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Abstract: Exploring the inverse problem tied to the Page curve phenomenon and island paradigm, we investigate
the geometric conditions underpinning black hole evaporation where information is preserved and islands manifest,
giving rise to the characteristic Page curve. Focusing on a broad class of static spherical symmetry black hole met-
rics in asymptotically Minkowski or (anti-)de Sitter spacetimes, we derive a pivotal constraint: the second derivative
of blacken factor  for which the island exists and reproduce the Page curve. On the other hand, start-
ing  from  the  quantum  focusing  conjecture  theory,  we  obtain  another  constraint  on  the  blacken  factor:

 that the theory can be satisfied. In particular, by studying these two constraints, we find that
a common properties. Specifically, we reveal that a universally criterion – manifested in the negativity of the second
derivative of , i.e. , in proximity to the event horizon where , ensures the emergence of
Page curves and follows the quantum focusing conjecture in a manner transcending specific theoretical models. Fi-
nally, we argue that the negativity of the second derivative of the blacken factor  near the event horizon strongly
indicates negative heat capacity, which implies that black holes with a negative heat capacities must have islands and
satisfy the quantum focusing conjecture.
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I.  INTRODUCTION

Black holes  are  the  strongest  evidence of  general  re-
lativity (GR). In modern physics, this surprising and fas-
cinating object  has  becomes  one  of  the  most  controver-
sial areas of theoretical physics. When some of the result
of quantum mechanics (QM) are inserted into the frame-
work  of  GR,  something  amazing  occurs.  This  approach
was  first  proposed  by  Hawking  in  1975  (known  as  the
Hawking radiation) [1]. However, it leads to a very acute
dilemma:  the  information  (loss)  paradox  [2]. QM  re-
quires that the evolution of a black hole formed in a pure
state must  respect  the  unitary  principle,  namely,  it  re-
mains a pure state at  the end of evaporation. In contrast,
Hawking  radiation  indicates  that  radiation  in  a  thermal
(mixed) state 1). It  was not until the Page curve was pro-
posed that this issue gradually became sharp [3, 4]. Signi-
ficant breakthroughs have been made in the last 20 years.

A  key  catalyst  was  the  anti-de  Sitter/Conformal  Field
Theory (AdS/CFT), or the holographic duality [5].

The AdS/CFT duality opens a window for us to look
at the problem of gravity in AdS from the perspective of
CFT though this theory. A milestone work is the RT for-
mula  proposed  by  Ryu  and  Takayanagi  to  calculate  the
holographic  entanglement  entropy  [6].  The  RT  formula
establishes the  relation  between  the  entanglement  en-
tropy of the subregion and its  homologous extremal sur-
face (the RT surface) area. Next, the quantum correction
of the RT formula is also followed [7]. In 2015, the modi-
fied RT formula with high-order corrections, the quantum
extremal surface (QES) prescription was proposed [8].

At now,  all  the  problems  of  evaluating  the  entangle-
ment  entropy  at  the  boundary  translate  into  finding  the
minimal  extremal  surface  in  bulk  spacetime.  After  the
Page  time,  we  have  another  additional  extremal  surface,
which is located inside the event horzion of the evaporat-
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ing AdS black hole, called the “island” [9−11]. Consider-
ing  its  contribution  leads  to  the  unitary  Page  curve.  At
this point, the black hole information paradox is declared
to be preliminarily solved. Interested readers can refer to
a nice pedagogical review [12].

The  formula  for  calculating  the  fine-grained  (entan-
glement)  entropy  (or  the  von  Neumann  entropy)  of
Hawking  radiation  obtained  by  the  QES  prescription  is
summarized as the “island formula” : 

S Rad =Min
ß
Ext
ï
Area(∂I)

4GN
+S bulk(R∪ I)

ò™
, (1)

∂I
where I refer to the island region and its boundary is de-
noted  as .  The  entropy  of  bulk  fields  consists  of  two
contributions,  namely,  the  island  I  inside  the  black  hole
and  the  radiation  region R outside  the  black  hole.  The
words “Min” and “Ext” guide us to extremize the gener-
alized entropy first to find saddle points, 

∂S gen

∂xµ
≡ ∂
∂xµ

Å
Area(∂I)

4GN
+S bulk(R∪ I)

ã
= 0. (2)

These  saddle  points  correspond  to  the  candidate
“QES”.  Then  we  pick  the  one  with  the  smallest  value,
which  is  the  final  correct  result  of  the  fine-grained en-
tropy of  Hawking  radiation.  In  addition,  the  island  for-
mula (1) can be derived equivalently by strict gravitation-
al path integral [12, 13]: 

S Rad = lim
n→1

1
1−n

logTr(ρn
R), (3)

in which, the contribution of the connected replica worm-
hole  (saddle)  will  dominate  at  late  times,  and  the  Page
curves can be reproduced naturally1).

Recently,  studies  have  demonstrated  that  the  island
formula does  not  depend  on  the  AdS/CFT  correspond-
ence and has been applied far beyond the asymptotically
AdS black holes. Example include the study of islands in
the  asymptotically  flat  or  dS  spacetime,  as  well  as  the
combination with some intersecting fields. One can refer
to a non-exhaustive list of progress in this field [15−90].

There are two motivations for this article: up to now,
most  studies  have  focused  on  the  reproduction  of  Page
curves  in special spacetime.  They  all  found  that  islands
emerges  at  late  times  could  curb  the  growth  of  entropy
and  respect  the  unitarity[16−26, 30, 33, 34, 36, 37, 40,
41, 47−49, 54, 55, 65]. A natural question is what are the
constraints on obtaining a unitary Page curve using the is-

f ′′(rh) < 6κA′(rh)
cGN

f ′′(rh) < 6κ2rhA′(rh)e2κr⋆ (b)

cGN f (b)

f ′′(rh) < 0

land  paradigm  for general spacetime?  Or  equivalently,
we  can  consider  the  inverse  of  this  problem:  If  a  Page
curve  already  exists,  namely,  the  unitary  is  maintained,
what constraints does the spacetime geometry need to sat-
isfy? So the first motivation is to find out the constraints
on general spacetime when the Page curve exists. On the
other  hand,  the quantum focusing conjecture  (QFC) also
has a constraint  on the generalized entropy at  late times.
How does  this  constraint  relate  to  those  imposed  by  the
island  paradigm?  Therefore,  the  second  motivation  is
based on QFC perspective, we again consider the require-
ments  on  spacetime  geometry.  Incorporating  these  dual
considerations, we  discern  that  the  sufficient  and  neces-
sary  conditions  for  the  existence  of  Page  curves  is

 by  the  second  derivative  of  the  blacken
function in the vicinity of the horizon, while and the ne-
cessary and sufficient  conditions  for  QFC theorem to  be
established is . In particular, there is
a relationship  that satisfies both of these condi-
tions,  which  implies  that  black  holes  with  negative  heat
capacities must  have  islands  and  satisfy  the  QFC  theor-
em.  These  discoveries  culminates  in  the  formulation  of
overarching geometric principles.

