Chinese Physics C  Vol. 48, No. 2 (2024)

Solving bound-state equations for scalar and hybrid QCD in
two-dimensional spacetime”

Xiaolin Li (ZELEHK)'?T  Yu Jia (BfF9)>**  Ying Li (Z5&)"  Zhewen Mo (323 30)>**

'Department of Physics,Yantai University, Yantai 264005, China
’Institute of High Energy Physics and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049, China
3School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: We investigate the bound-state equations in two-dimensional QCD in the N, — co limit. We consider

two types of hadrons, an exotic "meson" (which is composed of a bosonic quark and a bosonic anti-quark), and an

exotic "baryon" (composed of a fermionic quark and a bosonic antiquark). Using the Hamiltonian operator approach,
we derive the corresponding bound-state equations for both types of hadrons from the perspectives of the light-front

quantization and equal-time quantization, and confirm the known results. We also present a novel diagrammatic de-
rivation for the exotic "meson" bound-state equation in the equal-time quantization. The bound-state equation for the

exotic baryons in the equal-time quantization in two-dimensional QCD is new. We also numerically solve various
bound-state equations, obtain the hadron spectrum and the bound-state wave functions of the lowest-lying states. We
explicitly demonstrate the pattern that as the hadron is boosted to the infinite-momentum frame, the forward-moving

bound-state wave function approaches the corresponding light-front wave function.
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I. INTRODUCTION

Understanding the mass origin and the structure of
baryons in the real world is a challenging problem. There
is a conjecture dating back to the early days of the quark
model that a baryon consists of ‘a diquark (gg pair) and
another quark [1, 2]. The assumption of diquark reduces
the number of levels in the baryon spectrum, which get
closer to the experiment data than the three-body quark
model. In this model, in order that the lowest-lying octet
and decuplet baryons form a fully symmetric 56 repres-
entation of the spin-flavor S U(6), the diquark in lowest-
lying baryons must be in a *S1 state, which corresponds
to a spin-1 boson. Later, some more realistic approaches
derived from QCD also adopt the diquark picture [3—5],
e.g., a Faddeev-type formulation which preserves the
Lorentz and chiral symmetries. It is based on the observa-
tion that the gluon exchange between two quarks in the 3
representation of color SU(3) is known to be attractive,
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leading to a bound state. In this model the scalar diquarks
play a significant role in the first baryon multiplet. Some
recent progress can be found in, e.g., [6—9].

In this work we consider the dynamics of quarks and
diquarks in a two-dimensional toy model of QCD (QCD,)
with large-N. limit. For mesons consist of spinor quarks,
this kind of model was first solved by 't Hooft [10], and
was exhaustively studied in the subsequent works [11, 12,
14, 16-18, 46, 51]. For hadrons containing scalar quark
and spinor antiquark. The two-dimensional scalar QCD (s
QCD,) in the large-N, limit has also been studied in the
Feynman diagram approach [19], and in the Hamiltonian
approach [20], both in the light-front quantization formal-
ism. The interpretation of sQCD, as a theory of diquark
was also proposed in [21], where the mesonic bound
states are thought as tetraquarks formed by a diquark-an-
tidiquark pair. Recently, the equal-time quantization of
sQCD, in the Hamiltonian approach has been investig-

* This work is supported in part by the National Natural Science Foundation of China under Grants No. 11925506, No. 12070131001 (CRC110 by DFG and NSFC)
and National Natural Science Foundation of China under Grants No. 11975195, by the Natural Science Foundation of Shandong province under the Grants No.

ZR2019JQ04.
 E-mail: xlli@ihep.ac.cn
 E-mail: jiay@ihep.ac.cn
$ E-mail: liying@ytu.edu.cn
* E-mail: mozw@ihep.ac.cn

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must main-
tain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP? and published under licence by Chinese Physical Society

and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Pub-
lishing Ltd



Xiaolin Li, Yu Jia, Ying Li ef al.

Chin. Phys. C 48, (2024)

ated in [22]. Following the same pattern, a baryon con-
sists of a scalar quark and a spinor antiquark in two di-
mensions should be represented by the bound states of the
spinor-scalar hybrid QCD,. This kind of system was also
studied in [23, 37] in the Feynman diagram approach and
the light-front formalism.

Our work focuses on the Hamiltonian approach and
gives a thorough derivation of the light-front and equal-
time quantization of both scalar and hybrid QCD,. We
find that in s QCD,, depending on the renormalizaion
schemes of the mass, the renormalized mass in light-front
may not coincide with that in equal-time. We derive the
relation between these two renormalized masses. The
novelty of our work is that the Hamiltonian approach is
applied to the hybrid system. And we also carry out an
exhaustive numerical analysis of the light-front and
equal-time wave functions for scalar and hybrid bound
state systems.

The paper is organized as follows: In Sec. II, we re-
view the derivation of the wave equation of the bound
states in s QCD,, with an emphasis on the relation
between the light-front and equal-time renormalizaion
masses. In Sec. [IIA, we move on to the hybrid QCD, and
derive the wave equation for the scalar quark and spinor
antiquark bound states. We exhibit the numerical results
of the wave functions in Sec IV. We conclude in Sec. V.

II. HAMILTONIAN APPROACH TO SCALAR
QCD, IN THE LARGE N, LIMIT

A. Setup of the notations

In this section we only focus on the bosonic quark.
For simplicity, we consider only one single flavor of
quark. The corresponding scalar QCD, lagrangian is en-
tirely dictated by the S U(N,) gauge invariance:

1 N
—~ (F&,)" +(D")' D —m*¢'o,

; M

Lqep, =

where ¢ denotes the complex scalar field, m represents
the current quark mass, and A represents the gluon field
with  color index a=1,2,---,N*-1. Fé, = 0,A%-
3,4+ g, f*° Al A is the gluonic field strength tensor, and
D, =0, —ig,A;T* signifies the color covariant derivative.
The generators of S U (N,) group in the fundamental rep-
resentation obey the following relation:

ab

tr(7T°T") = 57, (2a)

apa _ 1 1
za:Tikal =5 (5i15/k— ﬁcfsij‘sk/) : (2b)

The Lorentz two-vector is defined as »* = (x°,x%),
with the superscript 0 and z representing the time and
spatial indices. The Dirac y-matrices in two space-time
dimensions are represented by

y() =01, ,yz = _i0-2’ 75 = 7()yz =03, (3)
where o (i = 1,2,3) signifies the Pauli matrices.
Throughout this work, we are interested in the so-

called large-N, limit:

_ 8:Ne
Y

N, = oo, A fixed,

4)

with A referring to the 't Hooft coupling constant.

B. Light-front quantization in light-cone gauge

The bound-state equation in the spinor QCD, was ori-
ginally derived by 't Hooft in 1974, with the aid of dia-
grammatic Dyson-Schwinger/Bethe-Salpeter approach in
the context of light-front quantization. Shortly after, the
light-front bound-state equation in scalar QCD, was also
derived by Shei et al. in 1977 [19]. An equivalent ap-
proach to derive the bound-state equation is the Hamilto-
nian operator method, which has been widely applied in
the context of the spinor QCD, [25-31].In 1978 To-
maras rederived the light-front bound-state equation in
scalar QCD,, verifying Shei et al.'s equations and elabor-
ate on some subtlety about the quark mass renormaliza-
tion [20] Loosely speaking, since a scalar bosonic quark
may mimick a diquark to some extent, Grinstein et al.
[21] in 2008 investigated the mesonic mass spectra in
scalar QCD,, which may shed some light on the tetra-
quark spectrum in the realistic QCD,.

In this subsection, we revisit the operator approach
derivation of the bound-state equations in scalar QCD,
within the light-front quantization framework, paying
special attention to the mass renormalization issue.

