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Abstract: The periapsis shift of charged test particles in arbitrary static and spherically symmetric charged space-

times are studied. Two perturbative methods, the near-circular approximation and post-Newtonian methods, are de-

veloped, and shown to be very accurate when the results are found to high orders. The former method is more pre-

cise when the eccentricity e of the orbit is small while the latter works better when the orbit semilatus rectum p is

large. Results from these two methods are shown to agree with each other when both e is small and p is large. These

results are then applied to the Reissner-Nordstrom spacetime, the Einstein-Maxwell-dilation gravity and a charged

wormhole spacetime. The effects of various parameters on the periapsis shift, especially that of the electrostatic in-
teraction, are carefully studied. The periapsis shift data of the solar-Mercury is then used to constrain the charges of
the Sun and Mercury, and the data of the Sgr A*-S2 periapsis shift is used to find, for the first time using this meth-

od, constraints about the charges of Sgr A" and S2.
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I. INTRODUCTION

The periapsis shift (PS) of celestial bodies around the
central more massive gravity source, is an important ex-
perimental and theoretical tool for the investigation of
gravity and the properties of celestial bodies and their or-
bits. Besides the famous example of Einstein's explana-
tion of Mercury's extra PS using General Relativity (GR)
[1-3], nowadays PS of different kinds of objects such as
satellites [4—7], planets in the solar system [6, 8], and
stars around Sgr A” [9] can be observed experimentally.
The PS of these objects are related not only to the proper-
ties of the test particles (such as their charge, spin or
weak interaction with the environment [8]) but also those
of the central object (charge, spin, oblateness etc. [8—10]),
and the nature of the gravity itself [11]. Moreover, the PS
is also dependent on the kinetic parameters of the orbits,
such as their effective eccentricity e or semilactus rectum
p, or equivalently the specific energy £ and angular mo-
mentum L.

Among the intrinsic parameters of the spacetime, the
central object mass M's effect on the PS is the most well-
studied and the result is the well-known Schwarzschild
one [1]. The next frequently considered parameter, whose
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effect on the PS is also observationally important, is the
spin angular momentum of the central object, especially
that of those more compact sources. The effect of the
electric charge Q of the source on the PS, which is the
first motivation of the current work, is less commonly in-
vestigated. This parameter is expected to affect the PS of
test particles gravitationally through the gravielectric ef-
fect. Previously, it was known that this effect will always
decrease the deflection angle of test particle trajectories
in the weak field limit, regardless of the sign of QO [12,
13]. This implies that a nonzero Q would also decrease
the PS of test particles. One of the main purposes of this
work is to show that this is indeed the case, at least to the
leading order of the post-Newtonian (PN) approximation,
for all kinds of electrically charged spacetimes.

A more interesting case is when the test particle is
also charged with ¢, and consequently, both the
gravielectric and the true electrical effects will affect the
PS. Moreover, due to the fact that the electric interaction
strength is much stronger than the gravitational one, the
charge effect can still be non-negligible even when both
the spacetime and particle charges are small. For the elec-
tric effect, the sign of O matters because its product with
q, 1i.e. sign(qQ) determines the nature of electric interac-
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tion, and therefore QO could potentially increase the PS
too. This means that there is an interplay between the at-
tractive gravitational interaction and the (potentially re-
pulsive) Coulomb interaction. How these interactions and
parameters (Q, ¢) would affect the PS is unclear and this
forms the second motivation of this work.

Previously, when finding the PS under pure gravity,
most of the works used essentially some kind of PN ap-
proximation, i.e., they assumed that the trajectory is far
from the center (r > M) and close to an ellipse [14-23].
However, when the trajectory is close to the center, espe-
cially when the center is a black hole such as Sgr A", high
order results which were hard to obtain using the PN ap-
proximation, might be needed to meet the required accur-
acy. In this work, we will develop a near-circular (NC)
approximation that works for orbits that are not very
large.

For the PN method, most of the previous calculations
only worked in specific spacetimes to the leading or at
most next-to-leading order of M/p [20, 24-28]. In this
work, we will also systematically develop the PN meth-
od in general static and spherically symmetric space-
times with nonzero charges, in such a way that not only
the gravitational but electric interactions can be treated
simultaneously, and the PS to very high order will be ob-
tained and linked directly to the asymptotic expansions of
the metric functions of the spacetime.

The paper is organized as follows.-In Sec. II, we lay
out the preliminaries, the general form of the spacetime
and electric field, the definition of the PS, the NC approx-
imation method and the corresponding result axc. Sec. 111
is devoted to the PN treatment of the PS and the result
apn to arbitrary order. The equivalence of the two ap-
proximations are also shown here. In Sec. IV, these two
methods are applied to the Reissner-Nordstrom (RN)
spacetime, the Einstein-Maxwell dilaton (EMD) gravity
and the charged wormhole spacetimes. The PS in each of
them is found and the effect of the electric interaction is
carefully analyzed. Sec. V is devoted to the constraining
of the charge of the solar-Mercury system and the Sgr A™-
S2 system using the data of the PS in each system. Sec.
VI concludes the work with a short discussion.
Throughout the work, we use the natural system of units
G=c=4neg = 1.

. PRELIMINARIES AND THE NC
APPROXIMATION

We study the motion of a charged test particle in the
most general static and spherically symmetric spacetime
whose line element is described by

ds® = —A(de* + B(dr? + C(r)(d6® +sin*6dg?), (1)

where (¢,7,0,¢) are the coordinates and the metric func-

tions depend on 7 only. For the electromagnetic field in
this spacetime, we will assume that there is only a pure
electric field described by the potential [Ay(r),0,0,0]. In
some spacetime solutions with electric fields, however,
no such potential but the electric field itself E(r) was giv-
en. Fortunately, for the two methods presented in this pa-
per, what is needed is only the series expansion of Ay (r)
near the orbit radius and therefore the electric field E(r)
is also enough. Due to the symmetry of the spacetime and
field, without losing any generality, we can always in-
vestigate the equatorial motion of charged test particles in
such spacetimes.

The dynamices of a point particle possessing a non-
zero mass m_and specific charge 4=¢/m canbe de-
scribed by the Lorentz equation [29]

d>x° N
dr?

dx* dx”

A dy” dx*
dr dr -4

Hdr’

2

where F,, =0,A,—-0,A, and 7 is the proper time of the
test particle. After integrating Eq. (2) on the equatorial

plane (6= f), we obtain three first-order differential
equations [13]

., E+q
i = jﬂO, (32)
. L
¢ = 67 (3b)
T RY 72
2o |EFA) 1) L’ (G¢)
AB B BC

where the integration constants £ and L correspond to the
energy and angular momentum per unit mass of the
particle respectively, and - denotes the derivative with re-
spect to the proper time 7.

