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Abstract: In this study, a Glauber-type model for describing nuclear fragmentation in light targets at energies be-
low 100 A-MeV is presented. It is developed based on the Glauber model within the nucleon transparent limit, in
which the Lorentz-invariant phase space factor is introduced to account for energy and momentum conservation. Ac-
cordingly, the scope of the applicability of the model is discussed. The longitudinal momentum distributions of the

most neutron-rich nuclei ('°Be, °Li, and ®*He), which were produced in a few nucleon removal reactions during the

"B fragmentation of a Be target at beam energies of 10, 30, and 100 A-MeV, are calculated. The results of the calcu-

lations are then compared to the predictions of statistical fragmentation models, such as the Goldhaber model. Using

the new model, the asymmetric longitudinal momentum distributions at low energies are explained by the kinematic-

al locus and geometry of the reaction.
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I. INTRODUCTION

In experimental nuclear studies, the in-flight method
is widely used for radioactive ion beam production. The
primary beam is used to generate a specific nucleus in a
target, and this nucleus is separated from other products
in a fragment separator. To operate the fragment separat-
or effectively, knowledge of the longitudinal momentum
distributions of the nucleus is important.

Many nuclear research centers are producing low-en-
ergy (E <100 A-MeV) radioactive beams using the in-
flight method, such as FLNR (JINR, Russia) [1], FRIB
(Michigan State University, USA) [2], GANIL (France)
[3], RNC (RIKEN, Japan) [4], and INFN-LNS (Italy) [5].
This energy range allows studies of exotic nuclear struc-
tures in direct reactions.

Experimental data show a significant qualitative dif-
ference between the momentum distributions of frag-
ments obtained at low energies and those obtained at
higher energies. The distributions exhibit asymmetry, and
the position of the maximum of each distribution changes
with different fragments. In this context, understanding
the fragmentation mechanisms is particularly important.

The in-flight method is based on the assumption that
the longitudinal momentum (Ppe.n) distributions of the
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fragments are narrow and focused around the longitudin-
al momentum corresponding to the beam velocity. This
study demonstrates that, at low energies, the longitudinal
momenta of the fragments may significantly deviate from
Ppean- Thus, an approach that relates the width and posi-
tion of the peak of the longitudinal momentum distribu-
tion to the transferred momentum is required. The follow-
ing example illustrates this problem. At an energy of 30
A-MeV, which is typical for the beams in FLNR, the lon-
gitudinal emittence of the initial beam (2%) increases to
approximately 20% after fragmentation [1], and the frag-
ments are accepted into the secondary beam within a nar-
row region of the longitudinal momentum distribution.
The optimal acceptance is achieved when the momenta of
the fragments are close to the peak of the longitudinal
momentum distribution [6].

The Glauber model is the most widely used approach
for these types of calculations, as it provides a satisfact-
ory description of experimental data at intermediate and
high energies (E > 100 A-MeV). However, at energies be-
low 100 A-MeV, the applicability of the Glauber model
becomes dubious. Therefore, in this study, experimental
data on nuclear fragmentation at energies E < 100 A-MeV
are accumulated, different parametrizations for describ-
ing the energies and angular distributions of the frag-
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ments are derived, and a simple model of the Glauber
type is extended to allow calculations at low energies, for
which the transferred momentum and beam momentum
are of the same order of magnitude. The proposed ap-
proach accounts for energy and momentum conservation
while maintaining simplicity and transparency.

This approach enables an analytical expression for the
amplitude of the process to be derived. It also facilitates
the correction of the amplitude via the Lorentz-invariant
phase volume, thus accounting for energy and mo-
mentum conservation.

In this study, we introduce this model, analyze the
scope of its applicability, and apply it to calculations of
"B fragmentation in a Be target.

The element ''B has the lightest nucleus of which a
removal process involving a few protons produces '‘Be,
°Li, and *He fragments. All these nuclear fragments have
been thoroughly studied experimentally; thus, we use
them as input parameters for our approach. We analyze
the changes in the phase volume and the longitudinal mo-
mentum distributions as functions of the beam energy and
mass number of the fragments. We then compare the mo-
mentum distributions to those systematically obtained via
widely used fragmentation calculations (see Refs. [7, 8]).

All the calculations of the momentum distributions
and cross sections are performed using the Monte Carlo
method.

