 4P, Pyp. (30)

The R-matrix with the above condition is often called reg-
ular. For the integrable model with a regular R-matrix, the
method of constructing the boost operator is well-known
in the literature [18] and is applied to our fused model as
follows: First, the Lax operator can be shown to be P-
symmetric, that is

Liaay.wp) () = Lipb),aa) ()5 (31
and thus the RLL relation in (15) can be expressed as

Ra2),35 (V) Loo),12) (@ +v)Loo), 33 (1) (32)

= Lo0),63(W)Loo),13) U +VI)R12), 33 (V).

Subsequently, by taking the derivative with respect to v
on both sides and setting v = 0 in the end, we obtain

72(12),(3&)(0)1:(0()),(12)(“)-5(0()),(31)(”)

+R13),3) (0)~Z(00),(1i)(“)&()()),(ﬂ)(“)

= L(O()),(ﬂ)(“)z(o()),(12)(“)R(12),(34)(0)

+ -E(o()),(ﬂ)(U)L(o()),(lé)(”)7{(12),(321)(0)- (33)
Multiplying K13, 33,(0) on both sides from the left and us-

ing the regularity condition R(3)33)(0) = 4P;3P53, we ob-
tain

1 .
Eﬂ(li),(ﬂ) (O)R(li),(ﬁt) 0), L(O(_)),(li) (“)L(O(’)),(ﬂ)(u)

= —-Z(O(')),(|i)(u)-£(06),(31>('4) + L(o()),(12)(”)-2(06),(321)(“)’ (34)

1 .
where Rﬂuz),(aa)(o)ﬂlzsz(o) is simply the local Hamilto-

nian H 3 plus an identity operator; thus, it can be re-
placed by H(;5);3 in the commutation relation. Through
substitution of the indices, 1 —» 2k—1,2 — 2k, 3 — 2k +1,
4 — 2k+2, we obtain

[H k130,241,257 L00),26-1.0 L 06), 2041 ,ﬁ)(”)} =

=L 05 2135 WL 60y o1 7873 @)

+L 05) 21130 (M)L(O(_)),(Zkﬂ 372 (W)
(35)

Subsequently, by multiplying H_’;;}L(O()),a 135 on the
left and []7=ci2 Lo i-137() on the right to both sides of
the above equation, we obtain

{H(zk—l,ﬁ),(zml,m)’TO()(”)] =
Mk-1

L
- H£<06>,<2j1,2j>(”)] ~Z(O(‘)>,<2k—1ﬂ>(“) [H 5(06),0;1,2]‘)(”)]

LJj=1 J=k+1

Mok
+ HL(O()),(zjl,zj)(”)] Loy, 0141553 (W)

Lj=1

ML
x H £<00),(2j_1,2,~)(u)] .

Lj=k+2

(36)

Finally, by summing up the above equation for each
k=1,2,---,L—1, we find

L-1
[Z kH (2k=1,2k),(2k+1,2k+2)° To5(u)

k=1

dT5(u) . .
- % +L [H LOO,(Zj—l,N)(M)] Loo i1 (37)

J=1

For an infinite spin chain or closed spin chain, we obtain

dfi(”) = [B.1(u)], (38)
u

where 8 is the boost operator defined as

B=- Z kH(Zk—l,ﬂ),(ZkH,m)' (39)
&
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The conserved charges are defined as the coefficients of
the Taylor expansion of log#(u) at u =0,

log#(u) =iy Quuiu, (40)

n=0

subsequently, the first charge Q; is simply —ilog#(0),
which is non-local because

10) = 4"Py; 3011 - PisPymar - Paa (41)

is the shift operator acting on the entire spin chain. The
second charge Q, corresponds to the spin chain Hamilto-
nian:

= HABJM . (42)
u=0

10, = i logt(u)
du

The remaining higher charges can be derived using the
boost operator B from the relation (38) as follows:

1
Qn+1 = ;[85 Qn]’ n:2a3"" (43)
Thus, the next charge Q; is determined to be

205 =- IZ [H(Zj—l,fj),(ZjH,m)’ H(2j+1,2j+2),(2j+3,2j+4)]
J
=-1 Z { [th,Zj+1,2j+2’ h2j+1,2j+2,2j+3 + h2j+2,2j+3,2j+4]
J
+AG)},
(44)

where A(j) is a local operator with the interaction range
over five sites:

A(j) = [hzj—lﬂzm’ hzj+1,2j?,2j+3} : (45)

The form of the third charge Q; shown above seemingly
violates the generalized Reshetikhin condition proposed
in [20] for the integrable three-site model, in which A(j)
is conjectured to be a three-site operator. However, we
would like to emphasize that our fused model is essen-
tially a two-site model with auxiliary and quantum spaces
isomorphic to the tensor product space 4®4. Thus, even
in its factorized form (23), we require two different re-
duced Lax operators Lz ,(u) and L 5(u), which are
also not regular:

Laaws0) =Pu(-2+Kz),  Laays(0) = (=2 +K;)Pz;. (46)

These major differences indicate that the fused model in-
vestigated in this work does not belong to the normal
three-site interacting model considered in [20]; thus, it
does not obey the conjecture.

As a final remark on the boost operator of ABJM spin
chain, let us consider the possibility of the existence of
boost operator in either of the two sub-chains, 7(u) or
7(u). If the boost operator we are seeking is a "matrix"
type operator and is composed of the local inhomogen-
eous density, we can express it in a very general form; for
instance, the boost operator b for 7(«) can be expressed as

b= Zf(j)bj,jﬂwwj”*" 47)
j

where f(j) is a function of the site position representing
the inhomogeneity of the operator, and b, ;... j+-1 is the
local density with the interaction range over / sites start-
ing at the j-th site. The boost operator b should satisfy the
condition

dr(u)
- [b,7()],

Vu e C. (48)
At a special point u =0, because [r7'(0),#(0)] =0, the
above equation will reduce to

771(0)b7(0) + 7(0)b7 ' (0) = 20. (49)

Note that 7(0) is no longer a shift operator but has the fol-
lowing form:

7(0) = (-2+K3) - (—2 + KQL_Iﬂ) Por301-1+--P3sPi3,
(50)

thus, 7(0)b;s1.. j+-17'(0) not only shifts the sites at
which b; ;1. j+-1 acts, but also increases its interaction
range. Consequently, the interaction range of the local
density on both sides of (49) cannot be equal. Therefore,
we conclude that no matrix type boost operator with in-
homogeneous local density exists for integrable spin
chain 7(u) or 7(u).

IV. OPEN SPIN CHAIN HAMILTONIAN FROM
THE FUSED MODEL
In this section, we study the open spin chain Hamilto-

nian for the fused model. First, we review the construc-
tion of the Hamiltonian for the ordinary 2L-sites alternat-
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ing spin chain with open boundaries. We require the fol-
lowing two so-called double row transfer matrices [21]:

(1) = TroKg () To(u)Ky )Ty (~u),

7y(u) = Tro Ky () To(w) Ky ) T3 (—u), (51)

where the symbol "b" is used to distinguish them from
the closed spin chain transfer matrices defined in Eq. (4).
Ky (u)(f(g (w)) and Kj (u)(l_(g (u)) are reflection matrices ac-
counting for the left and the right boundary local
Hamiltonian, respectively. The two right boundary reflec-
tion matrices K;(u) and I_((—; (u) satisfy four reflection
equations (REs) given below:

Rup(u—v)K, )Ry, (u+v)K, (v) = Ky (V)R (1t +V)K, ()Rp (u—v),
R (u—v)K; (R (u+v)K; (v) = K5 (V)Ra5(u+v)K; (w)Rpa(u —v),
R (u—Vv)K, (W)Rz,(u+v)K; (v) = K5 (V)R 5(u+v)K; (w)Rp,(u—v),

Rap(u =K )Rz (u+v)K;, (v) = K; (V)Rap(u + v)KZ () Rpa(u — v),

while the other two left boundary reflection matrices
K§(u) and f(g (u) satisfy similar dual REs and can be ob-
tained from Kj(u) and K;(u) using some isomorphism
transformations. Owing to these reflection relations, the
transfer matrices form the commutating class