To analyze the radial motion of the particle in more
detail, we first rewrite Eq. (3¢) in an alternative form

(E +§Ay(r))>?

2
B(r)C(r)i* = )

- 1} c(r)-12. 4)

The zeros and singularities of B(r) and C(r) generally
correspond to event horizons or singularities of the space-
time, and in this work we will concentrate on the region
B(r)C(r) > 0. Then we can think of the first term on the
right-hand side of Eq. (4) as some kind of effective poten-
tial, against which £? can be compared with

E+3A(r) |

R e

)

} C(r).
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Then the motion of the particle is only allowed when
V(r) > L*. We assume that this inequality has a nonempty
interval solution [r;, r»] where

V() =V(r) =" (©)
Clearly, r; and r, are the radii of the periapsis and
apoapsis. For simplicity, we will also assume that there is
only one local maximum of V(r) at r = r. in this iAnterval.
For later usage, we will denote the value V(r.) as L2 ie.,

dv(r)
dr

r=re

=0, V(r.) = L% 7

The existence of such r. is always possible as long as
2 is close enough to L2. The physical interpretation of r.
is straightforward: it represents the radius of the circular
orbit of the particle with energy £ and angular mo-
mentum [.. We point out that except for very simple
spacetime and electric potential (e.g., the RN spacetime),
it is usually difficult to solve the algebraic equation (7) to
obtain the closed form solution of r.. Therefore in the fol-
lowing sections where 7, is used, we will have to assume
that r. is already solved, numerically if necessary.

With the above consideration, the PS can be defined as

a=2 / R P (8)
o dr
which after using Egs. (3) becomes
e 7 B(r) L _ Ldr
a=2 (/ +/ ) 9
r Te C(V) \Y4 V(l") L2 ( )

In order to reveal the effect of electric interaction on
the PS, our task becomes to systematically solve the PS in
Eq. (9) using appropriate approximations. In this section,
we will present a perturbative approach based on the NC
approximation, and then in the next section, a PN meth-
od will be used.

For the NC approximation, the first step for the com-
putation of the integrals in Eq. (9) is to utilize the devi-
ation of the particle's orbit from a perfect circle as a
measure of perturbation for series expansion. This devi-
ation can be quantified by the parameter a defined as

-1

Q
Il

(10)

to| &

When r; and r, are close, i.e., the orbit is close to a
circle, then the above defined a will be a small quantity.

In order to use a, we will extend the method de-
veloped in Ref. [10, 13, 30] to the case with electric inter-

action here. We first propose a change of variables in Eq.
(9) from r to &, which are linked by

e=i.r(1), (1)
r
where the function P(1/r) is defined as
1 ) 1 1
P - = - = . 12
( r vV(r) L. (12

From Eq. (7), we observe that the function P(x) ex-
hibits opposite monotonic behavior on the two sides of
x=1/r.. This'implies that its inverse function possesses
two different branches in the domain of x > 0. We use w.
and w_ to denote the branch of the inverse function of
P(x) for r> r. and r < r, respectively. In other words, us-
ing (11) we have

-

Substituting this change of variables, the terms in the
integral (9) become

lw_ (&/L.) forr<r,

13
Vw, (&/L) forr>r. (13)

Vi) E+a+8)a=9)

72 Gt 17 , (14a)
A 1
ri2 —>LCP(—) =a, (14b)
W)
A 1
rc—>LCP<—) =0, (14¢)
re

and consequently the PS in Eq. (9) can be rewritten as

“ya, &)
= dé-2 15
|2 ag-2n (1)
where the factor y(a, £) of the integrand is
@9=23 s Bljo) 41wl g

Cl/wg) L.NZ+a+& ?

An evident advantage of this change of variables is
that it transforms the two different integral limits »; and
r, into the same value a and therefore simplifies the com-
putation.

Since we are concentrating on the a <1 case, the
next step is naturally expanding the function y(¢) for
small & Carrying out this expansion, one can show that in
general it always takes the form
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W@, &)= yi@E" 2. (17)

n=0

Here the coefficients y,(a) can be determined once the
metric functions and potential A, are known around r,.
Substituting this back into Eq. (15), and using the integ-
ral formula

@ g Q-
/o =t rmdé = 7(2’1)” na", (18)

the PS is computed as

= (2n— 1!
= Z %nyn(a)a” —2m. (19)
n=0 o

Since we have assumed that the deviation parameter a
is small, then in principle we can further expand y,(a) for
small a and reorganize the PS into a true power series

achitna":f:t,, (25—1) . (20)
n=0 n=0

These coefficients #, are now independent of a and,
similar to y,, can be completely determined once the met-
ric functions and electric potential are fixed. “We now
show this determination process in the following.

We assume that the metric functions and the electric
potential A, have the following expansions around r.

A(}’) = Zacn(r_ r(:)n7

B(r)=) ba(r—r.),

(21b)
n=0

C(r) = chn(r_ rc)n’ (210)
n=0

Ao(r) =Y henlr=r)". (21d)

n=0

The definition of r. in Eq. (7) immediately implies a
constraint between these coefficients

acCco
acCcl —Ac1Cc0

Ce ~ ~
X ( \/CTI (aeoCet — Ge1Cep) + §PH2 _qha) . (22)
c0

E+ghg=

We will use this relation occasionally to simplify the
t, and T, below. The critical . in Eq. (20) can also be
expressed in terms of these coefficients using again Eq.

O

(E—H?hfo)z_l}' (23)

dco

Substituting the expansions in Egs. (21) into Egs.
(12), and taking its inverse function w, and then substi-
tuting into (16) and carrying out the expansion for small &

Q1a) and eventually expanding y,(a) again for small a, one
=0 finds the coefficients #, in Eq. (20). Here for simplicity,
we only list the first two of them
27bY* L, (24a)
0= W,
T 2 2 2 2 22\ 2
151 W { [(—3[9606'61 + 4bL.OCL-()CC2 - 4bc2b(.oc(.0 +2b.1boceoce + bIC(’.O) TZ
+ (6begbeicly — 662 cocet) ToTs — 1562l T3 + 12675 ToTs) L) — 8673 T3 L } (24b)
where the T, are the n-th derivative of the potential at r., i.e., T, = V?®(r.)/n! and the first two of them are
(E + ‘A]hfo)z 2 2
T, = A (acoccz —A0:0Cc0 —Ac1Ac0Cc1 T achco)
0
24 (E + ghy % ¢ oh?
+ w (_aclccohcl + aCOCclhcl + acOCCOhCZ) + m —Cc2, (2521)
a aco



Periapsis shift in spherically symmetric spacetimes and effect of electric interaction

Chin. Phys. C 48, (2024)

(E+Ghe)’

T3 = 4
o

aeo
+ 2q (E -;_ thO)

ay

~2

2 q hcl
+aclcc()hcl} + Z (=@crccoher +acpceiher +2a0¢0her) = Ce3.