II. MODEL DESCRIPTION

In the general case, the differential cross section of a
process with # bodies in the final state is expressed as

T 2
ar="Lay, ()

where T denotes the T-matrix, v represents the beam velo-
city, and dV® denotes the phase volume of the n-body
system of fragments.

We propose an approach in which we use the inelast-
ic scattering amplitude obtained in the Glauber method
(instead of the 7-matrix) while preserving the Lorentz-in-
variant phase volume. Using this procedure, we formally
incorporate conservation of energy and momentum;
however, this provides only a qualitative description of
the correlations and momentum distributions. Neverthe-
less, such an approach can describe the influence of the
Q-value and other purely kinematical effects (which may
be significant at low energies) on the momentum distribu-
tion of the fragments.

We now consider the fragmentation of a projectile (P)
in a target (7) (Fig. 1) in the projectile's rest frame, as-
suming that the projectile consists of n fragments, which
are composed of a relatively heavy core (C) and nucle-
ons.
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N
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Fig. 1. (color online) Kinematical scheme of the fragmenta-

tion reaction and kinematical variables in the projectile's rest
frame.

A. Inelastic scattering amplitude and factorization

The inelastic scattering amplitude of this process can
be derived using the integral over the impact parameter
(b) and the coordinates of the preformed clusters (r;); it
can be expressed as

._i iQb 32 /n 3
ﬂi—zni/e d*b gdrk
[Is;(b-t)-1

j=1

< ), ©)

where §; is the profile function of the fragment-target
(core-target j=C and nucleon-target j= N) interaction
obtained using the optical model potential (see Eq. (9)), t;
is the projection of r; onto the impact parameter plain
(orthogonal to K) and is expressed as

tj = rj—(rj'K)K/Kz,

Y, is the projectile's initial state wave function (WF) for
the relative motion of the fragments with coordinates r;
(the index j denotes the core and nucleon fragments) and
is expressed as

‘{II = Tl(r]’rz""’rl‘l),

W is the final state WF defined by the coordinates and
momenta of the fragments:

Wi =Ye(r,ry,. ... 0, q1, Q2 - -, q)-

Because we are considering the problem in the pro-
jectile's rest frame, K and K’ are the initial and final tar-
get momenta, respectively; Q represents the target trans-
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ferred momentum; and q; represents the momenta of the
fragments after being scattered in the projectile's rest
frame (q; can also be interpreted as the transferred mo-
menta of the fragments).

Using the single scattering approximation shown in
Eq. (2), we obtain the sum

Fii=>_£Q / ¥y [ [d'r, )
=1 =

where f;(Q) is the fragment-target elastic scattering amp-
litude [9]. In the transparent nucleon limit (Sy =1), Eq.
(3) reduces to

75 =@ [eeyeey [, @)

k=1

Our next assumption concerns the factorization of the
WFs of the initial state,

N
¥, — H ‘ylj(rj)’

J=1

and final state,

N N
Yr— H‘PF_/(l‘j,qJ‘) - HeXp[irjq_f],

j=1 j=1

Introducing the functions

Fj(qul’q27'~'7qn): /d’;r]eIQr}\P;‘](rPq])lylj(rj)

XH/d3l'k\P;k(rk,qk)\P1k(rk), (5)

k#j

and assuming that the final state WF can be approxim-
ated using plane waves, we obtain

Fi(Q,q1,92,...,9y5) = /d3r‘/€_i(q"_Q)r"I’1/‘(l’j>

XH / dre Y (1)

k#j

= Fi(q; - Q [ [ F(aw). (6)

k#j

Substituting Eq. (6) into Eq. (4) gives the amplitude of in-
elastic scattering:

Fri = fe(@QFc(qc—Q [ [ Fu(aw). ()
k

The momenta Q and q; in Eq. (2) are assumed to lie
in the plane orthogonal to the momentum K. However, if
we assume F; and the core-fragment potential are
centrosymmetric, the dependence of 77, on the directions
of Q and q; should be minimal, rendering the use of Eq.
(7) reasonable.

Fc and Fy in Eq. (7) represent the form factors de-
termined by the size of the nucleus. Thus, the amplitude
of inelastic scattering is defined by the elastic scattering
amplitude of the core f-(Q).