1. The light-front hamiltonian in light-cone gauge

Similar to spinor QCD,, the scalar QCD, becomes
significantly simplified once imposing the light-cone
gauge A" =0:

1 . N
Lioew, =5 (0-A7) 4 (0-¢0") Do +(D.9) 09—~ m’'.
(5)

It is convenient to adopt the light-cone coordinates, which
are defined through x*=ux; = (x%+x%)/ V2, with light-
front time denoted by x*.The canonic conjugate mo-

oL P
6(64&*) =0_¢, 1" =0_¢". One

menta are given by =
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immediately arrives at the corresponding light-front
Hamiltonian:

1
Hyp = / dx ( -5 (0.47")" +ig,A™

X (' T¢p—¢"T7) + m2¢"‘¢) ) (6)

Since the light-front time derivative of the gluon field
is absent in the lagrangian (5), the gluonic field A~ is no
longer a dynamical variable. In fact, it is subject to a the
following constraint:

PA =g, (7
where J =i (¢ Tn—n'T¢).

Solving A™ in term of J* in (7), and substituting back
into (6), the light-front Hamiltonian then reduces to

8
Hip = /dx’ (m2¢*¢— —SJ“—J“) .

27 @ )

The light-front Hamiltonian actually becomes nonloc-
al. To see this, note that the rigorous meaning of 1/ J*
in (8) is

1

2000 = [are? @) ). o
where G® represents the Green function
PGP (x) =5(x). (10)

The actual solution of the Green function turns out to be

ikt (xy’)

T dkt

o) oo [

To make the Green function mathematically well-
defined, we introduce an infrared cutoff p to regularize
the severe IR divergence. This parameter may also be
viewed as an artificial gauge parameter. Needless to say,
this fictitious parameter must disappear in the final ex-
pressions for any physical quantities.

® (|k*]-p) <

2.  Quantization and bosonization

The task is to quantize the Hamiltonian (8) in equal
light-front time. We Fourier-expand the ¢ and z fields in
terms of the quark/antiquark's annihilation and creation
operators:

= “dkt 1 i (1+\ —ikTx"
o) = | G @ ()

+c'" (k) e”‘“"} , (12a)
o[ S e
—c! (k) e*"k*f} . (12b)

where i,j=1,---,N. are color indices. The annihilation
and creation operators are assumed to obey the standard
commutation relations:

[d' (k"),a”" (p")] = [¢'(k*), /T (ph)] = @) 6 (k" — p*) Y.
13)
A useful trick to diagonalize the Hamiltonian is the

bosonization technique [25—31]. One first introduces the
following four compound color-singlet operators:

W(k+,p+) = %Zci (k+) d (p+) ,

W (k' p*) = V%ZafT (p*) ™ (k). (14a)
A (k+,p+) = ZaiT (k+) d (P+) ,
C(kp)=> " (k) (pT). (14b)

i

It is straightforward to find the commutation relations
among these four compound operators:

(W (ki PT) W (k3,P3)]

1
=Q2n)’ 6 (ki —k3) 6 (P} - P3) +0(ﬁ>, (15a)
(W (k7. PY). A (K, P3)| =276 (P —k3) W (k{.P),

(15b)

(W (K5, PY) € (K. P3)] = 270 (ki k) W (PL,PY)
(15¢)

[A (k. PT),A (k3,P3)] =276 (P} —k3) A (k. P3)
—216 (P} —ki) A (K3, PT),
(15d)
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[C (k{,P}).C (k3,P3)] =276 (P} —k3) C (k. P3)
-218 (P —k{) C (K3, PT).,
(15¢)

[A (ki P}),C (K2, P3)] =0. (15f)

Substituting (12) into the Hamiltonian (8), and ex-

dx~ 2dk* dk* dk* k*)
HLF;O = NL‘ T
T NJo k+ + k+ k+lfr

. e—m2 ” dk* + 1+ + 71+ /
.Hm._m/0 s A k) e )]+
]

X O(k; —ki1=p)A (ki k7 ) +C (k,k)],

dki [ dk [C dk:

dky

press everything in terms of the compound operator basis
as given in (14), we can decompose the light-front
Hamiltonian into three pieces:

1
Hyp = Hipot: Hipp: +1 Hipat +O( ) ’ (16)

g

whose explicit expressions are

Hipy :=— 3/1/00
b d 0 271'\//? 0 27T\//g 0
X0 (ks —ki|—p) (ki +&3) (ki +k3) [W
+ W (k3 k) W (k. kG) 6 (ks =k + k3 — k) ],

with : : denoting the normal ordering. Hiro denotes the
light-cone energy of the vacuum, which is severely IR di-
vergent.

Due to the confinement characteristics of QCD, the
physical excitation must be the color singlets. The color-
singlet compound operators 4 and C are not independent
operators, which, at lowest order in 1/N,, actually can be
expressed as the convolution between the color-singlet
quark-antiquark pair creation/annihilation operators W
and W' in (14a);

27T\/]§0

k)

dP*(P")

oy W' ((1-x)P*,xP")

tHypo 1=/
0

O (k5 + ki1 =p) ) (17a)
~ dk; 272 <k;+k;)2
o 27 ki Nk =kt
(17b)
dk; 1
/K (k-7
W (ki k) 6 (ki =k + Ky — k)
(17¢)
) q+
A(k+,p+)—>/ (q" kDHW(g", p), (18a)
0
C,p™) / Yy W gt (18b)

Plugging (18) and into (17c¢) and (17f), and rela-
belling the momenta in WP (&%, p*) by p*=xP*,
k* =(1—-x)P", at the lowest order in 1/N,, we can rewrite
the :Hip, : and : Hyp4: pieces as

W ((1-x)P*,xP")

m? m? A *dy (x+y)* .
{ZxP‘f T2 -0p ' 8xp / M(y_xf@('(y_x)P I=p)
A “ dy 2-x- y) o
T 81—0pP* L|1_y| o= O (I0-0P1-p) |, (19a)
_ A ! ! *dPt(P*) . . N
HLF;4 .__WA d.X/O dy/o TW ((1—X)P ,XP )W((l—y)P ,yP )
1 1 1 1 1
VxP+ \yP* A(T=y)P* \(T-x)P* [(x=y)P*]?
®(|(x—y)P+|—p) [(1—x)P++(1 —y)P*] (yP++xP+). (19b)
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3. Diagonalization of light-front Hamiltonian

Our strategy of deriving the bound-state equation is
via diagonalizing the light-front Hamiltonian (19). To this
purpose, we introduce an infinite number of meson anni-
hilation/creation operators: w,(P*)/w!(P*), with n and P*
indicating the principal quantum number and the light-
cone momentum of the "meson" in the physical spectrum.
We assume that the w,(P*)/w!(P*) operator basis is
linked with the color-singlet quark-antquark pair
creating/annihilation basis in the following specific fash-
ion:

W((l —x)P*,xP*) = (20a)

2 [ee)
\/ P%r > xa@w, (P,
n=0

P [
wi (P7) = \/;/O dxx, ()W ((1=x) P*,xP"). (20b)

with the coefficient function y,(x) interpreted as the light-
cone wave function of the n-th meson.

If one requests the mesonic annihilation and creation
operators to obey the standard commutation relations,

[wa (PT),

the light-cone wave function y,(x) must satisfy the fol-
lowing orthogonality and completeness conditions:

wi, (P3)] =278 (PT = P3) 6w (21)

1
/ Axy, (X) Xm (X) = S, (22a)
0

S Oxa () =8(x-y). (22b)

The n-th mesonic state can be directly constructed via

P, Py = N2P*wi(P")|0), (23)
where P, = M?/(2P*) denotes the light-cone energy of
the n-th excited mesonic state.

In the N. — oo limit, the scalar QCD, is composed of
an infinite number of non-interacting mesons. To ac-
count for this, we anticipate that the light-front hamiltoni-
an can be cast into a simple diagonal form in the mesonic
annihilation/creation operators:

+

dP
Hiyp=Hgpo+ | =

-1 + +
o Pw) (P*)w, (PY).