[rp(w), 7,(WN] =0, [Tp(w),7,(v)] =0,

[tp(w),7,(v)]=0, VYu,veC. (53)

revealing the integrability of the open spin chain model.
Subsequently, the boundary Hamiltonian from the origin-
al two open spin chains is given as

d
H, = an log (75, (u)T, (1)) (54)
u

u=0

Now, we consider the open spin chain from the fused
model. Because the quantum and auxiliary spaces are
both 4®4, we introduce two reflection matrices K5(u)
and K ;(u) defined on tensor product space V,®V;, of
which K;(u) satisfies the RE

(52)

Ry, by (U = VKGR b5 0y (1 + VIK 5 (V)

= Ky MRay,wh (U + VK @R (= v), (55)

and Kj;(u) satisfies a similar dual RE. The double row

transfer matrix for our fused model is

1 (u) = Trop Ko () Ton (1) Ky (u) T (—u0), (56)

and the open spin chain Hamiltonian is then obtained as

- d
Hy, = —logt,(u)
du u=0

(57)
We can observe that, unlike the closed spin chain case,
the fused Hamiltonian H, is different from the Hamiltoni-
an H, composed of two original spin chains. Hence, it
represents two different open spin chain models. Al-
though in very rare cases, with highly constrained reflec-
tion matrices, the two open spin chain models could be
equivalent. For instance, if we assume that Kj;(u)=
KK (u) and Ky(u) = Ky (w)K; (u), the transfer matrix
reduces to

(1) = Tron Ky () Kg () To(u) To(w) Ky ) K5 )T () Ty (=)

= TropKy () To(w)K; (u) [K§ ) T5) Ky )T (—w)] Ty (—u).

Therefore, if we further impose the condition

(K3 T Ky T3 (—w), Ty (—w)] =0, (59)

(58)

then we will have #,(u) = 7,(u)7,(1), which leads to the
same Hamiltonian.

We also note that, to address the open spin chain
model with degrees of freedom on the boundary, the re-
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flection K-matrices will also act on an additional internal
space. By tracing over the auxiliary spaces V,®V;, we
can achieve the interactions between the boundary and
bulk. Hence, in the most general settings, the reflection
matrices should be treated as an operator-valued matrix
on auxiliary space.

Finally, we discuss the concrete open spin chain
Hamiltonian derived from the fused model transfer mat-
rix (57). Because the entire calculation is straightforward
but quite tedious, here we directly present the final res-
ults. For an open spin chain of length 2L with internal de-
grees of freedom acting on the boundaries, the complete
Hamiltonian H, consists of three parts: the left boundary
term H;, bulk Hamiltonian H;,, and right boundary term
H,:

Hb:Hl+Hm+Hr. (60)

The bulk part is simply the ordinary closed spin chain
Hamiltonian

20-4
H;, = Z (2P1,1+2 =Py oK — KZ,H—IPLHZ) . (61)

=1

The left boundary term can be further organized into
three parts:

fh = ]1“ *‘]Yn +‘[ﬁ3. (62)

Among them, Hj; is a pure left boundary term, which acts
trivially on the bulk Hilbert space, given as

)

1 -
=5 [TrooKip(0)] ™ [TrooKip(0) (-2 +Ee)] s (63)

dK(u)

Hj = [Trookgﬁ(oﬂ‘l {Troo

Hj, is in fact an bulk term acting on the leftmost two
sites:

1
Hp= _E(_2+K12); (64)

Hj;, representing the true bulk-boundary interaction, has
the following form:

Hpy =2 [TrogKi(0)] ™ [TrogKp(0)Po, ]
1 .
tg [TrosKip(0)] ' (=2 +Ky3)
X [TrogKg5(0) (=2 + Kog) P (=2 + Kop) |
X(=2+K;3). (65)

The right boundary term can be divided into two parts:
I?} = Iq}l*'}ﬂi, (66)

where H,; is the remaining part of the bulk Hamiltonian
acting on the rightmost several sites, presented below:

1 1
Hy =Psmar - S Pmaiko o = 5 K b

1
+Poranr1— §P2L—3,2L—1 KZL,fL,z

1 1
~ 5 KasaaPu-so — Koy o (67)

H,, includes the interaction between the bulk and right
boundary internal degrees of freedom. Because the ex-
pression of H,, is lengthy, we first define the following
quantity:

A= (_2 + KZL—LE) Kz_L—Lﬂ(O) (_2 + KZL—LE) ' 68)

Thus, H,, can be expressed in terms of following four
parts:

]1}2 ZZZXI *‘ZXz *‘ZX3 *'134, (6£))
where

1
Ap=- ZA_l (-2+Ky 1 5) A

_ -1 [dKD =(0)
Ay = (_2+K2L—1ﬂ) 1 [K;L—l,i(o)] {ud;ﬂl

X (_2 + KzL—l,ﬂ) ,

u—O}

_ 1
As =A"" <P2L—3,2L—l - §P2L—3,2L—1K2L,3ym

1 1
- EKQL_lszL—s,zL—l + ZKQL—3,E) A,
» 1 1
Ay =07\ Bimar — 5Pk an — s Ko atPa=an
1
+ZK2 L-13L A.
(70)
As shown above, the boundary Hamiltonians have
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very complicated forms, and by selecting different reflec-
tion K-matrices, we obtain various boundary terms.
However, we can determine some common structures by
analyzing the indices of the components of the boundary
Hamiltonian. To be concrete, we focus on the left bound-
ary, particularly the nontrivial bulk-boundary interaction
term Hp, which acts on the boundary internal space Vi,
and two leftmost quantum spaces V; and V;:

Hj; € End(Vi,® V@ V5). (71)

Note that the internal space Vi, needn't to be isomorphic
to V; or V5 and thus can have different dimensions. Now,
we examine the component of Hjs: [szlffj',jff, where
{i, j} € Vi, {11, J1} € V1,1, Jo} € V5. Hpi has several terms,
and we discuss them separately. First, for notational con-

Venience, WE €Xpress

B = [TrgoK5(0)] ' € End(Vin),
M = TrogK5(0)Py; € End(Viy ® V),
S = TrysK5(0) (=2 + Kop) Pgs (=2 + Kop) € End(Vi, ® V3),

(72)
then the component of each term in H;; becomes
(BM)ij.7; = (BM)j 07
(B )i = (B3,
(BEpS)7 = (BISET) -,
(BSK.)lyt: = (BESEL ) o7,
(BE S = (BSTE) - sher, (73)

where we have used the component forms of K:
K2 = 61167 . For the other two left boundary terms, we
can easily find

(H)o = (Hy), - 6367

L

(Hp)!) 7 = (Hp))r - 6. (74)

Thus, we observe that each of the left boundary terms
has a unique universal Kronecker delta factor, independ-
ent of the specific selection of the K-matrix. In other
words, given an open spin chain Hamiltonian, if the com-
ponents of the left boundary terms do not belong to the
boundary types shown above, then such an open spin
chain cannot be an integrable spin chain, at least not one
originated from our fused model.

For a concrete example, we may consider the open
spin chain Hamiltonian from the flavored ABJM theory
[13]. Owing to the coupling between the bulk bi-funda-

mental fields and boundary fundamental flavors, the bulk
SU4) R-symmetry will break into a remaining SU((2)x
and diagonal subgroup SU(2)p:

SU@)g = SUR)rxSUQ2)p (75)

In this case, the boundary internal space Vi, is the two
dimensional fundamental representation space of SU(2),
ie, Vin=2=2,ij€{1,2}; V; and V; are the four-dimen-
sional representation spaces 2x2 and 2x2 of
SUQR)rxSUQ2)p, respectively, whose component indices
can be formulated by a pair of SU(2) indices, i.e.,
I=iA,J=jB,i,je{l,2},A,Be{l1,2}, and thus the delta
function is simply given as &) = §'63. Subsequently, it is a
simple task to rewrite the boundary terms in (73) and (74)
using the composite SU(2)zx xSU(2)p indices to replace
SU@4)r indices, i.e., I — (iA). The Hamiltonian of the
flavored ABJM spin chain has the following three types
of left boundary terms [13, 22]:

typel : Shomelel sl
type2: 5y o760 oL, (76)
type3: 55 oRop 6] 2.