Using the oscillator WF, which is expressed as

we obtain the expression for the form factors F;

32
Fi{q)= {/ S5(r)ee 370, (8)

where (r;) is the root mean square (RMS) distance of
fragment j from the center of mass of the projectile.

The parameters of this approach include the RMS
radii of the fragments and the corresponding RMS dis-
tance between each fragment and the center of mass of
the projectile.

B. Profile functions

The elastic scattering amplitudes f-(Q) and fy(Q) are
calculated in the Glauber model using the corresponding
core-target profile function § ;.

In our calculations, the profile functions of the core-
target interaction are derived using the model potential,
which is expressed as

S j(b) = exp —%/.dzvj(\/b2+z2) , )

—00

where r= Vb2+z%, V;(r) denotes the optical model po-
tential for the core-target or nucleon-target interaction, b
is the impact parameter of the center of mass of the frag-
ment (see, for example, Refs. [10, 11]), v is the beam ve-
locity, and z is the coordinate along the beam axis.

To perform the calculations over a wide energy range
(10-100 A-MeV), we use the standard parametrization of
the nucleon-nucleon interaction potential with the para-
meters from Refs. [12, 13], which are valid for incident
energies ranging from 10 to 2000 A-MeV. The optical po-
tential of the core-target interaction can be found by fold-
ing [14] the potential with the core density distribution.

The core-target interaction potential is expressed as
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Ve(r) = / Acpc(®)Ve(r—r')dr’, (10)

where Ac is the core mass number, pc denotes the core
density distribution, and V¢(Jr—r’|) represents the effect-
ive interaction potential. In addition,

. i
Ver(e—r'|) = _EhVATpT(|r_r/|)m~ (11)

The density distributions of the interacting nuclear sys-
tems are approximated by the Gaussian distribution [15]
as

p(x) = poexp(—ax’), (12)

where a = [%(r2>]_lis the density distribution parameter
related to the RMS radius of the nucleus (¢(+*)'/?),p(x) is
normalized to unity, and oy is the nucleon-nucleon
cross section averaged over the number of neutrons and
protons involved in the interaction (for more details see
Refs. [12, 13]).

1. RESULTS AND DISCUSSION

For the fragmentation of ''B, we considered three re-
actions leading to production of the '"Be, °Li, and *He
isotopes:

"B+°Be —»? Be+'"Be + p,
"B+Be =’ Be+’Li+2p,
"B +°Be -’ Be +*He + 3p.

These reactions illustrate the "path" toward the neutron
dripline. Calculations were performed for the beam ener-
gies of 10, 30, and 100 A-MeV, probing the changes in
the differential elastic cross section and the longitudinal
momentum distributions of the core fragment as func-
tions of the incident energy. The Monte Carlo method
was used to calculate the corresponding momentum dis-
tributions.

A. Elastic cross sections

Figure 2 displays the differential elastic cross section
as a function of the transferred momentaq; for the pro-
tons (j=p) and core fragments (j=C, where C corres-
ponds to '“Be, °Li, and *He) in a Be target for the incid-
ent energies of 10, 30, and 100 A-MeV. The calculated
proton cross sections were smaller than the core cross
sections by a few orders of magnitude. The correspond-
ing amplitudes satisfied fc > fy, indicating that the core-
target interaction dominated over the nucleon-target inter-
action. Furthermore, Fig. 2 shows that when the nucleon

— I(]Be
— ‘)Ll
10° | — He
p
E =10 (4 MeV)
102 -
10() -
10°
—_ E =30 (4 MeV)
g
> 10* F
g
SN—"
a 102 F
o
=
=}
< 10() -
10°
E =100 (4 MeV)
104 +
102 +
100 -
0 100 200 300 400 500 600
g MeV/c)
Fig. 2. (color online) Differential elastic scattering cross sec-

tions as functions of the transferred momenta ¢ for protons
and heavy ions ("°Be, °Li, and *He) scattered on a °Be target at
different projectile energies (see legends in the panels).

transfer occurred, the momentum transfer significantly
exceeded the value corresponding to the first diffraction
minimum. In the calculations of the elastic scattering, we
assumed that the dominant contribution to the elastic
scattering cross section corresponded to the transferred
momenta that were smaller than those at the first diffrac-
tion minimum (see Fig. 2).