0

The higher order t, (n=2,3,---) and T, (n=4,5,--")
can also be obtained easily with the help of an algebraic
system.

In obtaining the PS in Eq. (20), although we used the
small a or equivalently the small eccentricity e approxim-
ation, we do not have to assume that the orbit size itself is
large compared to the characteristic length scale (e.g.
mass M) of the spacetime. The latter is the key assump-
tion for the PN method, which can also be used to com-
pute the corresponding PS. In next section, we show how
the PN method can be used to take into account the elec-
tric interaction and to find the PS when the orbit size is
large.

III. PS USING PN METHOD

Many previous works computed the PS using the PN
methods. However most of them, if not all, only focused
on the lowest order(s) result, and some used this method
very loosely and the results are erroneous. Moreover,
only a few of them have attempted the PN method to deal
with the gravitational and electric interactions simultan-
eously. In this section, we will systematically develop the
PN method that not only yields the PS to high order of
the semilatus rectum p but takes into account the electric
interaction too. Some of the techniques we used here are
similar to those in Ref. [10, 15, 31]. We will further show
that the PN method result agrees perfectly with the result
obtained in last section using the NC method, when both
the orbit size is large and eccentricity is small.

For the PN method, we first assume that the orbit can
be described by the relation

[1 +ecos1//(¢)] (26)

1
p
where the function y(¢) describes the deviation of the or-
bit from ellipse. Note that the periapsis and apoapsis of

the orbit correspond to ¥ =0 and y = & respectively, and
the radii of the periapsis r; and apoapsis r, satisfy

1 1-
e o7 27)
p

r

The radius of the orbit evolves for a full period when
w changes from 0 to 27 and therefore the PS using this

2 3 2
[acoacl Cet +ac08c1 (2a:2Cc0 = Ac0C2) = Az €0 + Ay (—A3C0 — AeaCet + acOC3)]

[acoacO (CCZhCl + CcthZ + CCOhL‘3) - aCOaCZCCOhCl —acodcl (C(‘lhcl + CCOhUZ)

(25b)
‘description becomes
apy = 02” j%dlﬁ -2 (28)
The d¢/dy can be expressed from Eq. (26) as
:T(i = dstltl/lj¢ @)

whence we have defined = 1/r. The term du/d¢ in
Eg. (29) can be transformed using Eq. (3) to

(dl)zzu4ﬁ: § [E+aAG)CC) Q)
d¢ # AGB(L: B
W) _ Fu) (30)
B()

where we have defined the right-hand side as F(u). Next
we will show that F(u) can be expressed as a serial func-
tion of y and after substituting back into (28), the integ-
ral over  can be carried out to find the PS.

The key to accomplishing this is the PN assumption,
i.e., we will assume that p is large and therefore u is al-
ways a small quantity. This allows us to expand F(u) as a
power series of u

Fuy=Y_ ful, (31)
n=0

where the coefficients f, can be determined from Eq. (30)
using the asymptotic expansion of the metric functions
and A,. Assuming that they are of the form

n br‘l
AP =1+ B =1+ 2,
n=1 n=1

@:1+

n=1

Cn QH

s ﬂo = s

rn rn
n=1

(32)

r2

we then are able to find f, order by order as functions of
the coefficients a,, b,, ¢, and q,. Here we only illustrate
the first few of them as
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E*-1
fo= & (33a)
by —2¢,) (1-E*) —a,E* =24, E
flz(] cr) ( AZ a gk (33b)
L
Hh= —l+i{(ab —2a,c +a2—a)E2
2= lA,z 11 1¢1 1 2
+(=2bic +b7 —by+ ¢} +2¢5) (E* - 1)
+24E [(=ay — by +2¢) a1 + @]+ 370t } . (33¢)

Repetitively substituting Eq. (26) as u, all u in the
right hand side of Eq. (31) can be completely replaced by
variables p, e and y. After collecting terms proportional
to cosy and sin®y, we are able to show that F(x) always
takes the form [10]

F(u) = Go(E, L, p,e)+ Gy(E,L, p,e)cosys
+ Gu(E. L, p.e,cosy)sin™ y (34)

n=1

where Gy, G, G, are linear combinations of f, with coef-
ficients being power series functions of £, 1/L, ¢ and
1/p. Their exact forms can be worked out without  diffi-
culty, although the algebra is too tedious to show here.

Since at the apoapsis and periapsis, by definition (30)
we have F(u) =0, using the condition (27), we immedi-
ately have F(y =0)=F(y =n)=0, i.e.,

Go(E,L,p,e)=0, Gy(E,L,p,e) =0. (35)

1
2

o
<

1 : filecos(y)+3) 1 N 1

These two power series conditions effectively estab-
lish two relations between the kinetic variables (£, L) and
(p,e). These conditions can be solved perturbatively
when p is large, allowing us to express (£, L) in terms of
(p.e)

oy (1=€)Q4ai-an 1
4 p
1-¢2)’(24a) —a))(24a; —3a; +4c)) 1
+( 3) (2ga1 —a1) (2gar —3a, Cl)7+0(p)3’
32 p?
(36a)

j2= m(2qay~ap)
2

+ % { [—Salcl +3a%—4a2+e2 (af—alcl)]

+q [—501Q| +6c19; + 80, +€” (2c1q; —3111%)}
+247q; (€ +1)}+0(p) . (36b)

In the final expression for the PS, these expressions
can help us to eliminate the dependence on unnecessary
kinetic variables. Note there exists other ways to obtain
the relation between (E, L) and (p, e). Substituting Eq.
(27) into Eq. (6), we obtain

p 22 14
V(—):L =V(—).
1+e 1-e

Clearly, this is more concise than Eq. (35), and we
can show that they are essentially equivalent to Eq. (35).

Now substituting Eq. (35) into Eq. (34) and further
into Eq. (29), we find

(37

= ¢ ZG,,(E, L,p,e,cosy)sin® 2y
p n=1

o
<

V-£

where in the second step we have substituted the first few
G,(n=1,2,---) and carried out the large p expansion
again. Substituting into Eq. (28) and noting that terms
proportional to cos(ky) (k=1,2,---) will not survive the
integration, the result for the PN PS is simply found as

_ 2n 3nf;
NTNVER T CRp
3n[fi (2 +18) —4fafi (€ +4)]
8(=f2)°*p?

+0(p)~.

(39)

This result however, is still not a true series of p be-

2V-f
1
+(36f5 =32f2fs) ecos(y) + (3f5 —412fa) € cos(2y)] po +0[p™]

[3f5 (e +18) —12f2fs (¢" +4)

p 16(=£)*?