24)

In order to arrive at the desired form (24), all the non-
diagonal terms in (19) after transformed in the w,/w}

basis, such as wiw,, (m #n), wiw’, ww, ---, must vanish.
This condition imposes some nontrivial constraints on the
light-cone wave function y,(x). After some manipulation,
such constraint can be cast into an integral equation for
Xn (X):

m2 m2
—+—+

x 1-x

A [T dy ey
4x ) _o bl (—x)

A [ dy Q-x—y)
+4(1—x)7[_m|1—y| (- )X"(X)
A

1

dy (@-x=))(x+y) .
-— 2O =My, (x). (25
27[0(x—y>2 RIS A (- 3

The potential IR divergence as y — x is overcome by the
principal value (PV) prescription, denoted by the symbol
+-. Note the occurrence of the PV arises from taking the
vanishing limit-of the artificial IR regulator p first intro-
duced in (11). Here we show two PV prescriptions
defined in term of the regulator p [34, 35, 45]:

o) = 1; / f 1 1
fdy(x_y)z _,Dll}’(l)!r dy 2 |:(x_y+lp)2 + (x_y_l.p)z
2
=lim/dy®(|x_y|_p) f(y)z_ f&x)
o (x=y”  p
(26)

4.  Mass renormalization and renormalized

bound-state equation

Though the IR divergence is tamed by the principal
value prescription, the bound-state equation in scalar
QCD,, (25), is still plagued with logarithmic ultraviolet
divergences. The logarithmic UV divergences arise as
y— 0 or y — *oo in the first integral in (25), also arise as
y— 1 or y — *o0 in the second integral.

As first pointed out by Shei and Tshao [20], it is es-
sential to renormalize the quark mass m in order to elim-
inate the UV divergence. Concretely speaking, one intro-
duce the renormalized m, according to

A
m’ et ﬂ, (27)

2Js vy
where the mass counterterm logarithmically depends on
the UV cutoffs A > V1 and § — 0*.

The two integrals in the left side of (19) can be regu-
larized and analytically worked out, which depend on
In2. In accordance with (27), these UV divergences can
be absorbed into the bare quark mass, so that only the
renormalized quark mass enters the bound-state equation
[20]:
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291 m2-21
(mr +m' )Xn(x)
X 1—x
_/17[1 dy Q-x-y)(x+y) o)
2 ) o —y? VR =y

=My, (x).

(28)

This equation was first obtained by Shei and Tsao using
diagrammatical approach [19]. Note that this bound-state
equation is very similar to, albeit slightly more complic-
ated than the 't Hooft's equation in spinor QCD, [10].

C. Equal-time quantization in the axial gauge

The QCD, in large N. limit can also be solved in fa-
miliar equal-time quantization, whose formalism is con-
siderably more complicated than the light-front quantiza-
tion. The corresponding bound-state equation in spinor
QCD, was originally derived by Bars and Green in 1978
[12]. A comprehensive numerical studies of the Bars-
Green equations have been conducted recently [17]. As
for the scalar QCD,, the bound-state equation was re-
cently derived by Ji, Liu and Zahed in equal-time quant-
ization, with the aid of the operator approach [22]. In this
subsection, we the revisit bound-state equation for the
scalar QCD, in equal-time quantization employing the
operator approach. We add some new elements relative to
[22]. For example, we elaborate some subtlety related to
the mass renormalization scheme. We also present a new
way of derivation of the mass-gap equation from the vari-
ational perspective. Moreover, for the first time, we also
employ the diagrammatic technique to derive the bound-
state equation in equal-time quantization. We devote Ap-
pendix A to a detailed explanation of the diagrammatic
derivation.

1. The Hamiltonian in the axial gauge

Like spinor QCD,, it is most convenient to choose the
axial gauge A“* =0 to quantize the scalar QCD, in equal
time, with the lagrangian reducing to

1 .
Lcn, = E(aZAS)Z + (Do) Dop — (0.¢")0.6 —m*¢'¢. (29)

The canonical momenta are m = Dyg, ' = (Dyg)". The
Hamiltonian can be obtained through the Legendre trans-
formation:

2 -1
H= dz(|az¢|2+m2|¢|2+n*n)+%/dz (J“ﬁﬁ) (30)
where J* =i (¢'Tn—n'T"¢).
1 ga
Similar to (9), one can express 77" as the convolu-
tion between J¢ and the Green function G®@, which is

defined through

+oo ik
GO = - / Kk -p) (1)

w 27 K

Analogous to (11), we again introduce an IR regulator p
to make the Green function well-defined.

2. dressed quark basis, mass-gap equation and mass

renormalization

We plan to conduct the equal-time quantization for
the Hamiltonian specified in (30). It is convenient to
Fourier-expand the ¢ and n' fields in the basis of the
quark/antiquark's annihilation and creation operators:

i dk yer i i
¢ (Z) =N / ' \/2—E,kek [a (k)+CT(_k)] ’ (323)
7T () = i/ j—i \/ %e‘ikz [ajT (k)—c’ (—k)] , (32b)

where E; denotes the energy of a dressed quark. The con-
crete dispersion relation will be determined by the mass-
gap equation in the following. The commutation rela-
tions between the quark annihilation and creation operat-
ors are the same as (13), except all the +-components are
replaced with the z-components inside the J functions.

Analogous to the bosonizaion procedure used in the
light-front case in Sec. 1IB2, we introduce the following
four color-singlet compound operators:

1

Wp.g)= > d=pd@,
1
Wi(p.g) = 7 > @ (-p), (33a)
Alp.g) =) _d" (p)d (),
Cp.g)= Y " (=p)c'(-q). (33b)

The commutation relations among these compound oper-
ators are identical to (15) except replacing all the + com-
ponent with the z-components.
Analogous to (16), we decompose the Hamiltonian
(30) into three pieces:
)

H=Hy+: Hy: +: Hy: +O( (34)

<
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whose explicit expressions read
dkEy

k(2 +m?)
Hy =N.
0 N"/dz(/ mE) ) Tan

/dkl/dkz (Ekz_Ek12)2 1 ) (35a)
2n (ki—k)® EuEpe

:H, :=/%H+(k)(A(k,k)+C(k,k))

+ VN, / gn- (k) (W ke, k) + W' (k,0))
(35b)

=30 ffffdk dkydksdky

6(](2 ky +k42 k%)®(|k4
(kg —k3)

x [ =2, (ki ko) fo (s, k) W Gy, )
X W (=ka,—k3) + f- (ki,k2) f- (ks, ka)
X W (ky,kg) W' (k3,k2)

+ k) £ G ) W Gy ) W (Ks ko) |
(35¢)

ks| = p)

with IT*(k) and f. defined by
K +m

2
+F
E, k)

Ekl + L

A T Ex
dk L
4/ ‘<k +hy)

ro-i(

5O (k+ki|-p), (362)

E, E,
k)= =2+ L.
felkr, ko) Es Es,

(36b)

It is desirable to put the : H,: into a diagonalized
form at the dressed quark level. To this purpose, the coef-
ficient of the off-diagonal W+ W' term in : H, : should
vanish. Requiring I~ = 0 then leads to a constraint for E;

[22]:
e (BB L
Ey Ey/ (k+k)

This integral equation can be solved numerically to
determine the dispersion relation. Following the spinor
QCD, case [12], we also call this equation as mass-gap
equation.

k* +m?
Ey

=0. (37)

Here we provide an alternative perspective to derive
the mass-gap equation (37). The physical requirement is
that the vacuum energy H, in (35a), albeit badly diver-
gent, should be minimized with respect to all possible
functional forms of E;. This leads to a functional vari-
ational equation:

0Ho[Ey]
SE,

= 0. (38)

After some straightforward algebra, we arrive at

dk, kK> +m? 1 [ dk
ak N R _
o E, o(ky =p)+ /2 ©0(ki — p)
dk, f dk, 1 Ekl Ek2)
B 22 s, - py=0
/ / 2r (ky — kz)2 En  Ey (1 -p)

(39

Conducting the integration, we then reproduce the mass-
gap equation (37).