In our model, the projectile nucleus ''B is treated as a
system of a pre-formed heavy cluster and valence pro-
tons. The structure of ''B is characterized by the form
factor Fc(qc) described in Eq. (8), which is determined
by the RMS distance of the core in ''B. In our calcula-
tions, we used the RMS distance of the proton,
(rpy =243 fm, which was determined by the standard
charge radius systematics, 1.2xA'/%. As a first approxim-
ation, the RMS distance of the core ({r¢)) can be calcu-
lated assuming a point particle.

In the general case, the core WF in ''B may be more
complex, resulting in variations in (r¢). To demonstrate
the sensitivity of our results to this parameter, we varied
(rcy (see Table 1) from the minimal value (correspond-
ing to a more central impact) to the maximal value (rep-
resenting a more peripheral interaction). The values of
(rc) are presented in the Table 1.

B. Momentum distributions

Figure 3 shows the correlation plots of the target
transferred momentum (Q) versus the projection gc, of
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Table 1. RMS distances of the heavy fragments used in the
calculations, where (r.) is the default value, min(r.) repres-
ents the radius of the "more central" reaction, and max(r.) rep-
resents the radius of the "more peripheral” reaction. All val-
ues are given in fm.

Fragment (re) min(r.) max(r.)
“Be 0.24 0.12 0.49
°Li 0.49 0.24 0.97
8He 0.73 0.36 1.46

the core momentum ¢ onto the z-axis, coinciding with
the beam direction. The calculations were performed for
beam energies of 10, 30, and 100 A-MeV and for differ-
ent core fragments of '’Be, °Li, and *He.

At low beam energies (10 and 30 A-MeV), O and ¢,
exhibited a strong correlation, which weakened as more
nucleons were removed.

The kinematic locus included only non-zeroth trans-
ferred momentum Q because part of the beam energy was
spent on nucleon knock-out. Therefore, the Serber model
[16], which is valid in the Q =0 MeV/c limit, was not ap-
plicable in this case, and the core fragments appeared to
move slower than the beam nuclei. The Serber model de-
scribes the fragmentation process as a sudden removal of
nucleons from the nucleus. In this model, the longitudin-
al momentum distribution of the fragments is determined
by the initial WF of the system, represented by the form
factor of the initial state. For the case in which Q <« g,
Eq. (7) reduces to the Serber model.

At high energy (100 A-MeV), the effect of "slowing
down" was less pronounced, and the correlation became
more symmetric with respect to g¢, = 0, approaching the
predictions of the Serber model. However, the Q < gc¢
case was still not realized. In future work, we plan to in-
vestigate the kinematic conditions under which our ap-
proach is reduced to the Serber model.

In Fig. 4, we present the correlation between the two
projections of the core momentum in the projectile's rest
frame (g, and gc,).

In these plots, the kinematical loci of the fragments
are clearly visible, and the loci of gc, are asymmetric rel-
ative to the momentum of the beam (g¢, = 0). This indic-
ates that the fragments tended to "slow down" at low en-
ergies relative to the beam velocity, which is a phe-
nomenon related to the reaction kinematics.

This result demonstrates that the shape of the longit-
udinal momentum distributions changed significantly as
the beam energy varied, highlighting the importance of
considering momentum and energy conservation. From
this perspective, the models that assume a sudden remov-
al with Q — 0, such as the Serber model and the tradition-
al eikonal approximation of the Glauber model, provide
only a qualitative description of the momentum distribu-
tions. At high energies, these models offer an adequate
quantitative description of the cross sections; however, at
energies below 100 A-MeV, they do not provide an ac-
curate description of the momentum distributions.

At higher energies, for which the transferred mo-
mentum is much smaller than the beam momentum and is
thus negligible, the results of our model approached those

T T T T T T T T T T T T T T 10°
08¢ T T E»=10 (4 MeV)]
2 06F + + i §
oI  S—
O 04r ——— T T 1 ®10t
02f 1 + + .
0r— i f f I i f I i I f i i f
~ 08 T T Ey=30(4MeV)| M,
Q
= 0.6 T T . 2
> =
0 3
o "R SRR W
~ B 1 o
Q0.2 T T . 102
0r—t i f T I i f f } I I i i I
. 08F T T Ej=100 (4 MeV)]
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O 04r = T _= T . .
= -
Q0.2 T+ T .
0 1 1 I 1 1 1 1 1 1 1 1 1 1 [ 100
-0.6 -04 -02 0 02 -06 -04 -02 O 02 -06 -04 -02 O 0.2
qe=(""Be) (Gev/c) qc:(’Li) (GeV/c) gc:("He) (GeV/c)
Fig. 3. (color online) Correlation between the transferred momentum of the target (Q) and the longitudinal component of the core mo-