(3%)

cause of the dependence of f, on (£, L) and equivalently
on (p, e). Substituting Egs. (36) into f, in Egs. (33) and
re-expanding in large p, we can eventually obtain a true
power series form of p for apn

n-1
o)
Jj=0

with the coefficient for order p™ a polynomial of order
2(n—1) of the eccentricity e. The first few coefficients for
d, ; are

e}

apN = E

n=1

1

(40)
pn
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T

dl,O = m {(llbl +ac —Zd% +2a2 +2q [(2611 —bl —Cl)ql —2q2] —2@2(]%} 5 (413.)
1~ 1
1 1
dz,o _ ﬂ'A . {7a%b]c] —a?bl _ fa%b% +a%bz +ara b, —4a?c| —2a$c% +4a$cz +4aya;cq +5a‘11 - Saza? +6asa,
(a1 =2qq;)" \2 4
—d +4[(-2a1bic, +4alb, +a\b? — 4a by —2a,b, + 16a°c; +a,c? — 16a;¢, — 8arc, —20a; +3lara, — 12a3)q,
+(—2£l|b1 —Salcl +9a%+4a2)q2— 1201(7[3] +qz[(—50|b1 —20a1C1 +2561%—2002+2b]C1
— b} +4by — ¢} +16¢)q7 + (—=30a; +4b; + 16¢,)q; 0, — 4031 + @’ [(=11a; +2b, +8c))a; +20q70:]1+§ a7},
(41b)
n 1 1 1 5 1
d :7{_7217 +*2b—*2b2+3 _722+72 _
2.1 (al _qul)z 4611 1C1 201 ) Sal 1 alcl 8CllCl 201C2 ara|cy
1 5
+q Kalblcl + Ealbf —2a,b, —4a%cl + ialc% —2a,¢; +2as¢ +a2a1) a;
1
+ (—af +2a1c1) qz} +4 KSam —a;—2a,—bic, - Eb% +2b, —20c] +202) q
+Q2a—4c) il +§° [(301 —2C1)Q?] —25]4Q?}- (41c)

Before we analyze the implication of result (40) in the
next section, we would like to compare the two PS; the
anc in Eq. (20) obtained using NC approximation and the
above apy. Clearly, these two PS are only comparable
when the orbit is both large and near-circular.

Under this assumption, we now rewrite the PS anc
using PN kinetic variables (p, €). To do this, we need to
express the (E, L, r.,a) in terms of (p,e) and other
spacetime parameters. First note that the first two of
them, (£, L), have already been linked to (p, ) using Eqgs.
(36). For r., although the defining Eq. (7) was not al-
ways solvable in closed form, it can always be solved
perturbatively for large p. Actually, substituting in Egs.
(36) and asymptotic (32), the solution to r, as functions
of (p,e) can be obtained using the method of undeter-
mined coefficients, as

7. +{—afc]+a|cz+azcl+a?—2a2a|+a3

“1-e
g [(Zalcl —2(1% +2(12 —2C2) q1 +(2a1 —26'1)(]2 —ZCB]
[

2

+q
+4* (a1 —c1)ai —2aq10] } +0(p)~*.

¢
(a1 —2q))p
(42)

Similarly, by substituting Egs. (36), (32) and (42) in-
to L, in Eq. (7) and further into Eq. (10), the small para-
meter a can also be expressed using (p, e) as

1 e
= 1+
V1—€2 Vl—ez(a]—29q1)

. | 1\*
+q[(—2a1+2c1)q1+2qz]+q2qf};+O<;) . (43)

a

{—alcl +a%—a2

Eq. (42) and (43) allow us to express all terms that
depend on r. and a explicitly in axc in Eq. (20) in terms
of the asymptotic expansion coefficients a,, b,, ¢,, 9, and
kinetic variables (p,e). Indeed, the expansion coeffi-
cients of the metric and electric potential functions
around 7., i.€., dcn, Dens Cens hen can also be expressed us-
ing a,, b, ¢,, q, and variables (p, ¢). To do this, one only
needs to substitute the asymptotic forms (32) as well as
the formula (42) into the expansion (21) and then further
expand these functions for large p. The an, ben, Con, hen al-
though can be solved easily, their expressions are too
lengthy to present here. Finally, substituting all these
coefficients, as well as Eq. (42) and (43) into Eq. (20), we
are able to express anc also as power series of 1/p. Not
surprisingly, we found that the result agrees with the PN
formula (40) perfectly. This agreement shows the correct-
ness of results from both methods. Moreover, for the
coefficient of each fixed order of p™, its dependence on
the eccentricity e is automatically in a polynomial form,
indicating that if the small a expansion in Eq. (20) is car-
ried out to high enough order, the rewritten PN result to
low orders will be valid even for large e.

IV. APPLICATIONS TO CHARGED SPACETIMES

In this section, we will proceed to implement the two
aforementioned methods to determine PS within several
specific spacetimes, and investigate the effect of the elec-
tric interaction as well as other spacetime parameters on
these shifts.

A. PSin RN spacetime
The RN spacetime is the simplest and cleanest for the
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analysis of PS of charged particles. However, as we will
show next, it still captures the main feature of the electric
interaction effect on the PS. The line element and the
electric potential of the RN spacetime are given by

1 2M 2
A(r)=—=1—7+%, C(r)=r,

B0 (44a)

Ao(r) = —%. (44b)

We next analyze the anc in Eq. (20) and apy in Eq.
(40) in this spacetime. First substituting Eqgs. (44) into Eq.
(7), one can see that r, for the RN spacetime is determ-
ined by a quartic polynomial

(rcE - QQ)Z _
re(re=2M)+ Q?

ARNNC = 2nr,

F(EP=1)+r) (-3E°M - gEQ+4M)
+2r2 (E*Q*+20EMQ -2M" - 0°)
+1. (-3gEQ* +4MQ* - "M Q) + 0* (" - 1) =0.  (45)

Its solution although can still be expressed in a closed
form, is too lengthy to show here [13]. Once r. is found,
using [ in Eq. (7) and Eq. (10), one immediate finds the
small parameter a

1} -1

Using Egs. (24), the coefficients 7, for RN spacetime
can be found out without much difficulty. After combin-
ing with @, finally we obtain the anc in RN spacetime

(rcEA - QQ)2

rC
2 L(n —2M)+QF (40

1| [re(re=2M)+ Q] J { (1 =E*) 0 —6M (1-E*) 1) =3 (E* - 1) (4M* + Q%) 7

+[-20 (-8E*MQ +GEQ* —4GEM? + 3*MQ) — M3 — 6MQ*] > +30% [Q (-2E*Q - 4GEM + §*0
[ ( 2 q’\ 2 q" 2 q2 ) 3 2]2 2[ ( w2 q" q2 )

+4M* + Q%] 2 +6Q" (GEQ—- M) r.+ Q° (1 —qz)}% -21+0(a)",

Higher orders can also be found but are too lengthy to
show here. With the help of a computer algebraic system,
we were able to compute this result to the tenth order of
a.