The mass-gap equation (37) suffers from both IR and
UV divergences. The IR divergence at k; — —k can be
tamed by the principal value prescription (26). Neverthe-
less, as |k;| — oo, one can ascertain that E;; — |k;|, and the
integral in (37) exhibits a logarithmic UV divergence.
Fortunately, the UV divergence can be absorbed in the
quark mass through the renormalization procedure. One
may follow [22] to introduce the following mass coun-

terterm:
A (
2 2
S=m"+—dk
m; =m > 175

Slightly differing from [22], we impose the principal
value prescription to avoid the IR divergence arising from
the k; — 0 region. The renormalized mass-gap equation
now becomes

k? 2 A E E 1
I —Ek+*7[dk1 {(i—i)
Ek 2 Ek Ekl (k+k1)

Since the prescribed renormalization scheme in equal-
time differs from that in the light-front quantization, the
renormalized mass m? is generally different from m, in-
troduced in (27). We devote Appendix B to a detailed dis-
cussion the connection between these two renormalized

quark masses.

Ey,

e (40)

CE, 1

E &
(41)

3. Bogoliubov transformation and diagonalization of

Hamiltonian

Following the same line of reasoning that leads to
(18), the confinement feature of QCD implies that, at the
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lowest order in 1/N,., the compound operators 4 and C
defined in (33) can be expressed as

d N
Al k) — / LW (k) W (p.), (422)

d
C (ki ky) — / iw* (k1. p)W (k. ). (42b)

With this replacement, the Hamiltonian (34) can be
built solely out of the W and W' operators:
dpdq

H= / oz T+ (@) W, W (p.q)

A 0+0Q
—32ﬂ2/defdkdp(p_k)zG)(lp—kl—p), 43)

where

0=2S.(p,k,PYW'(P—p,p)W(P—k,k), (44a)
0 =S_(p,k,P) (W' (p,P—p) W' (P—k,0)
+W(p.P-p)W(P-k.k)). (44b)
with
S+ (p.k,P) = fo(P=p,P=k) f.(p.k). (45)

To cast the Hamiltonian (43) in a diagonal form, it is
most efficient to employ the Bogoliubov transformation
[16]. The essence is to introduce a new set of color-sing-
let operators represented by w and w':

w=uW+vyW",
wh= ;JWT +vW,

w—v=1. (46)

The coefficient ¢ and v can be determined such that the
Hamiltonian gets diagonalized in the new operator basis.
To our purpose, we introduce two infinite towers of
color-singlet operators w, and w}, which are linear com-
binations of the W and W' operators. Inversely, we can

express the W operators in terms of infinite sum of w,
and w} operators:

2 [ee)
Wig=Pa)= 5> [w (P (@P)
n=0

—w} (=P)x; (q—P,—P)],

oo

2n

Wi(g—Pq) =
q q P =

(Wi (P)x; (g.P)

—w,(-P)x; (@-P-P)|. (4]

The operators w,(P) and W:;(P) bear clear physical
meaning, which represent the annihilation and creation
operators for the nth mesonic state carrying momentum
P. The coefficient functions x; can be interpreted as the
forward/backward-moving mesonic wave functions, play-
ing the role of the Bogoliubov coefficients u and v in
(46). The mesonic operators w, and w] are anticipated to
obey the standard commutation relations:

(W (P),wh(P))] =276,,6 (P-P'), (48a)

(W (P),w,, (P)] = [wh(P).w}, (P')] =0. (48b)

To fulfill these commutation relations, the mesonic wave
functions y; must satisfy the following orthogonality and
completeness conditions

/ dp ) (p. P)X" (p.P)= X" (p,P)X" (p.P)] = |PI&5"",

(49a)

/ dp [Xi (p.P)x" (p—P,=P)=x" (p,P)X" (p,P)] =0,

oo

(49b)

S . P (@.P) X" (p~ P.~P)X" (g~ P.~P)]
n=0
=|Plé(p-q),
(49c¢)

> Wi . P)X (g, P)=x" (p—P.—P)x: (g~ P,—P)] =0.
n=0

(49d)

The true vacuum is defined by w,(P)|Q) =0, where
|Q2) represents the physical vacuum, which may differ
from the quark vacuum [0) at subleading order in 1/N..
The n-th mesonic state can be constructed by

|P°, Py = \/2P%w! (P)|Q), (50)

where P? denote the energy of the n-th mesonic state.
Plugging (43) into (43), we desire to obtain the diag-
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onalized Hamiltonian as follows

L) e

-y ar 0, (
H= H0+/ o zﬂ:inn(P)wn(P)+O N

where H| is the shifted vacuum energy.

Similar to the recipe of leading to (24) in the light-
front case, we enforce that all the non-diagonal operators
(43) in the new w,/w! basis, such as wiw,, (m #n), wiw',
ww, ---, ought to vanish. This criterion imposes quite
nontrivial constraints on the mesonic wave function
X:(x). As a matter of fact, such constraint can be cast in-
to two coupled integral equations for y;:

(TT* (p) + 11" (P - p) ¥ P) x;: (p. P)

A [ dk . .
_Z mx(S+(pvkvP)Xn(k7P)_S—(p’k’P)Xn(k7P))v
(52)

which agrees with the bound state equations first derived
by Ji, Liu and Zahed for scalar QCD, in equal-time
quantization [22].

An important element of physics is that, when boos-
ted to infinite-momentum frame (IMF), i.e., taking
P — oo limit, the backward-moving mesonic wave func-
tion y, dies away, and the forward-moving mesonic
wave function y; approaches the light-cone wave func-
tion y,(x) with x=p/P [22]. As-a consequence, in the
IMF the equal-time bound-state equations (52) descend to
the light-cone bound-state equation (28). This pattern is
identical to what was found in the spinor QCD, case [12].

III. HAMILTONIAN APPROACH TO HYBRID
QCD, IN THE LARGE N, LIMIT

In this section, we aim to derive the bound-state equa-
tions for a new kind of hadron, a hybrid hadron or an
exotic "baryon" composed of a bosonic quark and a fer-
mionic anti-quark, in both light-front and equal-time
quantization. If the bosonic quark can be interpreted as
diquark, such hybrid hadron may in some sense resemble
the ordinary baryon in the real world.

A. Hybrid QCD, in light-front quantization

The bound-state equation for such a hybrid hadron in
QCD, was first derived using diagrammatic approach in
light-front quantization by Aoki in 1993 [23]. Shortly
after the mass spectra of the hybrid hadrons were also
studied by Aoki and Ichihara [37]. In this subsection, we
use the Hamiltonian operator method to rederive the
bound-state equation in hybrid QCD, in light-front
quantization.

1. The light-front Hamiltonian

We start from the hybrid QCD, lagrangian which
contains both scalar and spinor quarks. Imposing the
light-cone gauge A** =0 and utilizing the light-front co-
ordinantes, the lagrangian can be expressed as

Ligco, =% (9-A7)" +i (VrD-yn +¥}0-1)
ny

V2

+(9-¢") D¢ +(D.9)' I_¢~mid'p.  (53)

(Vivr+vpye)

with m; and m, represent the masses of the bosonic and
fermionic quarks, respectively. Two sets of canonical mo-
menta are 7y, =0_¢,m, =yYr. Note ¢, is a constrained
rather than canonical variable. After Legendre transform-
ation, we obtain the following light-front Hamiltonian:

. 21
Hir= [ax "R emio-Sr 5] G
where
J=i(¢' Tn—n'T®) + YT Y. (55)

2. Compound operators and Fermionization

The scalar quark field has been Fourier-expanded in
the annihilation/creation operator basis in (12). Analog-
ously, the spinor quark field can be Fourier-expanded ac-
cordingly [18]:

Yh(x) = / C;—I:[b" (k)™ +d" (k)X ). (56)

Following the bosonization technique in the preced-
ing sections, here we introduce a set of compound color-
singlet operators composed of the scalar/spinor quark an-
nihilation and creation operators. Since we are studying
the bound system composed of a fermion and a boson, we
call this procedure as "Fermionization".