(D ≥ 3)

We begin with a general metric that represents a stat-
ic spherical symmetry black hole. In the static coordinate
system under  the  Schwarzschild  gauge,  such  metrics  are
written as : 

ds2 = − f (r)dt2+ f −1(r)dr2+ r2dω2
D−2, (4)

dω2
D−2 (D−2)

(D−2)
rD−2ωD−2

f (r)

where  is the volume of the unit -sphere, and
the  area  of  the -sphere  with  radius r is  equal  to

. Moreover,  the  angular  direction  should  be  re-
moved  when  we  focus  on  two-dimensional  (2D)  black
holes. To guarantee the existence of a black hole solution,
we  need  to  impose  some  requirements  on  the  blacken
function : It must have simple and positive zeros, and
then it is also required to have a value for its correspond-
ing radial  coordinates  that  exceeds  the  horizon  and  ex-
tends to the space-like infinity. Only in this way is the do-
main  of  exterior  communication  is “outside” the  black
hole.

In some special cases, the blacken functions for radi-
al and time coordinates are not equal.  Actually,  this cor-
responds to the configuration with the Einstein-Maxwell-
dilation  field  equation2).  For  convenience,  we  ignore
these few special examples in the paper and assume that
static spherical symmetry black hole solutions can all  be
written in the form (4). Moreover, when the cosmologic-

Ming-Hui Yu, Xian-Hui Ge Chin. Phys. C 49, (2025)

1) More precisely, all QES configurations are saddle points in the path integral of the replica geometry. The entanglement entropy is minimized to achieve the min-
imum partition functions. So the entanglement entropy is approximately the minimum entanglement entropy at the saddle point.

2) For instance, for Garfinkle-Horowitz-Strominger black holes, the metric cannot be written in the form of (4) [57]; for Kaluza-Klein black holes, its area is a func-
tion of the dilation field ϕ [92].
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al constant Λ is non-positive, it  is asymptotically associ-
ated with flat or AdS black holes. They usually have only
one horizon1). However, for a positive cosmological con-
stant, such black holes have a cosmic horizon in addition
to  their  event  horizons.  For  simplicity,  we  focus  mainly
on the case of a single horizon. In the case of multiple ho-
rizons, the  corresponding  calculation  only  requires  para-
meter substitution  without  affecting  the  physical  mean-
ing.  One  can  refer  to  [63]  for  the  explicit  calculations.
Besides, due to the special property of the vanishing tem-
perature  of  extremal  black  holes  [55],  in  this  paper  we
only discuss non-extremal black holes.

h̄ = kB = c = 1

The rest of the paper is organized as follows. In sec-
tion II, we calculate the entanglement entropy for Hawk-
ing radiation by the island paradigm. We first prove that
island is absent at early times. Subsequently, we focus on
the behavior of entropy at late times. We derive the con-
straint  condition  that  the  spacetime  geometry  needs  to
satisfy  when  the  island  appears,  and  we  must  obtain  a
unitary  Page  curve.  In  section  III,  we  apply  the  QFC  to
test  our  result  and  acquire  a  self-consistent  conclusion.
Finally, we display the discussions and summary in sec-
tion  IV.  The  Planck  units  is  used  through
the paper. 

II.  ISLAND PARADIGM FOR BLACK HOLES

In this section, we evaluate the entanglement entropy
of  Hawking  radiation  using  the  island  formula  (1).  We
directly assume that there is an island in black hole space-
time due to  the  fact  that  islands  are  necessary  and suffi-
cient  to  reproduce  the  Page  curve  based  on  the  island
paradigm. We investigate the behavior of the generalized
entropy in  the  early  and  late  stage  respectively.  Con-
sequently, we indicate that there no islands at early times
and leads to information loss. Then, we focus on the be-
havior at late times. Finally, We obtain a constraint equa-
tion for the spacetime geometry to ensure the appearance
of Page curves.

A  schematic  of  the  Penrose  diagram  is  shown  in
Figure.1 2).  In  order  to  extend  the  metric  (4)  to  the  left
and right wedges, a Kruskal transformation is allowed: 

Right Wedge : U≡−e−κu=−e−κ(t−r⋆(r)); V≡+e+κv=+e+κ(t+r⋆(r)),

Left Wedge : U≡+e−κu=+e−κ(t−r⋆(r)); V≡−e+κv=−e+κ(t+r⋆(r)),

(5)

with the surface gravity κ: 

κ ≡ 2πTH =
1
2

f ′(rh), (6)

TH ′

rh

f (rh) = 0

where  is  the  Hawking  temperature  and  represents
the derivative with respect to the radial coordinate r, and

 is  denoted  the  radius  of  event  horizons.  Here  we  set
. The tortoise coordinates is defined by 

r⋆(r) =
∫ r 1

f (r)
dr̃. (7)

After  the  Kruskal  transformation,  the  metric  (4)  can
be recast as: 

ds2 = −Ω2(r)dUdV + r2dω2
D−2, (8)

with the conformal factor3): 

ΩBH(r) =
√

f (r)
κeκr⋆(r)

, (9a)

 

Ωbath(r) =
1
κeκr
. (9b)

 

A.    No islands at early times

b≫ rh

At first, due to the fact that the explicit expression of
the entanglement entropy is complicated in higher-dimen-
sional case, we need to resort to the “s-wave” approxima-
tion [30] 4). That is to say, we neglect the angular part of
the wave function. The expression can be well approxim-
ated by the theory of two-dimensional CFT at the low en-
ergy limit. In this case, we just need to focus on the radi-
al direction of the metric (8). In addition, we assume that
the black holes is a pure state in the beginning of evapor-
ation.  Moreover,  in  this  paper,  we  merely  focus  on  the
case in which the cut-off surface is distant from the black
hole  ( )  to  facilitate  subsequent  calculations.  In  the
case  where  the  cut-off  surface  is  close  to  a  black  hole,
one can refer to [30, 48].

In the construction of the no-island, only radiation re-
mains.  We  can  only  consider  the  complementary  region
of radiation  based  on  the  complementary  of  von  Neu-

Geometric Constraints via Page Curves: Insights from Island Rule and... Chin. Phys. C 49, (2025)

1) Sometimes the black hole has topological horizons or an inner horizon due to charge and angular momentum, but this does not significantly affect our results. We
do not consider these cases in this paper.

2) For the bath region, it refer to half-Minkowski spacetime. We usually assume that bath regions have no gravitational effect, or that the gravitational effect can be
ignored. Some studies have considered the gravitational bath [50].

f (r) = 1,r⋆ = r3) We assume that the bath region is a Minkowski patch without gravitational effect. So, for the bath region, we have  and can obtain the expression
(9b) from (9a).

4) Although there exists the massive modes in Kaluza-Klein tower of the spherical part, only the s-wave with zero angular momentum has contribution when the dis-
tance is much larger than the coherence length of massive modes.
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mann entropy. As a consequence (see Appendix A):
 

S Rad = S (R) =
c
6

log
î
d2(b−,b+)Ω(b−)Ω(b+)

ó
=


c
6

log
Å

4 f (b)
κ2

cosh2(κtb)
ã
, for asymptotically flat black holes

c
6

log
Å

4
κ2

cosh2(κtb)
ã
, for asymptotically AdS black holes

(10)

cosh(κtb) ≃ 1
2

eκtb
where c represents  the  central  charge.  In  the  limit  of  late  times  and  large  distances,  we  can  take  the  approximation:

. Then the above equation is equal to:
 

S Rad(without island) ≃ c
3
κtb. (11)

f (r)

Apparently,  without  island construction,  the  entanglement  entropy of  radiation grows linearly  with  time at  late  times,
which leads to the information loss and consistent with Hawking's view. In addition, the result (11) does not depend on
the geometry , which implies that the information paradox is always exists.