mentum (g¢;) in the projectile's rest frame, obtained using the Monte Carlo method for different fragments (columns) and ''B beam en-
ergies (rows). The color scale indicates the number of events in the Monte Carlo calculations.
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jectile's rest frame, obtained using the Monte Carlo method. The layout is the same as that in Fig. 3. The color scale indicates the num-

ber of events in the Monte Carlo calculations.

obtained by the Glauber model in the transparent proton
limit.

The sensitivity of our calculations to (r¢) is illus-
trated in Fig. 5, which presents the characteristics of the
longitudinal momentum distributions, such as the peak
position, standard deviation (SD), and skewness of the
qc, distribution.

As the mass of the fragment increased, the peak posi-
tion in the momentum distributions shifted to higher val-
ues and the skewness decreased. The standard deviation
of the longitudinal momentum distribution varied de-
pending on the type of fragment.

The plots indicate that in peripheral reactions, the
fragment moved faster than the projectile. Additionally,
the gc, distribution narrowed. In central interactions, the
qc, distribution became wider and more asymmetric.
Thus, more peripheral reactions produced faster frag-
ments, whereas more central reactions produced frag-
ments that were relatively slow compared to the beam ve-
locity.

Finally, Fig. 6 compares the calculated widths of the
longitudinal momentum distributions of the fragments to
the predictions of the widely used Goldhaber model [7].
Following the approach outlined in this article, the stand-
ard deviation can be expressed as

KA-K
SD= Vo2 = meT¥,

where A is the mass of the incident ''B particle and K is
the mass of the fragment ('Be, °Li, and *He). The tem-
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Fig. 5. (color online) Mode (peak position), standard devi-

ation (SD), and skewness for different values of (rc) (see Ta-
ble 1).
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Fig. 6.
viation (SD) of ¢c, obtained in our calculations (points) and
the predictions of the model from Ref. [7] (lines). The values
of kT for the beam energies of E, =100 A MeV and E, =30 4
MeV are shown in the panels.

which describes both the mean excitation energy trans-
ferred to the fragment during nuclear decay and the width
of the momentum distribution of the fragment.

For high beam energy (E,=100 A-MeV and
E, =30 A-MeV, our results exhibited reasonable agree-
ment with the predictions of Ref. [7]. For low beam en-
ergy (E, =10 A-MeV), the dependence of the widths of
the longitudinal momentum distributions on the fragment
mass number obtained via our calculations qualitatively
differed from that in Ref. [7], highlighting the limitations
of the Goldhaber model and emphasizing the applicabil-
ity of our proposed approach.

IV. SUMMARY

In this study, we proposed a new nuclear fragmenta-
tion model based on the Glauber model, which we modi-
fied to account for energy and momentum conservation.

Using the example of ''B fragmentation, we calcu-
lated the longitudinal momentum distributions of the
"Be, Li, and ®*He fragments. All results were obtained
within the transparent proton limit. At energies above
100A-MeV, our model produced results similar to those
obtained by the eikonal approximation of the Glauber
model in the transparent proton limit (S y = 1). Addition-
ally, the precision of the proposed approach improved as
the heavy fragment mass increased.

At low energies, the peak position of the longitudinal
momentum distribution increased as the core mass de-
creased. In addition, at energies below 100A4-MeV, the
fragments moved slower than the beam nuclei, as defined
by the kinematic locus, whereas at higher energies
(E>100A-MeV), the fragments moved either faster or
slower depending on the reaction geometry.

Accounting for energy and momentum conservation
led to significant changes (i.e., asymmetry) in the shape
of the longitudinal momentum distributions, producing a
low-momentum tail owing to the large transferred mo-
mentum. Thus, compared to the Glauber model, our ap-
proach describes fragmentation over a wider range of mo-
mentum transfer values.

A comparison with calculations from other models
and parametrizations indicated that at energies below 100
A-MeV, kinematical loci as well as energy and mo-
mentum conservation must be taken into account when
planning experiments and determining optimal condi-
tions for fragment production.
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