Besides the compound operators already introduced
in (14), here we enumerate the new color-singlet com-
pound operators:

B(k*.p*) =Y b (k)b (p7), (57a)
D(k*,p*) =) d" (k) d (p*). (57b)
K(k*,p*) = \/lﬁzcz" (k*)d (p*), (57¢)
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K'(k*,p*) = \/IIVZ“’T (p*)d" (k*), (57d)
1 .

L(k*,p*) = T Yk B (pY), (57¢)

L (K, p* Zb’* (k7). (579)

\/_

The anticommutation relations among the fermionic
compound operators K, K, L and L' turn out to be

K' (k3.P3)}
2 + + + + 1
= 2o (ki k)0 (P —P) +0 (5 ).

{K (k7. P7),

(58a)

{L (K. P7) L' (k3. P3) }

=Qn)*6 (ki —k3) 6 (P - P}) +0(Ni), (58b)
{K (k1. PT) L (k3. P3) }

={K" (k{,P}).L(k3,P})} =0, (58¢c)
{K (k1. PT) L (K, P)

={K" (kj,P}).L" (k3.P3)} =0. (58d)

The interaction term between the bosonic and spinor
quark sector in (54) can be expressed in terms of the com-
pound-operators:

1 . 1 < dk} < dks dk dk} (ki +k3)
—— (ig, (¢'Tn—n'T® LT —41/ L 2 / ‘/ W) & s — k]~
5 (igs (9'Tn=n'T"9)) =5 (g T "Wre) = ~4n ey ) T 2 ek 0 e ~Hal =)
(K" (ki ki) K (k3 k3) + LT (ks k3) L (k.k3))
(59)
Again we can break the full light-front Hamiltonian into three pieces: Hip = Hypo+: Hipa: +: Hipa: +O(1/N,), with
dk+
D Hygo i=mt? S A (K K) +C(k" k") + B (k.K) +D (K. K")]
dk* ( 1 )
——— | |B(k",k")+D (k" ,k*
+/02,rpk+[< )+ D (k)
dki -dk3 k++k N
o4 [ ([ ST (K Y okl 4 (.47 + (.. (602)
< dkf © dig di; [ dk; (ki +k3)
:H.;:-?Nc/ 1 / (K45) 6ty — ko -
LF:4 85 o 2n2k o o (k3—k4)2 (I3 = k4l = p)
(K" (ki.k7) K (ki k) + L (k;,k;) L (kf,k})} . (60b)
. o . .« . _ d +
F.or simplicity, we have suppressed the explicit expres C(p*q*) - / L (o) L (g ), (61¢)
sion of the vacuum energy Hyry. o 27
As dictated by the confinement property of QCD, the
color-singlet bosonic operators 4, D, B and C are no
longer independent, rather can be replaced by the convo- . s / Cdrt .
lution of the following fermionic compound operators: B(r".q") > 0 2m L) L) (61d)

+ “dr + (A o+ + o+
—>/0 gK (r ,p)K(r ,q), (61a)
+ o+ WE + ot + ot
D(p*.q") — 2JTK (p*.r") K (q*,r"), (61b)
0

Substituting these relations to (60a) and (60b), rela-
belling the light-cone momenta by p*=xP*and
k* = (1—-x)P*, and only retaining the leading-order terms
in 1/N., the light-front Hamiltonian can be solely built
out of the fermionic operators K and K':
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tigsim [T [
PHypp : . o

A

P

A N 1
(I-x)Pt 8xP+

m? m*
+ +
{ 2xP+  2(1 —x)P*

tHipy:=—

(P*)? xP* +yP* o
\V2xP+ \2yP* [(1 =y) P* = (1 - x)P*]?

3. Diagonalization and light-front bound-state equation

Our goal is to diagonalize the light-front Hamiltonian
(62). To this purpose, we introduce a new basis com-
posed of the hybrid hadron annihilation/ creation operat-
ors: k,(P")/ki(P"), where n represents the principal
quantum number, and P* denotes the light-front mo-
mentum of the corresponding meson. We hypothesize
that the K basis and the k, basis are related by

K((1-x)P*,xP*) =4/ %Zén(x)kn (P*),  (63)

n=0

where @,(x) stands for the light-cone wave function of
the n-th excited state in the hybrid hadron family.

If we assume that the mesonic annihilation/creation
operators k, obey the standard anticommutation relation:

{ku (PY) k), (P3) } =276 (P} = P3) 6 (64)
the light-cone wave functions @,(x) must satisfy the fol-
lowing orthogonality and completeness relations:

1
/ Adx®, (x) D, (X) = S, (65a)
0

Y ()P, () =5(x-Y). (65b)

The n-th hybrid state can be directly constructed as

P, Py = N2P*k,(P)|0), (66)
with the light-cone energy P, = M?/(2P"), and M? is the
mass square of the n-th hybrid hadron.

We wish the light-front Hamiltonian utimately bear
the following diagonal form:

dxK'(1-x)P",xPHK((1 - x)P*,xP")

/

g? h + 1 il _ + + _ + +
2(2703/0 dP ffo dxdyK ((l x) P, xP )K((l VP ,yP)

(r-4-2)

“dy (x+y)* P }
o bl (y—x)2®<'y Il (622)
(62b)
dp*
HLFzHLF;0+/§P;kZ (P*) k, (P). (67)

In order to arrive at this desired form, all the non-diagon-
al terms in (62) after converted in the k,/k; basis, such as
kik, (m#n), kK'k', kk, ---, have to vanish. This criterion
imposes some nontrivial constraints on the light-cone
wave function @,(x). After some manipulation, we end
up the following light-front bound-state equation for the
hybrid hadron:

2 2
m;, —24 m2—2/l)
[0))
( X * (1-x) n (%)
by (x+y)

D, (y) =M, D, (x). (68)

—1
0 VI (x—y)?

where the renormalized bosonic quark mass my, is
defined in (27).

Equation (68) is in exact agreement with the light-
front bound-state equation originally derived via dia-
grammatic method [37].

B. Hybrid QCD, in equal-time quantization

In this subsection, we attempt to derive the bound-
state equation for the hybrid QCD, from the perspective
of equal-time quantization. To the best of our knowledge,
the equal-time bound-state equation for hybrid hadron is
derived for the first time.

1. The Hamiltonian in the axial-gauge

Imposing the axial gauge A“* =0, the hybrid QCD,
lagrangian can be expressed as

1
Lioco, =5 (0:45)° +(Dog) Do = (9:90:0
—mi¢'p+iy’ (Do+y°8,) ¥ —my.  (69)

Straightforward manipulation leads to
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H= / de[r'n+10.01 + mllpP

2
T . gs a 1 a
H Ot my W= ST ] (0)
with
J =y T —i(x' T —¢ T r). (71)

2. Dressed quark basis and Fermionization

The bosonic quark field is Fourier-expanded in terms
of the quark annihilation and creation operators in ac-
cordance with (32). The spinor quark field is Fourier-ex-
panded as [18]

, dp 1 ; " -
W)= / L [W(pu(p)+d T (~p)v(=p)] €7,
2 \/2E<p>[ ]
(72)

with the energy of the dressed spinor quark g p) 18 given
by [12]

E(p) =mycosf(p) + psiné (p)
/l/ dk
+7
2

(p—k)*

with 6(p) representing the so-called chiral-Bogoliubov
angle, which can be determined by the mass-gap equa-
tion [12]. Note this dispersion relation depends on an arti-
ficial IR regulator. This can also be viewed as gauge arti-
fact, since the energy of an colored object in QCD can-
not be a physical quantity.

Following the fermionization procedure introduced in
Sec. 3.1.2, we introduce the following color-singlet com-
pound operators:

O (k- pl—p)cos[8(p)—0(k)],

B(p,q) = Z_jb”' (P)b (@), (74a)
D(p,q) = Zjd’* (-p)d'(-q). (74b)
M(p,q)= Zd,(—p)bf(q), (74¢)
M (p.q)= Zjb?‘(g)d;‘(—p), (74d)
K(p.g)= vlzv—czdi("’)“i @, (74e)

1

K'(p.q) = WZa’* (@d" (-p), (74f)
1 . .