R∪ I
Next, we turn to the construction with an island to obtain the Page curve. Similarly, referring to the Penrose diagram

in Figure 1, we see the entire Cauchy slice is divided into three intervals. For the disconnected union interval , the
expression of the entanglement entropy is converted from (10) (only valid for a single interval) to the following form
[93, 94]:
 

S bulk(R∪ I) =
c
3

log
Å

d(a+,a−)d(b+,b−)d(a+,b+)d(a−,b−)
d(a+,b−)d(a−,b+)

ã
=

c
6

log
î
16Ω2(a)Ω2(b)e2κ(r⋆(a)+r⋆(b)) cosh2(κta)cosh2(κtb)

ó
+

c
3

log
ï

cosh[κ(r⋆(a)− r⋆(b))]− cosh[κ(ta− tb)]
cosh[κ(r⋆(a)− r⋆(b))]+ cosh[κ(ta+ tb)]

ò
, (12)

where
 

Ω2(a)Ω2(b) = Ω2
BH(a)Ω2

BH(b) =
f (a) f (b)

κ4e2κ(r⋆(a)+r⋆(b))
, for asymptotically flat cases (13a)

 

Ω2(a)Ω2(b) = Ω2
BH(a)Ω2

bath(b) =
f (a)

κ4e2κ(r⋆(a)+b)
. for asymptotically AdS cases (13b)

 

R± b± = (±tb,b)
a± = (±ta,a)

Fig. 1.    (color online) The schematic Penrose diagram of black holes (with the single horizon). The radiation regions are denoted by
, and their boundaries are the cut-off surfaces. The coordinates of boundaries of the radiation are . The coordinates of the

islands boundaries are . On the left, this represents an asymptotically flat black hole. Hawking radiation can naturally dif-
fuse to null infinity. On the right, it represents an asymptotically AdS black hole in thermal equilibrium with the bath (red region). We
then impose the transparent boundary condition on the black hole region (black region) [10]. In such way, Hawking radiation can also
be collected by observers at space-like infinity.

Ming-Hui Yu, Xian-Hui Ge Chin. Phys. C 49, (2025)
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Accordingly, the generalized entropy read as1): 

S gen =
A(a)
2GN

+
c
6

log
ï

16 f (a) f (b)
κ4

cosh2(κta)cosh2(κtb)
ò

+
c
3

log
ï

cosh[κ(r⋆(a)− r⋆(b))]− cosh[κ(ta− tb)]
cosh[κ(r⋆(a)− r⋆(b))]+ cosh[κ(ta+ tb)]

ò
,

(14)

A(a)
D ≥ 3

D ≥ 3 A(r)

where  is the area of island, which is a positive con-
stant  for .  After  here,  We default  to  the  dimension

 to ensure that the area term  is always non-neg-
ative and we will discuss the case of 2D black holes spe-
cifically later in Appendix B.

ta ≃ tb ≃ 0≪ κbAt  very  early  times,  we  assume  that .
Then the generalized entropy becomes: 

S (early)
gen ≃ A(a)

2GN
+

c
6

log
ï

16 f (a) f (b)
κ4

cosh2(κta)cosh2(κtb)
ò
.

(15)

ta

In  order  to  obtain  the  QES,  we  extremize  the  above
expression with respect to a and : 

∂S (early)
gen

∂ta
=

cκ
3

tanh(κta) = 0. (16)

ta = 0The  only  solution  is ,  so  the  approximation  is
right.  Then  the  location  of  QES  can  be  obtained  by  the
following equation: 

∂S (early)
gen

∂a
=

A′(a)
2GN

+
c
6

f ′(a)
f (a)

= 0. (17)

We can  rewrite  this  expression  to  obtain  the  con-
straint  equation  that  is  satisfied  if  the  island  appears  at
early times: 

−3A′(a) f (a)
f ′(a)

= cGN ∼ O(GN)≪ 1. (18)

c ∼ O(1) A′(a)
Here,  we  assume that  the  central  charge  is  relatively

small: . Because the area term  is finite and
non-negative.  Then  there  two  solutions  that  satisfy  the
above equation: 

f (a) ∼ 0, a ≳ rh, f ′(a) < 0, (19a)

 

or f (a) ∼ 0, a ≲ rh, f ′(a) > 0. (19b)

r ≳ rh

f ′(a ≳ rh) f ′(rh) = 2κ > 0
However,  in  the  region ,  the  expression

 is  related  to  the  surface  gravity 
(6).  So first  solution is not reasonable. While the second
solution  suggests  that  the  island  is  located  inside  the
event horizon.  In  fact,  we  demonstrate  explicitly  in  Ap-
pendix C that  the island cannot be inside the event hori-
zon. Therefore,  has  no  physical  solution  for  the  con-
straint equation (18) at early times. We can infer that is-
lands absent at early times, which does not depend on the
metric (4). 

B.    Constraints on the background geometry at late
times

By contrast, at large distances and late times, the left
wedge  and  right  wedges  are  significantly  separated.  To
simplify this,  we  can  perform  the  following  approxima-
tion [30]: 

d(a+,a−) ≃ d(b+,b−) ≃ d(a+,b−) ≃ d(a−,b+)

≫ d(a+,b+) ≃ d(a−,b−). (20)

Then, the  entanglement  entropy  at  late  times  is  sim-
plified as: 

S (late)
gen ≃

A(a)
2GN

+
c
3

log[d(a+,b+)d(a−,b−)]

=
A(a)
2GN

+
c
6

log
ï

4 f (a) f (b)
κ4

×
Å

cosh(κ(r⋆(a)− r⋆(b)))− cosh(κ(ta− tb))
ã2ò
.

(21)

taIn same way, we extremize it  with respect to time 
firstly, 

∂S (late)
gen

∂ta
= − c

3
κ sinh[κ(ta− tb)]

cosh[κ(r⋆(a)− r⋆(b))]− cosh[κ(ta− tb)]
= 0.

(22)

ta tbThe only solution is to set  equal to , and then sub-
stitute this  relation  into  the  original  expression  and  ex-
tremize it with respect to a, 

∂S (late)
gen

∂a
=

A′(a)
2GN

+
c
6

ï
f ′(a)
f (a)
+

2κ
f (a)

coth
î κ

2
(r⋆(a)− r⋆(b))

óò
= 0,

=
A′(a)
2GN

+
c f ′(a)
6 f (a)

− cκ
3 f (a)

Å
1+

2
eκx−1

ã
= 0,

(23)

Geometric Constraints via Page Curves: Insights from Island Rule and... Chin. Phys. C 49, (2025)

f (b) = 1
r⋆(b) = b

1) Hereafter, we only present the results for asymptotically flat black holes for the sake of simplicity. In order to fit the AdS black holes, one simply set  and
.
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r′⋆(a) =
1

f (a)
x ≡ r⋆(b)− r⋆(a)

r = b
r = a

eκx−1≫ 0

where  we  have  used  and  setting
 to simplify  the  equation.  Here  we  as-

sume  that  the  location  of  cutoff  surface  ( )  has  the
same  order  with  the  island  ( ),  i.e. x is  big  enough
( ). Thus the last term in the second line of the
above  equation  does  not  become  a  big  negative  number
and cause the equation (23) to have no solution1). Follow-
ing (18), we rewrite this expression as: 

3A′(a) f (a)
4κe−κx +2κ− f ′(a)

= cGN ≪ 1, (24)

a ≃ rhNow we make the near horizon limit:  and obtain: 

f (r) ≃ f ′(rh)(r− rh)+O[(r− rh)2]

= 2κ(r− rh)+O[(r− rh)2], (25a)

 

f ′(r) ≃ f ′(rh)+ f ′′(rh)(r− rh)+O[(r− rh)2] (25b)

 

r⋆(r) =
∫ r dr̃

f (r)
≃ 1

2κ
log
|r− rh|

rh
. (25c)

Substituting these  equations  into  (24),  yields  the  fol-
lowing constraint equation: 

0 < y(a) =
6κA′(a)(a− rh)

4κe−κr⋆(b)
»

(a−rh)
rh
− f ′′(rh)(a− rh)

= cGN ≪ 1.