To find the PN PS in RN spacetime, all we need to do
is to expand the metric functions and electric potential
(44) asymptotically, and then substitute the coefficients
into Eq. (40). These steps are very simple and the result
to order p~? is

(48)

where Q= Q/M denotes the charge-to-mass ratio of the
central object. As pointed out at the end of the last sec-
tion, when both p is large and e is small, this PS should
coincide with the NC result agnne in Eq. (47). Indeed,
we have converted all (£, L) in arnnc, including those in
r. and a to (p,e), and the result agrees perfectly with

(47)

(48), which is naturally small e expanded. Eq. (48) when
truncated to first order and set to neutral test particle,
agrees with results in Ref. [14—17, 19-23]. For nonzero
4, Eq. (48) to the first order agrees with Eq. (28) of Ref.
[24] and Eq. (42) of Ref. [28]. Results in Ref. [25, 26]
however can not be recovered from our work.

To check the correctness of the PS (47) and (48), in
Fig. 1 we plot the difference between the series result
arnne (Fig. 1(a) and 1(b)) and arnpen (Fig. 1(c) and 1(d))
truncated to order 7 and the PS ey,m computed using nu-
merical integration of the definition (8). The latter is done
to very high accuracy and therefore can be regarded as
the true value of the PS. In both plots, we fixed |Qg| < 1
to make sure that the orbit is a bound one and the PS is
well defined. For the NC PS plotted in Fig. 1(a) and 1(b),
although arnnc only explicitly depends on (£, L) we still
converted them to (p, e) using Egs. (36) in order to make
a comparison with Fig. 1(c) and 1(d) for the PN PS
arnpn- Note that in 1(a) and 1(c), p is varied while in 1(b)
and 1(d), e is changed.

It is seen from all plots of Fig. 1 that as the truncation
order increases, both the NC and PN results approach the
true value of the PS exponentially. This shows that both
methods work well as the series order increases.
Moreover, for arnne Fig. 1(a) shows that when e is
small, the NC approximation almost works equally well
for large p and small p, and 1(b) shows that this method is
very sensitive to the eccentricity e. The smaller the e, i.e,
the more circular the orbit is, the more accurate the
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Fig. 1. (color online) Differences between the numerical res-

ult and analytic results Eq. (47) and (48) truncated to order 7,
with parameters fixed at O =1/2,§=-1/5,p=500M,e =1/10,
except the running one.

arnnc- In contrast, one observes that the features of plots
1(c) and 1(d) are the opposite of 1(a) and 1(b): the accur-
acy of arnpn 18 NOt sensitive to e but increases rapidly as
p increases. Again, this is in accord with the expectation
of a PN approximation of the orbit. The features men-
tioned above were also observed in Ref. [10] where the
effect of the spacetime spin is studied.

Effect of 4 and Q on PS

With the correctness of the PS, especially the PN PS
(48) verified, we now can use it to analyze the physics
contained in this formula. There are immediately a few
points to make. The first is that this PS depends on the
parameters ¢, m,-Q, M -only through the two charge-to-
mass ratios 4 and (), indicating certain redundancy in
these parameters. Therefore in the following when ana-
lyzing the effects of these parameters, we only need to
concentrate on these two ratios. The second point to ob-
serve 1s that the charge g only appears in the form of
(q@)", showing that ¢ influences the PS only through the
Coulomb interaction. While Q also manifests in terms
that are not a product with ¢, and therefore can affect the
PS through the gravitational channel. The third point is
that since this result is a post-Newtonian one, it is more
accurate in the asymptotic regions, where gravity follows
the universal gravitational law. In such regions, the grav-
itational attraction and the Coulomb force, which de-
pends on the sign of ¢gQ, will strengthen or weaken each
other, resulting in a net interaction proportional to
(mM —qQ) under the natural unit system we are using.
Therefore in order for the orbit to be bounded so that a
study of the PS is meaningful, this total force has to be an
attractive one which means mM —gQ >0, i.e, 1-30 > 0.
This point is reflected in the denominator of each order in
Eq. (48).

In order to fully study the effect of parameters
(m, g, @, M, p) on the PS using Eq. (48), we have to first
determine the boundary of the parameter space in which
this series result is convergent. Inspecting Eq. (48) more
closely, one can observe that this formula contains and
only contains power series of the three quantities in the
left-hand sides of the inequalities in Eq. (49), as well as
their product series. In order for the total series to con-
verge, the necessary and sufficient condition is that the
sizes of all these three quantities are less than one, i.e.,

(49)

These conditions can be further simplified to
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1-G0>—,1-¢0>0"—,1-G0>0*—.  (50)

SR

M M
p p

We have drawn a parameter space spanned by (4, Q)
in Fig. 2 to show the allowed regions bounded by condi-
tion (50) and the requirement 1-gQ > 0. It is seen that
this region is mainly concentrated around the 4 and O
axes and in the ( direction it is completely bounded for a
given M/p while in the ¢ direction the region is not lim-
ited. All three conditions in Eq. (50) are effective in some
part of this parameter space. In our following studies of
the effects of various parameters, we will limit the para-
meter ranges according to this figure. Note that since the
PS depends on 4 and Q only through ¢ and (2, in prin-
ciple we can further limit our analysis to the case of
0 >0 for general 4. The case with O <0 is deducible by
switching the sign of 4 but keeping Q's sign. However, to
be as straightforward as possible, we will make the state-
ments in the following applicable to any sign choices of 4
and (.

In the following analysis, we examine the influence of
variables 4 and Q on the PS. We will concentrate on the
leading order(s) of M/p. When §0Q < 1, we can expand
the denominator of Eq. (48) and the PS to the order (§0Q)°
becomes

oM Ay A rox M A
QRNPN = 7 [6— -0+ (1 - Qz) quZ]
M A
o240y 51
4
10F —— q
— ] _50=M
1-gQ="
— J_50=M¢
5t 140, :
AN M A2
: kl —6]Q=;Q2Q2
2] P — — o e e n
_5t J
—10L. ‘ ‘ ‘ ‘ i
-15  -10 -5 0 5 10 15
0
Fig. 2.  (color online) Allowed parameter space for the PN

PS arnpn to be valid (gray area). The red, blue and brown
boundaries are due to the first, second and third conditions in
Eq. (50) respectively. We fixed p = 10M in this plot so that the
curves are visually separated. A more relativistic value of p
will only change this figure quantitatively.