L. =7 > =p)bi(g), (74g)
. 1 . .

L'p.g)= > b @) (-p). (74h)

The anticommutation relations among the fermionic com-
pound operators K, K, L and L' are

{K(thl)’KT (kZ’PZ)}

1
=Q2n)* 6k, —ky) 6 (P, —P2)+O(ﬁ), (75a)
{L(kisP7).L" (k5,P3)}
1
=27 6(ky —ky) (P, = Py)+0 (ﬁ) (75b)
{K (ki,Py),L(ky, P)} = {K" (ki Py),L(kp, P,) } =0,
(75c¢)

{K(klvpl)sLT(kZ,PZ)} = {KT(kI,Pl)’LT(k29P2)} =0
(75d)

The interaction term between the bosonic and fermi-
onic sectors in (70) can be expressed as:

1 1
Eg.a//TT“w (i (n' T —¢'Tn))

F
—rd / ar, 1 ap, 1
2 \2E(P)) ) 27 \/2E(Py)
/ dk, dk, 1
| 5[ 5. 2
2r ) 27 (ka—ky)

O (ks — k1| =) 276 (Py — Py + ks — ki)

{—f+<k1,k2>cose(k-P>;9<q—P>

6(k—P)—6(P-q)

H(P—k)z—e(p_q)

9(P—k)—29(P—q)
2

L' (ky, Py) L (ky, Py)

+ f- (ki k»)sin LT(kz,Pl)KT(Pz,kl)

— fi (k1, k) cos K" (P2, k) K (P, k>)

+f_ (kz,kl)Sin

K(Pth)L(kl’PZ) }
(76)
In terms of the color-singlet compound operators, we

can break the Hamiltonian (70) into three pieces:
H=Hy+: H,: +: Hy: +O(1/N,), with



Solving bound-state equations for scalar and hybrid QCD in two-dimensional spacetime

Chin. Phys. C 48, (2024)

:H, :=/ IT* (k) (A (k) + C (k) + «/_/ I (k) (N (k) + N* (%))

/dpE(p) [B(p.p)+D(p,p)+M"(p,p)+M(p.p)|,

[ 4 Sy

{ - f: (k1. ky)cos L (k. Py

dP, dP,

2n \/ZE(P E \/ZE(Pz

0(k—P)-0(q—P)
2

0(k—P)-6(q-P)
2

dk,
2n

— fi (ki ky) cos

)L (ky,P2) + f- (ky,kz)sin

K (P2, k) K (Py,k>) — f- (ki, k) sin

(77a)

®(|k2—k1|—P)27T5(P2—P1 +ky —ky)

(kz— 0’

0(k-P)—0(q—P)
2

0(k—P)-6(q-P)
2

L' (ko, P KT (P2, k1)

K(P1ko) LGk, Py) }.
(77b)

For simplicity, we have suppressed the explicit expres-
sions of the vacuum energy H,.

Demanding that : H, : to bear the diagonal form sep-
arately for the dressed bosonic and fermionic quarks, we
can obtain the mass-gap equations for both types of
quarks. The mass-gap equation for bosonic quark is
already given in (37). The mass-gap equation for spinor
quark is well-known [12]:

+o0

o sin [6 (p)— G(k)}

(78)

pcosB(p) —m,siné(p) = /17[ dk)

As mentioned before, these two mass gap equations can
also be deduced via variational approach, by requiring the
minimized vacuum energy.

3.

Bogoliubov transformation, diagonalization and

bound-state equation

Like in the preceding subsection, the confinement
deq

= ) G

- (0" (@ +E(P-9) L' (q.g—P)L(q.q—P),

property of QCD indicates that the color-singlet bosonic

operators 4, D, B and C are not independent, yet can be
replaced by the convolution of the following fermionic
compound operators at lowest order in 1/N.:

dp .

A(kl,kz)*/il(‘ (P, kD) K (p,k2), (79a)
dp .

D(klvkz)q/E[( (kl»P)K(kZ,p)» (79b)
dp _,

C(kl,kz)ﬂ/gl“ (k1,p) L(k2, p), (79¢)
dp .

B(kl,kz)H/ﬂL (p, k1) L(p,k>). (794d)

Making these replacements in the Hamiltonian (77), and
only retaining the leading-order terms in 1/N,, the
Hamiltonian now only depend on the fermionic com-
pound operators K, L and their Hermitian conjugates:

(@+EP-q)K' (- P.g)K(q—P.q)

(80a)

1

H,:

6(k— P) 6(q-P)

G(k—P)Z—Q(q—P)

0(k—P)—29(q—P)

e(k—P)%e(q—P)
2

{ f+ (ki ko) cos

= fi+ (k1,ky)cos

— f= (ki,ky) sin

+ f- (ky, ky) sin

dqdk ]
87r2/ ff T Ny o BV

E (k)

K'(g—P,q) K (k- P)k)

P)

NCK(k_ka)L(Q7q_P)

(80b)
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where the regularized dressed quark energy E(p) is
defined by [12]:

" A
E(p)=E(p)—— =mcosf(p)+ psind(p)

o
A dk
n 27[Wcos[9(p)—9(k)]- (81)

To diagonalize the Hamiltonian, we invoke the
Bogoliubov transformation, expressing the compound
quark operators K, L in terms of the annihilation/creation
operators of the (anti)-hybrid hadrons:

7 0
K@-Po= 3> [mP®]aP)
n=0
+ii (~P)®; (g-P.~P)]. (82a)
La-Pa= o [, (P) B (q, P)
n=0
+m (~P) &, (q—P,~P)). (82b)

where m, and 7 represents the operator annihilating the
n-th hybrid state composed of a bosonic quark and spinor
anti-quark, while ' represents the operator creating the
n-th anti-hybrid state composed of a spinor quark and a

/ dp [ (p,P) P (p,P)+ D" (p,P) D" (p,P)| = |P|5"",

/ dp [®" (p, PY D" (p— P,—P)+ " (p,P) D" (p,P)] =0,

oo

hE

=
Il
o

M

(@ (p,P) D" (q,P)+ D" (p— P,~P) P (9— P,—P)] = 0.

=
Il
(=1

Changing to the basis of m, and m}, we wish that all
the non-diagonal terms in the Hamiltonian such as m/m,
(n#1), m'm', mm all vanish, and end with the desired di-
agonal form:

e [ o
H_H0+/ZHEP”m"(P)m"(P)-’-O(m)' (86)

In order to achieve this diagonal Hamiltonian, we find

[@,(p, PP (q,P) + D" (p— P,—P)P" (q— P,—P)| = |PI6 (p—q),

bosonic anti-quark. The Bogoliubov coefficient functions
@ can be interpreted as the forward-moving/backward-
moving wave functions of the n-th hybrid state. It is nat-
ural to anticipate that these hybrid annihilation and cre-
ation operators obey the following anticommutation rela-
tions:

{m, (P),m! (P')} = 2716,,,6 (P~ P"), (83a)
{m, (P),m},(P")} = 278,,6 (P—P"), (83b)
{m, (P), i, (P")} = {m] (P),m},(P")} = 0. (83c)

The hadronic vacuum [Q) can be defined as
m,(P)|Q) =0 for any P and n. One then construct the
single hybrid hadron state as

|P°, Py = \/2P%m (P)|Q), (84)

with PO = /M2 + P2, and M, denoting the mass of the n-
th hybrid state.

To be compatible with (83), the hybrid wave func-
tions @} must obey the following orthogonality and com-
pleteness conditions:

(85a)

(85b)

(85¢)

(85d)

that the hadronic wave functions @} must satisfy the fol-
lowing coupled integral equations:

(IT* (p)+ E(p— P)= P*) @* (p, P)

A [ dk 0k o e
:27[(k_p)2bc+(k7p)cos ( p)2 (g-p)
"‘f—(k,p)sing(k_P);H(q—P)

@* (k,P)

@ (k,P)],
(87a)
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(IT* (p)+E(p—P)+P’) &~ (p,P)

A [ dk 0(k—P)—0(q—P) __
_27[ = [f+(k, p)cos & (k,P)

2
6(k—P)-6(q—P)

5 o* (k,P)].