(26)

A′(a) D ≥ 3

Firstly,  we  know  that  the  necessary  and  sufficient
condition  for  the  existence  of  islands  is  that  the  above
equation  (26)  must  have  a  solution.  Based  on  the  non-
negativity  of  the  area  term  (for ),  we  obtain
the constraint equation as follows: 

a > rh, f ′′(rh) <
4κe−κr⋆(b)

√
(a− rh)rh

, (27a)

 

a < rh, f ′′(rh) <
−4κe−κr⋆(b)

√
(rh−a)rh

. (27b)

These two  solutions  corresponding  to  the  island  loc-
ated  outside  or  inside  the  event  horizon.  However,  we
show  in  Appendix  B  that  islands  can  not  be  inside  the
event horizon, so the second solution (27b) should be dis-
carded. Next, when the above condition is satisfied, there
must be an island located outside the event horizon: 

a ≃ rh+
4c2G2

Ne−2κr⋆(b)

9rh(A′(rh))2
+O[(cGN)3]. (28)

Substituting  this  location  to  the  constraint  equation
(27a),  we  obtain  the  necessary  and  sufficient  condition
for the existence of the island:
 

f ′′(rh) <
6κA′(rh)

cGN
≡ α̃. (29)

GN

TH ∼ κ≫ 1

TH ∼ 0

At first  sight,  one might naively assume that the res-
ult  (29)  is  trivial.  Since  in  the  semiclassical  frame,  the
Newton  constant  is sufficient  small,  then  the  con-
straint (29) is easily satisfied. However, on the one hand,
we  now  pay  attention  to  the  behavior  of  entropy  at  late
times  (21).  At  this  time,  the  black  hole  is  at  the  end  of
evaporation.  The  quantum  effect  dominates  and  should
not be ignored. On the other hand, even at the early stage,
the  results  (29)  is  trivial  only  for  non-extremal  black
holes  with  high  temperature  ( ).  But  for  near
extremal  black  hole  with  almost  vanishing  temperature
( ), this constrain need to be treated with great cau-
tion. Therefore,  the  constrain  equation (29)  is  a  signific-
ant conclusion. Finally, according to the location (28), we
obtain the entanglement entropy of radiation at late times:
 

S Rad(with island) ≃ A(rh)
2GN

+O(GN)

≃ 2S BH.

(30)

It  is  what we expect.  Recall  the result  without island
(11), the Page time is determined by
 

tPage =
6S BH

cκ
=

3S BH

cπTH
. (31)

r = a
r = b

Besides, we can also calculate the scrambling time as
a  by-product.  Drawing  from the  insights  of  the  Hayden-
Preskill thought experiment [95], it is posited that an ex-
ternal  observer,  situated  asymptotically  relative  to  the
black  hole,  must  patiently  await  the  elapsed  duration
known  as  the “scrambling  time” before information  ini-
tially engulfed by the black hole can be retrieved through
analyzing the emitted Hawking radiation. In the language
of the  entanglement  wedge  reconstruction,  the  scram-
bling time corresponds to the time when the information
reaches  the  boundary  of  island  ( )  from  the  cut-off
surface ( ) [11]:
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b ≳ a1) Even for cases that the cutoff surface is very close to the island: , the last term in equation (23) is large than 1 due to the exponential dependence. Therefore
the equation (23) always has a solution under reasonable approximation.
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tscr ≡Min[v(tb,b)− v(ta,a)] = r⋆(b)− r⋆(a)

≃ r⋆(b)− 1
2κ

log
a− rh

rh
≃ 1

2κ
log

A′(rh)rh

cGN

≃ 1
2πTH

logS BH, (32)

ta, tb

b ∼ rh

where  is the time of sending and receiving informa-
tion,  respectively.  In  the  penultimate  line,  we  employed
the approximation delineated in equation (25c) to facilit-
ate our calculations and assume that b has the same order
of the event horizon . Concludingly, we adopted the
established  outcome  for  the  four-dimensional  scenario,
aligning seamlessly with the findings reported in the sem-
inal  Hayden-Preskill  thought  experiment  [96, 97],  thus
ensuring theoretical consistency.

A′(rh)
α̃

Above all,  we  protect  the  unitary  by  the  island  for-
mula.  In  particular,  we  obtain  a  sufficient  and  necessary
condition  for  deriving  the  Page  curve  (29).  In  addition,
since  the  area  term  is  non-negative,  the  critical
value  is always positive. Therefore, we can further in-
fer that there must exist a Page curve when the following
constraint  is  satisfied.  Namely,  a  sufficient  and unneces-
sary for Page curves: 

f ′′(rh+O(GN)) < 0. (33)

r ≳ rh

Specifically,  the  radial  coordinate r is  confined  to  a
region situated just outside the event horizon, adhering to
the  condition , reflecting our  focus  on the  immedi-
ate vicinity of the horizon through implementation of the
near-horizon approximation. The impact of the condition
on the  result  will  be  discussed  in  detail  in  the  following
section. 

III.  ISLAND AND QUANTUM FOCUSING CON-
JECTURE

Up to the present,  we calculate  the Page curve using
the island formula (1).  Combing the results of the previ-
ous section,  we  obtain  the  behavior  of  entanglement  en-
tropy in the entire process of black hole evaporation is 

S Rad =Min
ï

2πc
3

THt,2S BH

ò
. (34)

In  particular,  we  find  that  if  the  constraint  condition
(29) is satisfied, the Page curve must be reproduced, and
there must exist an island outside the event horizon (28).
This conclusion is universal and not depend on the expli-

cit  form  of  the  metric  (4).  In  this  sense,  we  provide  the
constraint conditions of spacetime when Page curve is es-
tablished.

Now in this section, we further study the constraint of
Page curves on space-time from the perspective of QFC,
and compare the results with (33) that given by the island
paradigm. The classical focusing theorem asserts that the
expansion θ of the congruence of null geodesic never in-
creases: 

dθ
dλ
≤ 0, (35)

S BH =
A

4GN

where λ is the affine parameter. An important application
of this theorem is to prove the second law of black holes.