When 40 = 0, clearly all electrostatic effect drops out
and the Schwarzschild result to the leading order is re-
covered. For a fixed nonzero O and 0< 90| < 1, it is
seen that the first order term (§Q)'Q* will dominate the
second order (§0)* term. Then comparing to neutral
particles, a small electrostatic attractive (or repulsive)
force due to a small |§| with sign(gQ)=-1 (or
sign(gQ0) = +1) will increase (or decrease) the PS, similar
to the effect of a larger (or smaller) M to the PS of neut-
ral particles in Schwarzschild spacetime. When |§| grows
larger than |Q]/2 however, we see from Eq. (51) that the
4*Q* term becomes larger than §Q° and therefore the PS
will increase as || increases. In Fig. 3, we plot the de-
pendence of the 'PS on ¢ for three typical O
(0 =1/10,1/5,2/5) using the red curves. For very small
0, the dependence is visually suppressed by the large-
ness of the PS at large 4 and (. If we fix 4 nonzero and
allow O to vary but still keep 0 < |§Q0| < 1, then as Q de-
viates from zero, the PS (51) to the leading orders of O
will behave as

M A A M
arney = [6-(1-¢)0*+0(0)’] +0 {f,(le)s} .
p p (52)

This means in this region, the increase of 0 will de-
crease (or increase) the PS if || is smaller (or larger) than
1. This dependence on ( is shown by the blue curves in
Fig. 3.

In Fig. 4, we plotted the orbits for several choices of
g and Q to illustrate the dependence of the PS on them.
The starting points of these orbits are all set at the posit-
ive x-axis, which are also their apoapses. It is seen that
the PS decreases first and then grows as ¢ increases for
fixed (. For fixed |g| <1 (or || > 1), it decreases (or in-
creases) as |0| increases. These agree perfectly with the
analysis above.

Fig. 3. (color online) Dependence of arnpn for small §0,
The red curves correspond to Q =1/10, 1/5,2/5 and the solid
and dashed blue curves correspond to the §=-7/10,2/5 and
§=3/2 respectively. We choose p=20M, e=4/5,|0|<2/5,
191 < 5/3 in order for the qualitative features to be visible.
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Fig. 4. (color online) The orbits and their PS of charged test

particles in RN spacetime. The corresponding ¢ and Q are
shown on top and right side of the plots. We choose
p=20M,e=4/5 in order for the PS to be distinguishable by
eyes.

B. PSin EMD gravity

The EMD theory stands as a captivating theoretical
framework that combines general relativity, electromag-
netism, and the dilaton field minimally, providing a use-
ful starting point for unifying all the fundamental interac-
tions. For the static and spherical solution in this theory,
its line element and electric field are described by [32,
33]

ds® = —f, f7d + 7 frdr? + 7 f7dQ?, (53a)
Iy 1 —T]]/lz

I = , 53b

f r Y 1+n, A2 (53b)

FAo(r) = _% (53¢)

where r. are the locations of the outer and inner event
horizons respectively and 7, ==+1 depending on the
dilaton/antidilaton nature of the scalar field. And 4 is the
real (anti)dilaton-Maxwell coupling constant. These para-
meters can be linked to the mass and charge of the space-
time by

M =r, +yr_, 20*=m(1+y)r.r_ (54)

or equivalently

2 2
S VR VR i i
1+vy
1 20y Q2
r_=(M— MZ—W). (55)
Y I+y

Here n, = +1 for Maxwell or anti-Maxwell field re-
spectively. When y =1, =1, the metric (53a) reduces to
the normal RN spacetime.

Substituting the asymptotic expansion coefficients of
the metric and the electric potential functions in Eq. (53a)
into Eq. (40), the PS of charged test objects in the PN ap-
proximation in the EMD gravity is found, to the leading

order of 1/p, as

2
(1—51Q>p+0<1‘;) ' o

|y 0
(y+D

QEMD PN =7T{6—772Q2 - QQ l6+

It is seen that the Maxwell-gravity coupling constant
1, also determines the sign of its contribution to the PS
through gravity (the 7,0 term). This sign choice also af-
fects the PS through the electric interaction term propor-
tional to §Q, but only weakly when () is small. The para-
meter y, which is related to the strength 1 of the Maxwell-
(anti-)dilaton coupling, determines the amount of devi-
ation of the electric interaction from the standard RN
case. In the limits 7, =y =1, this PS agrees with the PS
of the RN case in Eq. (48).

One can find by inspecting the higher order terms of
the PS (56) that the coefficient of order 1/p™ contains
factor of 7,(1+7v) up to order -7, therefore in order for
the total PS to converge, the condition p>1/+/|1+7]
should be fulfilled. In Fig. 5, we show how the Maxwell-
(anti)dilaton parameter y affects the PS for different sign
choices of 4 and 17,, with all other continuous parameters
fixed. It is seen that for the region of y that the PS are
well defined for both 7,, the effect of y is always oppos-
ite to each other for different 7, and signs of 4. Near the
location of y =1, the PS decreases (or increases) as y in-
creases for normal Maxwell field, i.e.,7, =+1 (or anti-
Maxwell field i.e. 7, = —1), for positive 4. This means
stronger Maxwell-dilaton coupling will cause a smaller
(or larger) PS if the electromagnetic field is Maxwell (or
anti-Maxwell) for positive particle charges. In comparis-
on, the effect of y when y <2 is the opposite to its effect
when y = 1. When |y|> 1, then its effect on the PS di-
minishes as |y| increases, as can be seen from Eq. (56).

C. PSin charged wormhole spacetime
A Lorentzian traversable wormhole with a charge is
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Fig. 5. (color online) Dependence of agmppnon p with
p=500M, e=1/10, 0 =1/2, §=+1/5. In order for r,, r_ in Eq.
(55) to exist, it is required that y < -2 for 7, =+1 and y > =2/3
for 7, = —1. The blue and red curves correspond to 7, = +1 and
n = —1 respectively.

described by the line element (1) with metric functions
and field strength [34]

A(r) = (1+g),

2\ —1
B(r) = <1—@ %) , (57a)
Cr)=r,
0
== VA()B(r), (57b)
where s(r) is the shape function
s(r) = séﬂ” rzﬁ1+1 s (58)

and B < —1/2. In order for the PN method to work, the ex-

2
ponent ZBi 1 has to be an integer and therefore we will
fix B =-1 and consequently s(r) = s3/r. This implies that
so plays the role of an additional charge, although only
partially, through the metric function B(r). The paramet-

er s in this spacetime has to satisfy s3 > Q* to maintain

the wormhole.