- f-(k, p)sin

(87b)

This is one of the main results of this paper.

When boosted to the IMF, one can show that these
bound-state equations reduce to the bound-state equation
derived in the light-front, (68). In the other word, as the
hybrid hadron momentum is increasing, the backward-
moving wave function @” quickly dies out, while the for-
ward-moving wave function @ approaches the light-
front wave function @"(x).

IV. NUMERICAL RESULTS

The numerical solution of bound-state wave func-
tions have been widely discussed [42—49]. We follow the
approach similar to [46] for the evaluation of light-cone
wave functions and the Hermite function approach [51]
for the equal-time wave functions. In order to simulate

— hybrid meson
M2V 2A mgp, =0.749
120

— mff=15
mEl =25

— mfl =45

100 A

80 -

60 -

40

20 A

the physical mesons, we set the 't Hooft coupling to be
V21 = 340 MeV, which agrees with the value of string
tension in QCD,. For notational brevity, we use /21 as
the unit of mass in the rest of this section. The mass of
scalar quark is assumed to be mET =m; = 1.5 (mtC =m,).
As for spinor quarks, we choose the mass of strange
quark as m,, = 0.749 and charm quark as m,, = 4.19.

In Fig. 1, the meson mass spectra of different quark
species are illustrated as functions of the principal
quantum number z. It's exhibited that the square of the
meson mass is linearly related to n. This phenomenon is
analogous to the Regge trajectories in the 4 dimensional
QCD where 7 is replaced by the spin J.

We have numerically solved the bound state wave
functions for scalar QCD, and hybrid QCD, in the axial
and light-cone gauges. In the process of calculation, we
found that the renormalized scalar quark mass m%C in the
light-front cannot be less than one, which corresponds to
a strongly coupled region, where the asymptotic behavior
of the wave function at the boundary is not a pure real
number [50].

In Fig. 2, we plot the equal-time and light-front (LF)
meson wave functions in scalar and hybrid QCD,, con-
sidering both the ground states and the first excited states.

— hybrid meson
M2/ 22 msp=4.19
200

— mff=15
175 4 mil=2.5
— mfl =45

150 4

1254

100 4

75 A

50 -

25 A

0 -

MZN2A scalar meson

200

— mf =15

75 A

50 -

251

0 1 2

Fig. 1.
scalar quark and spinor quark, my = mEl.

T T T
3 4 5
n

(color online) Mass spectra of a few low-lying mesonic levels with different quark mass. To facilitate the distinction between
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Fig. 2. (color online) bound state equation for the bound-state and the 1st excited state. x,(x,P) = xn(p = xP,P), ®,(x,P) = $,(p = xP,P).

For single-flavor mesons consist of scalar quarks, the
wave functions with even/odd n are symmetric/antisym-
metric under the exchange x < (1—-x) due to the charge
conjugation symmetry. The LF wave functions always
vanish in both end points x=0,1. For heavy quark, the
LF wave function possesses a much milder rising/falling
shape near the end points and is mainly distributed at
moderate values of x. When the mesons momentum goes
to the infinity, the equal-time wave functions y, and &,
will boost to the light-front bound state equation, while

the y_ and and @_ components rapidly dies off. This phe-
nomenon validates the large momentum effective theory
(LaMET) and reflects the normative invariance of the
theory.

V. SUMMARY

In this work, we have made a comprehensive study on
the two-dimensional QCD, focusing on the bound-state
equations for mesons composed of a scalar quark and
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scalar antiquark, as well as exotoic baryons composed of
a fermionic quark and bosonic antiquark. These equa-
tions are obtained from both light-front quantization and
equal-time quantization. Our major theoretical tool is the
Hamiltonian operator approach. However, for the first
time we also present a diagrammatical derivation of the
mesonic bound-state equation in the equal-time quantiza-
tion for scalar QCD,. We confirm the known equations
for mesonic case and for the hybrid baryon in the light-
front quantization, paying particular attention to the mass
renormalization issue. We find that, in scalar QCD,, the
renormalized quark mass in light-front may not coincide
with that in equal-time, depending on the chosen renor-
malization schemes. We establish the relationship
between these two renormalized masses. For the first
time, we also derive the bound-state equation for the
exotic baryons in the equal-time quantization.

We also conduct a comprehensive numerical study on
the hadron spectroscopy and solving the bound-state
wave functions of the ground and first-excited states. We
utilize the concept of generalized functions to solve the
mass-gap equation. We also explicitly verify the trend
that as the hadron is boosted to infinite-momentum frame,
the forward-moving bound-state wave function approach
the light-front wave function.

APPENDIX A: DIAGRAMMATIC DERIVATION
OF THE BOUND-STATE EQUATION FOR SCAL-
AR QCD, IN EQUAL-TIME QUANTIZATION

In this Appendix, we utilize the Feynman diagram-
matical method to redefine the bound-state equations for
scalar QCD, in equal-time quantization.

Al
The sQCD, lagrangian is expanded as

Feynman Rules

Logen, =tr (0.A°)° + (#¢") 8,0 —m*¢' ¢
—ig, (Bo9") A’ +ig,p" A0y + g1TA°A%9. (Al)

The Feynman rules can be derived directly from (88)
and are shown in Table Al. The main obstacle of this ap-
proach in scalar QCD, compared with the case of spinor
QCD, is that the appearance of seagull vertices may mess
up the rainbow-ladder topology at the leading order of
1/N..

The solution is straightforward. We break up each
seagull vertex into two ggg vertices and reorganize its
contribution into a new term of the quark propagator in
between. However, this can not be done naively, since the
Feynman rule of the ggg vertex depends on the momenta
of the two attached quark lines while a term in the quark
propagator only knows about the momentum that flows

Table Al. Original Feynman rules for sQCD, in the axial
gauge
Building blocks Double lines Feynman rules
e
k —_— l
SCETETETTTET o A~ e (k)2
D i
————— - — pr—-m?+ie
E 8s 0 /0
p+p
B e ()

/

+(1+2)

p P

through it. So we also need to break the ggg vertex and
move the momenta into the two attached quark propagat-
ors separately. This procedure is illustrated in Fig. Al.
Note that in order to absorb the seagull vertex, we have to
introduce four kinds of quark propagators, which are de-
picted in Fig. 2. With hindsight, these propagators are
quite natural, and to some extent we can identify them
with the propagators from ¢’ (y),—in" (y) to ¢(x),in(x) in
the Hamiltonian approach. The situation here is a bit sim-
ilar (though not the same) to the relation between the ca-
nonical quantization and the path integral quantization of
the massive vector field. The contact term from the
seagull vertex cancels the (po)2 numerator in the quark
propagator to give the correct p° residue. For conveni-
ence we define w? = (p°)* +m? —ie.

To simplify the calculation, we write the four quark
propagators as a 2 X 2 matrix.

i(po+Ps+ wf,?’_)

DY (p) = ; (A2)

p?—m?+ie

where the projectors P, = (1 +0;) /2 satisfy the orthogon-
ality and completeness relations

PL=P,, P.PF=0, P.+P =1, (A3)

and the following algebra

Xo1+YP +ZP )Xo —ZP, - YP_)
X2-YZ

= 1’
(A4)

o1Ps=P=z0y,

for scalars X,Y,Z. It should be emphasized that the intro-
duction of the Pauli ¢ matrices has nothing to do with
spinors. In fact, the mass dimensions in (A2) don't even
match. However, this particularly chosen matrix multi-
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2 V2 + ;E2—m2 ) V2
Fig. A1. Modification of the Feynman rules to remove the seagull vertex.
- 1
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(01T ()T (y)|0)
_ i
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(0T ()7 (y)|0)

Fig. A2. Modification of the quark propagators.

plication guarantees that only uniform-dimension terms
in the matrix elements will be added together. The modi-
fied Feynman rules are summarized.in Table A2.