For  a  black  hole  with  area A and  entropy ( ),
the expansion θ is defined by: 

θ =
1
A

dA
dλ
. (36)

dS BH ≥ 0Then one can infer to the second law: .

dS gen ≥ 0

However,  once  quantum  effects  are  considered1),  i.e.
the black hole emits Hawking radiation.  The second law
is violated. For the sake of rationality, this law should be
upgraded to the generalized second law. Accordingly, the
black hole entropy should be replaced by the generalized
entropy: . Therefore,  the  classical  focusing  the-
orem is also being extended to the QFC [98, 99], in which
the  quantum expansion is  given by replacing the  area  in
the classical expansion with the generalized entropy (21): 

dΘ
dλ
≤ 0, (37)

where Θ  is  the  quantum  expansion,  which  can  be  ex-
pressed in terms of the generalized entropy: 

Θ =
1
A

d
dλ

S gen. (38)

Now,  we  investigate  the  QFC  for  the  construction
with an island. For the entanglement entropy at late times
(21), the quantum expansion is written as: 

Θ =
1
A

d
dλ

S gen =
1
A

dvb

dλ

ï
∂S gen

∂vb
+

dva

dvb

∂S gen

∂va
+

dua

dvb

∂S gen

∂ua

ò
.

(39)

Here we introduce the affine parameter [99]: 

Geometric Constraints via Page Curves: Insights from Island Rule and... Chin. Phys. C 49, (2025)

1) Even though our metric (4) looks static. However, it is actually in dynamic equilibrium with the external bath. More specifically, the outgoing Hawking radiation
is perfectly balanced by the replenished energy flow from the bath (see Penrose diagram Figure.1). Therefore, the area of a black hole is actually change with time, the
classical focusing theorem (35) can be violated, and we need to consider the quantum correction (37).
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dλ ≡ −∂r(u,v)
∂u

dv, (40)

for simplicity. Due to the fact that QES makes the entan-
glement entropy to extremized, which means that: 

∂S gen

∂ua
=
∂S gen

∂va
= 0. (41)

Then we have 

Θ =
1
A

dvb

dλ
∂S gen

∂vb
=

1
A(b) f (b)

ï
∂S gen

∂tb
+ f (b)

∂S gen

∂b

ò
=

A′(b)
2A(b)GN

− cκ
3A(b) f (b)

coth

×
ï
κ

2
((ta− tb)+ (r⋆(a)− r⋆(b))

ò
+

c
6A(b) f (b)

f ′(b)

=
A′(b)

2A(b)GN
+

c
6A(b) f (b)

f ′(b)

+
cκ

3A(b) f (b)

Å
1+

1
eκ(r⋆(b)−r⋆(a))−1

ã
> 0. (42)

ta = tb

f (b > rh ≃ a) > 0

vb

Here,  we have  used  the  relation .  Sine  the  cut-
off surface is far from the event horizon, .
Therefore, the entanglement entropy is always increasing
with the null time  and the quantum expansion is posit-
ive. Moreover, following the QFC, we obtain the derivat-
ive of the quantum expansion as: 

dΘ
dλ
=

d
dλ

Å
1
A

dS gen

dλ

ã
=

1
dλ

Å
1
A

dvb

dλ
∂S gen

∂vb

ã
=

1
f (b)

d
dvb

X

= − [A′(b)]2−A(b)A′′(b)
2GN A2(b)

− c
6A2(b) f 2(b)

(Y +Z),

(43)

where 

X =
A′(b)

A(b)GN
+

cκ
3A(b) f (b)

coth
Å
κ

2

Ä
r⋆(b)− r⋆(a)

äã
+

c
6A(b)

f ′(b)
f (b)
, (44a)

 

Y = f (b)A′(b)
î
2κcoth

Å
κ

2

Ä
r⋆(b)− r⋆(a)

äã
+ f ′(b)

ó
> 0,

(44b)

 

Z = A(b)
ï
4κ2

eκ(r⋆(a)−r⋆(b))(
eκ(r⋆(a)−r⋆(b))−1

)2

+
2κ f ′(b)

(
eκr⋆(b)+ eκr⋆(a)

)
eκr⋆(b)− eκr⋆(a)

+ ( f ′(b))2− f (b) f ′′(b)
ò
.

(44c)

uA va

(r = b)
b ∼ rh ≃ a

In above calculations, the QES condition (41) is used
to be simplified in the second line of the expression (43)
to eliminate terms related to  and . The first term of
equation (43) is related to the area, which is always posit-
ive  for  spherically  symmetric  black  holes  because  the
area  term is  a  linear  function  of  the  radius r.  Therefore,
the only requirement that the QFC theorem must be satis-
fied is  non-vanishing Z.  Further,  because the  location of
the cutoff surface  is artificially selected, if we as-
sume that it has the same order of the horizon: .
Then  the  expression Z can  be  reduced  to  the  following
form: 

Z ∼ A(rh)
Å

4κ2

eκ(r⋆(a)−r⋆(b))
+2κ f ′(rh)+ ( f ′(rh))2− f (b) f ′′(rh)

ã
= A(rh)

Å
4κ2
Å

1
eκ(r⋆(a)−r⋆(b))

+2
ã
− f (b) f ′′(rh)

ã
≃ A(rh)

Å
4κ2eκr⋆(b)»

a−rh
rh

− f (b) f ′′(rh)
ã
> 0.

(45)

eκr⋆(b)≫ eκr⋆(a)≫ 1
b ∼ rh f (b)

(b ∼ rh)

(r ≃ rh)

In the first  line,  we have used  and
. In the last line. we do not expand , because al-

though the cut-off surface has the same order as the hori-
zon ,  its  gravitational  effect  is  so  small  (the
asymptotic region  of  the  observer)  that  it  can  not  be  in-
cluded in the near-horizon region .  Therefore,  we
can  acquire  that  the  sufficient  and  necessary  conditions
for QFC to be valid by the location of island (28) 

f ′′(rh) <
6κ2rhA′(rh)e2κr⋆(b)

cGN f (b)
≡ β̃ = α̃ · κrhe2κr⋆(b)

f (b)
. (46)

β̃

The  explanation  of  the  physical  significance  here  is
consistent with the one below equation (29), and this con-
straint  is  also a  non-trivial  result.  In  particular,  based on
the  non-negativity  of ,  we  also  obtain  a  sufficient  and
unnecessary for QFC to be hold: 

f ′′(rh) < 0. (47)

Compare this constraint and the result from the island
paradigm (33), we find that the derived from QFC result
(47)  contain  (33).  Namely,  the  applicability  of  QFC  is
wider.  Secondly,  both  are  a  sufficient  and unnecessary
condition for  the Page curve and QFC to be established.
Therefore,  we  can  conclude  that,  a  sufficient  and unne-
cessary condition for a Page curve for general spacetime
(4)  to  exist  and  satisfy  QFC  is  the  second  derivative  of
the blacken  function  is  negative  in  the  near  horizon  re-
gion.  We  stress  that  this  conclusion  is  only  valid  at  the
semi-classical level, where the whole spacetime is can be
regards as static.