The asymptotic form of the metric functions (57b)
can be obtained easily. For the potential Ay, we can get
its asymptotic expansion by expanding and then integrat-
ing (57d)

0 0Os;

6r3

05t (40*-353) <Q>7
05 1 0 ~)- (59)

Substituting these expansions into Eq. (40), the PS in
this charged wormhole spacetime becomes

17,
QCcwpPN =TT (7 _Q>
q

5
Q2

Ao(r) =

Q

p

(4+e) g+o(§)3.

When s, is set to zero, this agrees with the PS (48) in
the RN case with M = 0. Therefore the PS in this space-
time can be thought of as that of a massless RN space-
time with some modification from parameter so. And
moreover, the fundamental scale in this spacetime can be
chosen as the charge Q.

Among the two terms in the leading order, the term
proportional to Q/g is due to the gravitational effect of
the spacetime charge, while the term proportional to —gQ
is still caused by the electric interaction. The extra para-
meter s, only appears starting from the (Q/p)* order and
affects the PS only through gravitation (no multiplication
with 4). This also agrees with the fact that s, does not ap-
pear in the leading order of the electric potential in Eq.
(59). Similar to the previous analysis below Eq. (48) for
the convergence requirement in the RN spacetime, the
acwpn here also consists of four distinct series and the
convergence of the PS requires

{24+4 +qi— *(1-2¢%)

(60)

IQI

101 <p, — <4l < (61)

—, |sol < p.

IQI

Besides, differentiating Eq. (3c) with respect to 7
again, we find in this spacetime that

Q2+}"2

q0 .
dotr= sy g (@) — @i
QZ(Q2+r —s)t2+ (sg—Qz)i’2
rs r(Q2+r2—s%)
. (Q2+r2—s(2>)¢2.
' (62)

Since Q*+7r?— s3>0 due to B(r)>0 inthe observ-
able region, we see from the above equation that if
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qQ >0, dotr will always be positive and there will exist
no bounded orbits or well-defined PS. Therefore we will
also require that ¢gQ <0 in this spacetime in order to
study its PS. This is also consistent with the instinct that
when there exists no gravitational attraction from the
mass (M =0), gQ has to be negative in order for the elec-
trostatic interaction to be attractive and to form a bound
orbit.

In Fig. 6, we plot the dependence of the PS on the
new parameter s, (in scale of Q) according to Eq. (60) for
a few values of 4. It is seen that for all ¢, the PS in-
creases as so/Q increases. This is roughly consistent with
the observation in the RN spacetime in Fig. 3 that as the
charge Q7 increases the PS also increases. It is also ob-
served that for each —1 5§ <0, there exists a value of
so/Q below which the PS becomes negative. This feature
however is not present in the regular RN case since there,
the PS is mostly positive for reasonable parameter
choices. This critical value of s can also be solved from
Eq. (60) to the leading two orders as

(o)

From this we see that for a positive O, since gQ has to
be negative, roughly the existence of such critical sy re-
quires that 1 < g <0, which is consistent with what is ob-
served in Fig. 6.

In Fig. 7, we choose 4 =—1/3_ which corresponds to
the red dotted curve in Fig. 6, and three typical values of
s0/Q (2,7,8) to plot the corresponding orbits. The first of
these according to Fig. 6 corresponds to the orbit with a
negative PS while the latter two have positive PS. It is
seen from Fig. 7 that these are indeed the case, and we
have checked that the PS in these orbits agrees quantitat-
ively with the value in Fig. 6 and Eq. (60).

20?

4+ ¢?

p

0 +0(0)*.

2 _
Sy =

(63)

V. CONSTRAINT ON CHARGES OF KNOWN
SYSTEMS

In this section, we will apply the PS in the RN space-
time to the observed PS of Mercury around the Sun and
S2 around the Sgr A” to constrain the charges of these ob-
jects.

A. Constraints on solar and Mercury charges

The MESSENGER spacecraft measured an uncer-
tainty of 9x 10~* " /cty for the Schwarzschild-like preces-
sion of Mercury around the Sun [35]. If we associate this
uncertainty to the electric effect of the solar charge O,
and the Mercury charge 4, then this uncertainty can be
used to constrain the charges in the parameter space
spanned by them. The result is shown in Fig. 8 where the
allowed region of 4 and (. are enclosed by four seg-

QCW PN

s0/Q
Fig. 6.  (color online) Dependence of acwpn on sp with
fixed 9=1, p=200, e=1/2.

80/Q=8
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Fig. 7. (color online) Orbits of charged test particles in the

charged wormhole. We choose Q=1,§=-1/3, p=200,

e=1/2 and three s0/Q as indicated in the plot.

ments of blue boundaries and two vertical red boundaries.
The blue boundaries are due to the leading order of Eq.
(48) because in this case p/M, =3.8x 10" which makes
the first order enough for the estimation of the PS. In oth-
er words, we treat this uncertainty as

~ a a M oM

Aa=n(6-0°—640+30%) — 2 o1

a=n(6-0"-600+40) 75—,
- (- oTM 64
@-0¢ 06, (¢4

where in the last term of the first line we deduced the
Schwarzschild contribution. From this we see therefore,
these blue boundaries are indeed oddly symmetric, mean-
ing that the change of signs (3 — -4, Q — —Q) will not
change the extra PS. Moreover, we also see that in gener-
al these boundaries are not evenly symmetric, i.e., when
only one charge changes sign, the value of Aa will
change. However in the current case since the extra PS is
very small, the total value of the allowed 40 is already
very small and this nonsymmetry can not be recognized
in the plot by bare eyes. For the red boundaries on the
solar charge at two ends of (., they are from the tight
constraint in Ref. [36].

The constrained value of the solar charge is indeed
much tighter than the previously reported value using the
PS data, if we assume the same charge for Mercury (see
Eq. (42) and (43) of Ref. [24]).
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B. Constraints on Sgr A* and S2 charges

The precession of S2 around Srg A* is measured re-
cently by the Gravity group [9] to yield a ratio f of the
measured value to the standard Schwarschild-precession.
A value of f=1.10£0.19 was obtained. If we associate
the deviation of the central value from 1 to the electric ef-
fect of the Sgr A" and S2 charges, then similar to the case
of Mercury precession, we can also use this deviation to
find the allowed region in the parameter space of ds2 and
QSgr A*.

The result is shown in Fig. 9, where again the blue
boundaries are due to the leading order of Eq. (48). In this
case, the p/Msg o =5X 10 [40] is large enough so that
the first order of the PS is enough for the estimation of
ds2 and Ose a-. In this allowed parameter space, since the
maximal §Q value can be as large as 0.8, then from Eq.
(64) and comparing to the plot in Fig. 8, its nonsymmetry
under sign change (§ — —4, Q — Q) or (4—¢, Q - —Q)
is very clear. The red boundary on the Sgr A" charge is
due to the constraint from the shadow size of the Sgr A”
[41] (see [42—44] for other bounds on this charge). To our
best knowledge, the allowed region in Fig. 9 is the first
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Fig. 8. (color online) Allowed parameter space of 4 and Oo.