Table A2. Modified Feynman rules for sQCD, in the axial
gauge.
Building blocks

Feynman rules

BEEEEEEEEEEE5 (kz)Z

p [
- po(r|—wf,¢’+—$l)_
=T T \/i
p o

A.2. Dyson-Schwinger equation

Let the contribution of one-particle irreducible (1PI)
diagrams in the self-energy correction of quark propagat-
or be given by —iX(p). The dressed quark propagator
D(p) in the large-N. limit is governed by the rainbow
diagrams (Fig. A3). It satisfies the recursive equations:

i
plo —w2P. —P_-2(p)’

D(p) = (A5a)

2N, d’k oDk
_is(p) = lgs 7[ o1D( )0'1 (ASb)
@2n)* (p—
where we have used
1
7 =X'+x'yx e xlyxlyx Tt (A6)

Apparently X(p) is independent of p°. The most gen-
eral form is

Z(p)=APIP.+B(PHP-. (AT)
The o, term does not appear in (A7) because we take the
principal value of the k° integral in (A5b) at k° = o0, i.e.,
we take the average of the contour closed at the upper
half-plane and the contour closed at the lower half-plane.
The dressed quark propagator now becomes

P o +(1+B)P. + (w) +A) P_

D A8
P = (1 By (w1 A) (A9)
Introducing the following magic variables,
,_wytA 2 2
E =5 F,=0+B)(w,+4), (A9)
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A = e O
(a)

(b)

Fig. A3. Dressed quark propagator in the large-N. limit.

their advantage shows up immediately: £(p) = 7 (1. Ep)T’ E(p) = 7 (L1/E,). (Alda)
ploy + &Sﬂ +E,F,P_
D(p)=i -
(P =F)) (r°+F)) L -E), A== (1,-1/E Al4b
1 | n(p) \/E(’ b) . 7p) \/§<’ /E,).  (Al4b)
+ E—P+ +E,P_ o E—P+ -E,P_
) 0 i F,+ie + 0 j_ F,—ie ’ The dressed quark propagator can then be written as
(A10) D(p) = iE(p)ep)os  mp)ialp)os (A1)

—-F,+ie PP+ F,—ie

where we have made assumptions that w)+A>0,

1+ B> 0. Substituting (A10) into (A5b), we find .
A.3. Bethe-Salpeter equation

1 In the large-N, limit, The meson-qg vertex I'(p;q)
. E&. £ EP’ satisfies the following Bethe-Salpeter equation (Fig. A4):

2N,
Cr=—"% 7[2 s PTG D=
Matching the coefficients of ¥ and utilizing (96), we find @my( )

. Al6
the equations for E,, and F: (A16)
- 1 ( ., 1 7[dk’ E, ) . F(zzg ) is independent of p°, so we can perform the k°
=— | w z__ " .
'TE, 3 k) integration:
_ Ao . 1T 1 di®
=E, ( 27[dk (- k) E{) (A12) I(k;q)s/ED(k)F(k;q)D(k—q). (A17)
(From (A12) one can identify E, with E, in the Hamilto- The interpretation of 7 (k;q) at the matrix-element
nian approach and F, with IT* (p).) level is

Explicit calculation shows that the numerators of

(A10) can be decomposed into outer products of two vec- Tg) = / Az e FQID (0.2 D (0.0) M, (@), (AIS)

tors:
1
+—P.+E,P_
q 7
1 — | -
0'1—E7P+—Epp, \\
. 5 =n(p)i(p)o, (A13b) h
where Fig. A4. Meson-gg vertex in the large-N, limit.
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where @ (x) = (¢(x),in(x))" and M, is the n-th excitation
of the bound states. Among the four projections of D (k)
and D (k—g), only two of them give nonzero residues. We
arrive at

_&k) [—iE (ko T (k:q)n(k—q)] 7 (k—g) oy
- q)—F(k—q)—F (k) +ie
L1® [—if (k) o T (k; q) € (k — )| & (k— q) oy
~q)—F(k—q)—F (k) +ie

I (k;q)

E;_
=—x: (:q)  —EWTk-g)0
k

E;_

X, (0) — Intkék—-q)o.
k

(A19)

From now on we drop the superscript z in spacial mo-
menta for simplicity. Substituting (103) into (106), we get

[@)-F(p-9)-F ()| x; (p:9)
[k EE
(p- k)2 EkEp—q

x [E(pE®itk-gn(p-q)x; ;)

+EPIn0Ek-n(p-a)x; k)], (A20a)
(4= F(p—q)—F(p)| X, (p:q)
I L E,Ei,
(p- k)z EE,,
x [1(Pn0Ek-&(p-ax; kig)
+(P)ER k=& (p—q)x; ki) . (A20b)
Using the fact that
- E,+E
EE®) = n(pin(l = ~22=, (A21a)
P
- E,-E
Epn =i (pEk) = =2, (A21b)
P
and defining
_ Ek + Ep
Je(p,k) = 5E, (A22a)
S.(p.k;q) = fu(p.k) f (p—g.k—q), (A22b)

the bound state equations can be written as

dk
(p—k>
X [S.(p.kiq)x; (k:q)=S_(p.k:q)x, (kiq)] .

2
[4)-F(p—9) - F(p)|x; (p:g) = —17[

(A23a)

e (1. __ﬁfi
[0~ Fp—0-F(P)x, (p:9) = (—h)

X [S(p.k:q)x, (k:q)—S_(p.k:xy (kiq)] -
(A23b)

This equation is equivalent to (52).

APPENDIX B:CONNECTION OF THE MASS
RENORMALIZATION SCHEMES BETWEEN
EQUAL-TIME AND LIGHT-FRONT QUANTIZA-
TION FOR SCALAR QCD,

In this appendix, we discuss some subtle issue about
the mass renormalization in the scalar QCD,, in both
equal-time and light-front quantization. We start from the
equal-time quantization, and examine the asymptotic be-
havior of E; and IT* in the large meson momentum limit.

The integrals appear in IT* defined in (36) as k — oo
can be calculated with the method of regions [36]. There
are two regions of the integration variable k;: 1)
my ~ lki| < k; 2) my < |ki| ~k. We divide the integration
regions, expand the integrand according to the different
scaling of each region:

7[dk1
1 1 E

()
k lk1l<A Ekl kl

B

B Ey Ey 1
vk 2 E R

E;

kil , &
foa(i) w

+ diy | =l - ) (g
oo\ k) Kkl (

where m; << A < k. For II*, the bounds of each region
can be extended to the whole momentum space since the
asymptotic A dependence of each region cancels each
other:

B  Ec

E. E. E. 1 1{7[ (1 Ek) }
di | =2 2k 2N 2 gk (— =R ) —g
7[‘ (k+k))?  E k2 k "\NE, ©

(B2)
For I1™, the integral is divergent for each region:
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Ey _Ex
E. E. E 1
dk Bl el S Bl Wl
7[‘ (k+k)? E k2
A
. 1 E k
~ lim - dk (-7—7'>—41 =, B3
A/klllgookb[,\ 'V E, @ HA} (B3)

Define k, as

A

1 E
dk, b
—-A

Alnky = (_7_7
’ Ekl k%

lim
Ak —c0

) +4InA.  (B4)

the asymptotic behavior of E; can be derived from (41)
as

2

m
_AI"FO)' (BS)

1
Eiapproxk + A ( >

The value of E; still can not be read directly from (125)
since ko depends recursively on the functional form of

E,,. Fortunately, however, when substituting (125) into
IT*, the ky dependence cancels and we arrive at

2 | E
H*(k)zk+%+@ Hdkl (5_751) —4} ., (B6)
1 1

Relabelling the momenta k& = xP in (52), and taking the
large P limit, one finds that (52) approaches (28). The re-
lation between the renormalization masses m, and m; can
be found by matching two equations:

A 1 E
B
27[ g, /™™

Note that this relation is scheme dependent. Had we
chosen the equal-time renormalized mass

2 2/1/

m? + (B7)

1
dkl —
E;

m; =m + <

: : (BS)

1

we would get m; = m,.
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