Ming-Hui Yu, Xian-Hui Ge Chin. Phys. C 49, (2025)
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f (r) rh
TH =

f ′(rh)
4π

Now we display some physical meaning of the result.
As we know,  the  first  derivative  of  the  blacken function

 at  the  event  horizon  is  the  Hawking  temperature
 of  black hole.  Therefore,  its  second derivative

is related to the heat capacity: 

CH ≡ TH

Å
∂S BH

∂TH

ã
= TH

Å
∂S BH/∂rh

∂TH/∂rh

ã
∼ f ′(rh) · A′(rh)

f ′′(rh)
. (48)

f ′′(rh)

f ′′(rh) < 0

Then the positive or negative heat capacity is consist-
ent with . Namely, when the condition (33) is satis-
fied,  the  capacity  is  always  negative.  Therefore,

 is necessary  and  sufficient for the  heat  capa-
city of a black hole to be negative. Then, we can further
summarize  secondary  conclusions:  a  black  hole  with  a
negative  heat  capacity  must  have  islands  at  late  times.
Moreover, this is also supported by the QFC. We present
the results of calculations for some typical black holes in
the following Table 1. 

IV.  DISCUSSION AND CONCLUSION

In  summary,  we  calculate  the  Page  curve  from  the
general  static  spherical  symmetry  metric  (4)  and  obtain
the  entanglement  entropy  of  radiation  behaves  as  (34).
We  find  that  island  is  always  outside  the  event  horizon
(28). Moreover, we also obtain a sufficient and necessary
condition (29) for the emergence of islands. This method-
ology  sets  a  benchmark  for  employing  the  island
paradigm  in  Page  curve  computations.  In  particular,  we
use  the  Liouville  black  hole  [22] as  an  example  to  sup-
port our conclusion. In addition, we emphasize again that
this conclusion is valid only at the semi-classical approx-
imation, namely,  the  metric  is  static  and  the  approxima-
tion is valid (25). When the size of the black hole evapor-
ates to the final stage is small enough, the quantum effect
can  not  be  ignored,  and  the  near-horizon  approximation
(25)  may  also  fail  due  to  the  effect  of  high  curvature  at
the event horizon of black holes at final stage. On the oth-
er  hand,  we follow the  perspective  of  QFC to  prove our
results. Explicit calculations indicates that QFC is always
satisfied when  condition  (46)  is  present,  which  also  en-
sures the  validity  of  behavior  of  the  entanglement  en-
tropy at late times (21). In particular, we find that a com-
mon constraint equation that satisfies conditions (29) and
(46)  is  the  condition  (33)  and  (47).  They  are  both  self-
consistent, which  implies  the  rationality  of  our  calcula-
tion.

Therefore, we consider the inverse problem of calcu-
lating Page  curves  and  conclude  that:  When  the  con-
straint  equation  (29)  is  satisfied,  one  can  always  obtain
the unitary Page curve from the generic metric (4). While
for the view of QFC, the QFC is always be hold under the

constraint (46). Our study significantly contributes to the
comprehension  of  black  hole  evaporation  dynamics  and
the resolution of the information paradox, leveraging the
insights  from the  island  paradigm and QFC.  Finally,  the
common constraint of spacetime (47) affirms the univer-
sality of Page curves, transcending model-specific restric-
tions  and  reinforcing  the  compatibility  of  information
conservation within the semi-classical gravity framework.
This  is  also  suggests  that  spherically  symmetric  static
black  holes  with  a  negative  heat  capacity  must  have  the
island and satisfy QFC theorem.

Our calculation have very broad applicability beyond
specific model dependencies. As long as the metric satis-
fies (4), one can use our calculation to obtain the corres-
ponding  island  (28),  Page  curves  (29)  and  the  condition
for the QFC theorem (46). Therefore, our calculation can
be used as a standard procedure to obtain the Page curve
(34) and the QFC theorem (37).

In the future, we would like to consider the following
points:

Firstly,  Our  metric  (4)  is  only  fit  the  eternal  black
hole. Although the information paradox for eternal black
holes is  more  straightforward,  we  except  to  acquire  uni-
versal  results  from  more  realistic  models  of  evaporating
black holes. When the dynamical black hole is taken ac-
count,  the  back-reaction  should  be  considered  seriously
[100, 101]. The constraint equations (29) and (46) may be
modified.  Besides,  although  the  calculations  about  QFC
in this paper are based on a static black hole background,
QFC  is  a  more  general  theorem.  The  QFC  theorem  is
rarely studied in the dynamic black holes background [99,
102].  Subsequent  studies  can  extend  our  results  ((27a)
and (29)) to the evaporating version.

b− rh≪ 0

In  addition,  we only focus  on the  contribution of “s-
wave” and the  other  modes with  angular  momentum are
omitted.  Nevertheless,  we  still  need  to  be  caution  when
using  this  reduction.  In  particular,  when  the  observer  is
close  enough  to  black  holes,  this  approximation  is  not
valid.  Some  calculations  beyond  the  s-wave approxima-
tion are discussed in [99].  On the other  side,  In the case
of non-spherical symmetry, there is a lack of well-defined
conformal transformations,  such  as  the  Kruskal  coordin-
ate transformation (8). The metric (4) can not be maxim-
ally  extended  to  the  two-sided  geometry  form  (8).  The
calculation  method  presented  in  this  paper  is  difficult  to
perform  under  non-spherical  symmetric  configuration.
Another interesting  and  beneficial  aspect  is  to  contem-
plate the scenario where the cut-off surface is close to the
black hole ( ). Although the outcomes of the is-
land  in  this  case  have  been  examined  in  [30, 48],  it  is
worthwhile to investigate whether the QFC theorem holds
in this situation.

Finally,  although  we  can  infer  that  black  holes  with
negative  heat  capacities  must  exists  islands  and  follows
the QFC. We should use this conclusion with caution. For

Geometric Constraints via Page Curves: Insights from Island Rule and... Chin. Phys. C 49, (2025)
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ℓ

rh,r−,rU cGN ∼ O(GN )≪ 1 α̃ ∼ β̃≫ f ′′(rh)

f ′′(rh) < α̃

Table 1.    The related results for several black holes. Here we assume that the the cosmological constant Λ, the AdS length , and the
horizon  have the same order. The Newton constant is small enough: . So  in most cases. In par-
ticular, for the Liouville black holes [22], there is no island because of its blacken factor unsatisfied the relation . We discuss
this special 2D black hole in detail in Appendix B.

Black Hole f (r) f ′′(rh) α̃ β̃ Location of Islands/QFC

Callan-Giddings-Harvey-

Strominger[18, 19] 1− e−2λ(r−rh)
−4λ2

∼ −O
Ä

1
r2
h

ä 12λ2e2λrh
cGN

∼ O
Ä

1
r2
hGN

ä 12λ3rheλ(2rh+r⋆ (b))

cGN (1−e−2λ(b−rh ))

∼ O
Ä

1
r2
hGN

ä rh +
c2G2

N
12λe2λrh

eλr⋆(b)

QFC is satisified

Jackiw-Teitelboim[24] r2−r2
h

ℓ2

2
ℓ2

∼ O
Ä

1
r2
h

ä 6rh
cGN ℓ3

∼ O
Ä

1
r2
hGN

ä 6r3
he

rhr⋆(b)

ℓ2

cGN (b2−r2
h )ℓ3

∼ O
Ä

1
r2
hGN

ä rh +
c2G2

N ℓ

6 e
rh
ℓ2

r⋆(b)

QFC is satisified

Bañados-Teiteboim-

Zanelli[79]
r2−r2

h
ℓ2

2
ℓ2

∼ O
Ä

1
r2
h

ä 12πrh
cGN ℓ2

∼ O
Ä

1
rhGN

ä 12πr3
he
− rhr⋆ (b)