Mo =1988x10%0kg, M =3301x1023kg [37], e=0.2056,
p =5.545%10'" m [35] for Mercury are used.
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Fig. 9.  (color online) Allowed regions of 4s2 and Oser |

Mggr a» =4.15x10Me  [38], Msz=13.6M5 [39], e=0.8843,
p =3.336x10"%m [40] are used.

combined constraint on charge 4s2 and Oser a° using the
S2 PS data.

VI. CONCLUSIONS AND DISCUSSION

In this work, we employed two methods, the NC ap-
proximation and the PN approximation, to systematically
study the effect of both gravitational and electrostatic in-
teraction on the PS of charged test particles in general
static and spherically symmetric charged spacetimes. The
PS using both methods are found to high orders and nu-
merically verified to be very accurate as long as the trun-
cation order is high enough. The NC PS is shown to work
better when the' eccentricity is smaller while the PN res-
ult is more accurate when the semilatus rectum is large,
and these results can be shown to be equivalent when
both e is small and p is large.

The methods are then applied to the RN, EMD, and
charged wormhole spacetimes. It is generally found that
the PS only exists for certain regions in the parameter
space spanned by the spacetime charge Q and particle
charge g. Roughly, the condition ¢Q < mM is always ne-
cessary in order for the electrostatic interaction to be
weaker than the gravitational attraction if it is repulsive.
The spacetime charge Q is found to influence the PS
through both the gravitational and electrostatic channels.
The combined effect is that the PS will decrease (or in-
crease) if |§] < 1 (or |g| > 1) as |0| deviates from zero.

The solar-Mercury system and the Sgr A"-S2 system
are then modeled using the RN spacetime and their PS
data are used to constrain the charge of these objects. For
both systems, we found in the (g, Q) parameter space the
allowed regions of these charges. For the Sgr A*-S2 sys-
tem, as far as we know, this is the first time that such a
constraint is made using the PS data.

In appendix A, we also present the PS found using the
PN method in three other charged spacetimes, the Ein-
stein-Maxwell-scalar gravity, the charged Horndeski and
charged black-bounce RN spacetimes. They are not put in
the main text because to the first order, their PS (almost)
coincide with the RN result and therefore is expected to
be non-distinguishable from the RN one using currently
available data.

Although the effect of the electrostatic interaction on
the PS in spherically symmetric spacetime is more or less
clear. There are still a few possible extensions one can
explore. The first is to investigate the effect of a magnet-
ic field on the PS since the magnetic field is (even more)
commonly believed to exist in interstellar space. The
second is that we can study the effect of other properties
of the test particle on the PS, such as when the particle it-
self is spinning. We are currently pursuing some of these
directions. Last but not least, let us also point out the re-
cent works of using the Gauss-Bonnet theorem method to
the deflection angle of bound and overlapping orbits [45,
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46]. This interesting development could potentially be
used to compute the PS too.
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Appendix A: PS in other spherical spacetimes

1. PS with Einstein—Maxwell-scalar field

For a minimally coupled EMS gravity, the spacetime
metric and electric field are described by [47]

n/2 n/2
r—r; r—r_

1
A(r)=%= ——y >

r—r_ r—ry

QEMsPN =TT (6 -0 -640+ ‘?ZQZ)

_M LT
(1=gQ)p 4n®

C=A" () r=r)(r=r),

__ 9
7—-” - C(r)’ (Al)
where n e (1/2,1], and
= M=NME =02 (A2)

n

are the location of the outer and inner event horizons, and
n is related to the scalar charge.

Substituting the asymptotics of these functions into
Eq. (40), the PS in the EMS field in the PN approxima-

tion is found as

[(92r12+2411—8+e2 {—16n2+24n—2}

0 {4[13n" +n-2] +2¢* [2n—- 11} -n*Q*) —240 (92n* + 24n -8
-2¢*{8n" —12n+ 1} = 0 {43n" +2n -8 — " [3n* +2n-2] })
+24° Q% (56n” + 14n—4— &> {12n” = 14n+1-Q* [16n° =4+ > (3n” = 1)] })

A ) 2 M 3
20 (1t 0= {5 =2n}) + 40 (1-28)] | o= | +0 (%)
—q<)p

To the leading order, this agrees with the RN result
(48) and therefore it will be difficult to distinguish this
spacetime from the RN one using the current observation
data.

2.

The charged Horndeski spacetime is described by the
metric and potential functions [48, 49],

PS in charged Horndeski spacetime

B M Q2 Q4

AN =1=="% 02 T (Ada)
L (122 cm=r

B(r)—A(r) <1_8r2> ,C(r)=r", (A4b)
_ 0. 0

ﬂo(r) = —7 + m (A4C)

The expansion of these functions are easy and then
substituting into Eq. (40), the PN PS in this spacetime is
found to be

d (A3)

M
(1-40)p

+ 296 (18+¢%) ~160° (13 +¢7) - 0]

-840 (24 (18+¢%) - 07 (43+5¢%)]
+847 0% [4 (66 +¢€) — 0% (16+3¢%)| —324° 0’ (13-3¢7)

+164'0* (1-2¢%)} {H_A;QA)JZO(ZZ)S.

s A A oA
QCHPN = 1 (24 -0’ -2440+44’ Qz)

(A5)

To the leading order, this is different from the RN res-
ult in the gravitational contribution of (), by a factor of a
quarter.

3.

The charge black-bounce RN spacetime is described
by the RN metric functions with r replaced by 2+ 2
where [ is some length scale (usually associated with the
Planck length), i.e., the new metric functions and electric
potential become [50]

PS in charged black-bounce RN spacetimes
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1 2M 02
A(r) = % =1- 7\/@ + 7r2 n 12 s (A6a)
C(r=r+1, (A6b)
Ay(r) = —L. (A6c)
N

The asymptotic expansions of these functions are also
simple, and after substituting the coefficients into Eq.
(40) we can directly obtain the PS in this spacetime. To
the second order, this is

m(2+e*) P

QaBBPN = QRNPN T 20

+O<A;)3, (A7)

where the arnpn is the PS of the RN spacetime in Eq.
(48). It is seen that the extra scale parameter / only ap-
pears from the second order of 1/p and therefore the PS
in this spacetime is also difficult to distinguish from that
in the regular RN spacetime. Moreover, to the O(M/p)*
order, the scale parameter / does not participate in any
electric interaction effect to the PS. We also checked that
this will change starting from the O(M/p)* order, i.c.,
there exist terms proportional to 2§Q and P4*Q? in the
PS at this order. The result (A7), after setting =0, re-
duces to the PS of neutral particles in black-bounce RN
spacetime [23].
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