We can easily observe that the type 2 and 3 terms
have the factors 67, =036 and 62 = 642672, respectively.
Thus, they can be obtained from the BM and BS terms in
(73). The type 1 term mixes the indices of all three spaces
Vi ® V1 ®V; and does not belong to any type of boundary
terms in (73) and (74). Therefore, we observe that the
flavored ABJM spin chain cannot be generated from our
fused model. Moreover, by the same argument, we ob-
serve that the flavored ABJM spin chain cannot also be
obtained from another integrable boundary model H,
(54).

V. CONCLUSION AND DISCUSSION

In this paper, we construct the fused model of the AB-
JM alternating spin chain by gluing two adjacent
quantum spaces and two original auxiliary spaces. For the
closed spin chain, we prove the integrability of the fused
model by constructing the R-matrix and demonstrating
that the Yang-Baxter relation holds. We obtain the boost
operator for the fused model based on the regularity con-
dition of the fused R-matrix. We also argue that the usual
matrix type boost operator with local densities cannot ex-
ist in either of two original ABJM spin chains. For the
open spin chain, we have calculated the concrete
Hamiltonian for general fused K-matrices satisfying the
reflection and dual reflection equations. We then analyze
the boundary terms of the Hamiltonian and determine
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some common structures of the component indices that
are independent of the concrete choices of K-matrices. By
comparing the boundary terms, we claim that the previ-
ously studied flavored ABJM spin chain Hamiltonian
cannot originate from the fused model or simply the com-
bination of two original sub-chains Hamiltonians. Thus, it
is expected to be non-integrable from the perspective of
the algebraic Bethe ansatz method.

Several interesting directions can be taken for future
research. First, as we have mentioned in the main text, the
ABJM spin chain can be considered a three-site interact-
ing model with a homogeneous local Hamiltonian dens-
ity hjjs1 42, in the sense that & ;.1 ;1> has the same expres-
sion whether the starting site j is odd or even. However,
to construct the transfer matrix of the fused model, we
have used two different Lax operators, Ly,;_1(1) on an
odd quantum site and Lg5,;(#) on an even quantum site.
This remarkable difference inspires us to search for a new
construction of the ABJM spin chain using one single
Lax operator, say L,;.(u,&) with possibly an additional
inhomogeneity parameter £.

Second, we can continue to study the boost operator
in the ABJM spin chain. Although we have excluded the
existence of matrix-type boost operators in the original
two spin chains 7(x) and 7(u), possibilities exist to have
other types of boost operators, such as a differential oper-
ator that occurs in one-dimensional Hubbard model [23],
although the corresponding R-matrix is of non-difference

form. For the fused model, because we have established
the boost operator, the conserved charges can be related
by the recursive relation Q,,; ~[B,Q,], and thus each
charge will have a definite parity under spatial reflection
transformation. Subsequently, we can investigate the so-
called integrable initial state |¥') introduced in [24] for the
ABJM fused spin chain, which is defined as a state anni-
hilated by all the conserved charges with odd parities, i.e.,
Qon1|¥) = 0. For the original spin chain 7(u) or T(«), ow-
ing to the lack of boost operator, the integrable state is
defined alternatively as 7(u)|¥) = IIT(u)IT|¥), where IT is
the reflection operator of the spin chain [25-29], or
through a more fundamental KT-relation [30, 31].

Finally, we could also consider some general prob-
lems addressed in the past studies of integrable models
for our fused model. For instance, we can study the long
range deformation of the fused model, where the boost of
the conserved charge serves as an integrable deformation
operator. Another challenging problem is to determine a
systematic method of classifying the integrable alternat-
ing spin chain models, including the ABJM spin chain as
a prototype.
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