ℓ3

cGN (b2−r2
h )ℓ2

∼ O
Ä

1
rhGN

ä rh +
c2G2

N
12π e

rh
ℓ2

r⋆(b)

QFC is satisfied

Rotating Bañados-

Teiteboim-Zanelli[47]
(r2−r2

h )(r2−r2
−)

r2ℓ2

2(3r2
−+r2

h )

r2
hℓ

2

∼ O
Ä

1
r2
h

ä 12π(r2
h−r2
−)

cGN rhℓ
2

∼ O
Ä

1
rhGN

ä 12π(r2
h−r2
−)2b2e

(r2
h
−r2
− )r⋆ (b)

rhℓ
2

cGN rhℓ
2(b2−r2

h )(b2−r2
−)

∼ O
Ä

1
rhGN

ä rh +
c2G2

N
18π2rh

e
2
( r2

h
−r2
−

rhℓ
2

)
r⋆(b)

QFC is satisfied

Schwarzschild [30, 48] 1− rh
r

− 2
r2
h

∼ −O
Ä

1
r2
h

ä 24π
cGN

∼ O
Ä

1
GN

ä 12πbe
r⋆(b)
2rh

cGN (b−rh)

∼ O
Ä

1
GN

ä rh +
c2G2

N
48πrh

e
r⋆ (b)
2rh

QFC is satisfied bn

Schwarzschild-AdS[28] 1− r0
r +

r2

ℓ2

2
ℓ2
− 2r0

r2
h

∼ O
Ä

1
r2
h

ä 24πrh

(
2rh
ℓ2
+

r0
r2
h

)
cGN

∼ O
Ä

1
GN

ä 12πr2
h

(
2rh
ℓ2
+

r0
r2
h

)2

cGN

(
1+ b2

ℓ2
− r0

b

) ×
exp
Ä( rh
ℓ2
+

r0
2r2

h

)
r⋆(b)
ä

∼ O
Ä

1
GN

ä rh +
c2G2

N
48πrh

e

(
rh
ℓ2
+

r0
2r2

h

)
r⋆(b)

QFC is satisified

Schwarzschild-dS[77] (rU−r)(r−rh)(r+rh+rU )
ℓ2r

− 2(r2
h+rhrU+r2

U )

ℓ2r2
h

∼ −O
Ä

1
r2
h

ä 24π(rU−rh)(2rh+rU )
cGN ℓ2

∼ O
Ä

1
GN

ä 12πb(rh−rU )2(2rh+rU )2

cGN (b−rh)(rU−b)(b+rh+rU )ℓ2
×

exp
( (rU−rh)(2rh+rU )r⋆(b)

2rhℓ
2

)
∼ O
Ä

1
GN

ä rh +
c2G2

N e

(rc−rh)(rh−ru )

6rhℓ
2

48πrhe−r⋆ (b)

QFC is satisified

öReissner-Nordstr m[54]
(

1− rh
r

)(
1− r−

r

) 4r−2rh
r3
h

∼ O
Ä

1
r2
h

ä 24π
(

1− r−
rh

)
cGN

∼ O
Ä

1
GN

ä 12πb2(rh−r−)2

cGN (b−r−)(b−rh)r2
h
×

exp
Ä

(rh−r−)r⋆(b)
2r2

h

ä
∼ O
Ä

1
GN

ä rh +
c2G2

N
48πrh

e

(
rh−r−

2r2
h

)
r⋆(b)

QFC is satisified

Reissner-Nordström-

AdS[85, 90]

(r−r−)(r−rh)
ℓ2r

×(
ℓ2 + r2 + r2

− + r2
h + rhr−

)
2(r3
−+r2
−rh+2r3

h )

r2
hℓ

2 +

2r−ℓ
r2
hℓ

2

∼ O
Ä

1
rh

ä 24π(rh−r−)
cGN ℓ2

×(
r2
− + r−rh +2r2

h + ℓ
2
)

∼ O
Ä

rh
GN

ä 12πb((r2
−+r−rh+2r2

h+ℓ
2)2

cGN (b−r−)(b−rh)ℓ2
×

rh−r−)2

(b2+r2
−+rhr−+r2

h+ℓ
2)
×

exp
Ä

(rh−r−)r⋆(b)
2rhℓ

2

ä
∼ O
Ä

rh
GN

ä rh +
c2G2

N
144πr3

h
er⋆(b)×

e

( (3r2
h
+2rhr−+r2

− )(rh−r− )

rhℓ
2

)
QFC is satisfied

Higher-dimensional

Schwarzschild[30]
1−

(
rh
r

)d−3
− 6−5d+d2

r2
h

∼ −O
Ä

1
r2
h

ä 3(d−3)(d−2)rd−4
h ωd−2

cGN

∼ O
Ä

rd−4
h
GN

ä 3(d−3)2(d−2)rd−4
h ωd−2

2cGN

Ä
1−
Ä

rh
b

äd−3ä×
exp
Ä

(d−3)r⋆(b)
2rh

ä
∼ O
Ä

rd−4
h
GN

ä rh +
cGN e

d−3
2rh r⋆(b)

12ωd−2rd−3
h

QFC is satisfied

Liouville[22] 1− e−2
√
|C|r

−4|C|
∼ −O
Ä

1
r2
h

ä − 96|C|
cGN

∼ −O
Ä

1
r2
hGN

ä 0
No Island

QFC is satisfied
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the  more  general  case,  such  as  axially  symmetric  black
holes  or  black  holes  with  topological  phase  transitions,
we  still  need  to  treat  constraint  equations  (29)  and  (46)
strictly. There may be better physical explanations in the
future,  and  our  superficial  discussion  here  may  provide
some possible references. We end our discussion here. 
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APPENDIX A: ENTANGLEMENT ENTROPY IN
CURVED SPACETIME

In this appendix, we briefly give the expression of en-
tanglement entropy in curved black hole background and
discuss what should be pay attention to when using them.

Initially, different  from  the  2D  simple  case,  the  ex-
pression  of  entanglement  entropy  in  the  4D  scenario  is
complicated  and has  an  area-like  divergent.  Namely,  the
entropy for matter fields has following expression: 

S bulk(R∪ I) =
Area(∂I)
ϵ2

+S finite
bulk (R∪ I), (A1)

ϵwhere  is the cutoff, which is dominates the area-like di-
vergent term. Then we can absorb this term by renormal-
izing the Newton constant: 

1
4G(r)

N

≡ 1
4GN

+
1
ϵ2
. (A2)

G(r)
N S finite

bulk (R∪ I)
As consequent, we can replace the corresponding part

of  island  formula  (1)  with  and , respect-
ively,  to  yield  a  finite  contribution  of  the  entanglement
entropy. Thus, the entanglement entropy in 4D spacetime
is 

S Rad =Min
ß
Ext
ï
Area(∂I)

4G(r)
N

+S (finite)
bulk (R∪ I)

ò™
. (A3)

2

ds2 = −dx+dx−

x± = t± r

Secondly, due to the s-wave approximation, the renor-
malized  von  Neumann  entropy  in  vacuum  CFT  in flat
spacetime  (with  the  light  cone  coordinate

) is [93, 94] 

S bulk(A∪B) =
c
3

log(dAB), (A4)

with 

dAB ≡
√

[x+(A)− x+(B)][x−(B)− x−(A)], (A5)

ds2
2D = −Ω2(x+, x−)dx+dx−

in  the  geodesic  distance  between  points A and B in
flat  metric.  In  order  to  apply  the  formula  (51)  to  the
curved spacetime, we  need  to  perform  the  Wely  trans-
formation  into  curved  2D  metric

 [9]. After the Weyl transforma-
tion, we finally obtain the entanglement entropy in gener-
al 2D spacetime is [19]: 

S bulk(A∪B) =
c
6

log
ï

d2(A,B)Ω(A)Ω(B)
ò∣∣∣∣

t±=0

. (A6)

For  the  higher-dimensional case,  we  can  still  calcu-
late the entanglement entropy by this formula in a similar
way  as  in  (8).  For  the  3D case,  we  just  replace  the  area
term to the length of the system, and for the 2D case, we
replace the area term in terms of the dilaton. 

APPENDIX B: THE CASE OF 2D BLACK HOLES

In  this  appendix,  we  display  the  details  of  the  result
for 2D black holes in Table 1. The bulk action for the 2D
gravity can be written in the following form [18, 19, 22]: 

Ibulk =
1

16πGN

∫
d2x
√−g
ï
Φ
(
R+K(Φ)(∇Φ)2−2V(Φ)

)ò
,

(B1)

K(Φ) V(Φ)where  and  are 

K = 0, V = −λ2, for JT gravity (B2a)

 

K =
1
Φ2
, V = −2λ2, for CGHS model

(B2b)

 

K = 0, V = −2λ2eBΦ for Liouville model

(B2c)

B > 0
where λ determines the  length  of  the  cosmological  con-
stant,  is  a  constant.  We  can  obtain  the  vacuum
black hole solutions by solving the equations of motions
from the action (55). In the Schwarzschild gauge, the va-
cuum black hole metric are: 

ds2 = − f (r)dt2+ f (r)−1dr2, (B3)

where 

f (r) =
r2− r2

h

ℓ2
, for JT gravity (B4a)
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f (r) = 1− e−2λ(r−rh), for CGHS model (B4b)

 

f (r) = 1− e−2
√
|C|·r. for Liouville model (B4c)

ℓ C < 0

f (r)

Here  sets  the  AdS  length,  is  a  constant.  For
the case of JT and CGHS model, we can easily calculate
and find that their blacken factors  (58a) (58b) satis-
fy the  constraint  equation  (29),  and  then  obtain  the  cor-
rect  results  in Table  1. However,  in  the  case  of  the  Li-
ouville  black  hole,  there  is  no  island  due  to  its  special
properties. Now we study this situation in detail.

A(r)

r =
√
|C|
2

R2

t = iτ r = 0

A  key  property  of  a  Liouville  black  hole  is  that  its
area  term  is negative.  For  the  Liouville  solution
(58c),  it  can  be  prove  that  the  time t has  a  periodicity
along imaginary axis. We introduce a new coordinate by

.  Then the metric (58c) in the Euclidean time
 near the event horizon  has the following form: 

ds2 = R2d(
√
|C|τ)2+dR2. (B5)

2π√
|C|

TH =

√
|C|

2π (t,r)

Therefore,  the  Euclidean  time  has  a  periodicity  of

.  Then  we  obtain  the  Hawking  temperature:

.  The  expression  of  the  dilaton ϕ in  co-
ordinates are given by 

ϕ = − 2
B

√
|C|r− 1

B
log
λ2B
C
. (B6)

The mass of black hole is 

M =
2
√
|C|

Bπ
. (B7)

It is obviously that B must be positive. Therefore, the
full restrictions for the parameters are 

C < 0, B > 0, λ2 < 0. (B8)

T = B
4 M

Combine the Hawking temperature, we can find that:
. Finally, based on the first law of thermodynam-

ics, we obtain the Bekenstein-Hawking entropy as: 

S BH =

∫
dM
T
=

4
B

log M− 2
B

log
Å−4λ2

Bπ2

ã
. (B9)

Therefore,  the  black  hole  entropy  is  related  to  the
dilaton at the event horizon: 

S BH = 2ϕH = 2ϕ(r = 0). (B10)

The area and its derivative of Liouville black hole are
given by: 

A(r) = −16
B

√
|C|r− 8

B
log
λ2B
C
,

A′(r) = −16
B

√
|C|.

(B11)

A′(rh)Because  of  the  negative  value  of ,  the  blacken
factor (58c) does not satisfy the constraint equation (29),
so the Liouville black hole does not have an island. Then,
we prove the validity of our results in Table 1. For more
information about Liouville black holes see [22]. 

APPENDIX C: NO ISLAND INSIDE THE EVENT
HORIZON

In this appendix, we prove islands cannot exist inside
the event  horizon.  In the Section II,  We obtain the loca-
tion of the island by extremizing the generalized entropy
(18), (26).  In addition to the solution where the island is
outside  the  event  horizon,  there  is  also  a  solution  where
the  island  is  inside  the  event  horizon  (19b),  (27b).  The
crux of the matter is that our results are based on the Pen-
rose diagram Figure 1, where the island is was already as-
sumed  to  be  outside  the  event  horizon,  so  this  solution
should be discarded. Now, we give the corresponding ex-
plicit calculation.  In  this  case,  the  correct  Penrose  dia-
gram as follows:

In  this  construction,  the  island  is  located  on  the  top
wedge  of Figure  2. So  the  corresponding  Kruskal  co-
ordinate  is  different  from  (5).  We  redefine  the  Kruskal
coordinate as follows: 

Top Wedge : U ≡ +eκu = +eκ(t−r⋆(r)),

V ≡ +eκv = +eκ(t+r⋆(r)). (C1)

 

Fig. 2.    (color online) The Penrose diagram in which the is-
land is assumed to be inside the event horizon.
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The generalized entropy at late times is given by sub- a± = (±ta,a)stituting the coordinate of island , which is

 

S gen ≃
A(a)
2GN

+
c
3

log
î
d(a+,b+)d(a−,b−)

ó
=

A(a)
2GN

+
c
6

log
ï

f (a) f (b)
κ4

Å
1+ eκ(r⋆(a)+r⋆(b)−ta−tb)

ãÅ
−1+ eκ(r⋆(a)+r⋆(b)+ta+tb)

ã
×

− e−2κ(2r⋆(a)+r⋆(b))
Å

eκ(r⋆(a)−ta)+ eκ(r⋆(b)−tb)
ãÅ

eκ(r⋆(a)+ta)+ eκ(r⋆(b)−tb)
ãò
. (C2)

Extrimizing this equation with respect to a:
 

∂S gen

∂a
=

1
6

Å
3A′(a)

GN
+

c
Ä
κcsch[κ(r⋆(a)+ r⋆(b))]sech[ 1

2κ(r⋆(a)+ r⋆(b))]
Ä
cosh[ 1

2κ(3r⋆(a)+ r⋆(b))]+3
(
sinh[ 1

2κ(3r⋆(a)+ r⋆(b))]
)
+ f ′(a)

ä
f (a)

ã
= 0. (C3)

This equation has no solution, namely, there is no is-
land  for  this  construction.  Therefore,  we  can  prove  that
islands  cannot  exist  inside  the  event  horizon,  and  the

solutions  (19b)  and  (27b)  is  not  physical  and  should  be

rejected.
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