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I. INTRODUCTION

ABJM theory is a three-dimensional superconformal
Chern-Simons theory with gravity dual as the type IIA
superstring theory on AdS4xCP® background, which is
proposed by Aharony, Bergman, Jafferis and Maldacena
in 2008 [1]. Soon after the discovery, the integrability of
ABJM theory has been found, where the anomalous. di-
mension matrix of the single trace operator composed of
bi-fundamentals was mapped to an integrable closed spin
chain of alternating type at planar two-loop order in
SU4) subsector [2, 3]. The integrability was later also
extended to the complete Osp(6/4) sector and to all-loop
order [4—6].

There are also intensive studies on’ the integrable
models stemming from the original ABJM spin chain
with various nontrivial boundaries. For instance, in the
orbifold ABJM theory, we will have an integrable closed
spin chain with twisted boundary condition [7]. In the
study of determinant-like operator in ABJM theory, we
will treat an open spin chain Hamiltonian [8], whose in-
tegrability is proved by finding a concrete projected K-
matrices in the framework of algebraic Bethe ansatz
(ABA) [9]. In the flavored ABJM theory [10—12], we can
construct the gauge invariant operator using fundamental/
anti-fundamental flavors at two ends without the trace,
such operator will also correspond to an open spin chain,
which is argued to be integrable by means of coordinate
Bethe ansatz (CBA) [13].

In the constructions of integrable models, the so-
called boost operator turns out to be an important object
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which connects different conserved charges through a re-
cursive relation [14—16]. The boost operator can be also
used to generate an integrable long range spin chain from
a nearest-neighbour spin chain [17]. For the integrable
model with regular R-matrix, the boost operator can be
easily established [18, 19]. However for the non-regular
R-matrix, such as two of the four R-matrices adopted in
the original ABJM spin chains, the existence of the boost
operator is yet unknown. Actually, one of the major mo-
tivations for present work is to find a suitable boost oper-
ator for ABJM spin chain model.

Motivated by the work [20], where a general algebra-
ic treatment for medium-range spin chain was proposed,
in this paper we will reformulate the original ABJM spin
chain model with local three-site interacting Hamiltonian
by combining two adjacent quantum spaces into a new
single one, and thus obtain the fused ABJM model with
nearest-neighbour interactions. We will demonstrate the
integrability of the fused model by giving the concrete R-
matrix and checking the validity of the Yang-Baxter
equation. Due to the regularity of the fused R-matrix, we
can obtain the boost operator for the fused model and
then use it to analyze the structure of the higher charges.
We will also discuss the existence of the boost operators
in two sub-chains of the original ABJM model. Finally
we will investigate the fused model for open spin chain
and try to find out some common structures of the bound-
ary terms by a careful calculation of the open spin chain
Hamiltonian.

The paper is organized as follows: In section 2, we
briefly review the ABJM spin chain model. In section 3,
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we present the details of the construction of the fused
model for ABJM spin chain and discuss the boost operat-
or in the fused model as well as the original ABJM mod-
el. In section 4, we study the fused model for open spin
chain and give the concrete spin chain Hamiltonian. We
also analyze the structures of the boundary terms and dis-
cuss the integrability of the flavored ABJM spin chain
from the algebraic aspects. In the last section, we make
the conclusion and point out some future research direc-
tions.

II. REVIEW OF ABJM SPIN CHAIN

In this section we review the spin chain model origin-
ated from ABJM theory [2, 3]. The quantum space in
each site of the spin chain is a representation space of
SU(4) group, alternating from fundamental representa-
tion "4" to anti-fundamental one "4".

There are four kinds of R-matrices,

Rub(u) = uﬂub + Pub’ Ral;(u) = —(l/l + 2)1[115 + KQE’ (1)
Rap(u) = ulgp +Pap,  Rap(u) = —(u+2)ap + Kap,
where the subscripts a(a) or b(b) indicate they belong to
4(4) representation spaces, respectively. P and K are per-
mutation and trace operators defined by means of the
standard basis matrices {e;;,i, j = 1,2,3,4} as

]P’zeij@)ej,-, Kzei_/’®ei]‘, (2)
where the repeated indices are summed implicitly. These
R-matrices satisfy a total of eight Yang-Baxter equations
which are expressed concisely as

Ryp(As — Ap)Rac(As — Ac)Rpc(Apg — A¢)

= Rpc(Ap = Ac)Rac(Aa = Ac)RAB(A4 — Ap), 3)
where A = {a,a}, B ={b,b}, C = {c,¢}.

For the closed alternating spin chain with 2L sites, we
have the following two monodromy matrices,

To(u) = Ro1 )Rz (1) - - - Roa-1(W)R 57 (1),

_ “
T5(u) = Ror (u)R3(u) - - Ro o1 ()R 57.(u),
where V, and Vj are auxiliary spaces and the correspond-
ing transfer matrices are 7(u)=TryTo(u) and 7T(u)=
TryTo(w). Due to the Yang-Baxter relations (3), the trans-
fer matrices commute with each other for arbitrary spec-
tral parameters,

[r(), (W] =0, [T(w),7(v)] =0,

[t(u), 7(v)]=0. VYu,veC &)

The Hamiltonian of the ABJM spin chain model is ob-
tained from 7(u) and 7(u) as

, (6)

d
—1 T
+ T og T(u) »

d
HABJM=EIOgT(U)
u=0

and a direct computation gives its concrete expression,

2L

1 1
Hapm = Z (P1,1+2 - EKLIHPLHZ - 5P1,1+2K/,1+1) , (D
=1

which, up to an overall prefactor and a constant term, is
exactly the anomalous dimension matrix of the dilatation-
al operator in. ABJM theory. Furthermore, we see that
Happv 1s-@ three-site interacting model with next-to-
nearest local Hamiltonian density,

®)

hl,[+|,[+2 = PZ,HZ - EKI,I+1P[,I+2 - EPLHZKL[H .

III. THE CONSTRUCTION OF FUSED MODEL

In this section we present the algebraic construction
of the fused model for ABJM spin chain by introducing
the Lax operator, the R-matrix and the boost operator.

A. The Lax operator and the R-matrix

In Eq.6, the Hamiltonian of ABJM spin chain is ex-
pressed as the sum of the conserved charges from two
different transfer matrices. In the following, we will con-
struct a fused model for ABJM spin chain in which the
Hamiltonian Hagyy is generated from a single transfer
matrix. First we multiply the original two monodromy
matrices Ty(u) and Tp(u) to get a new one To(u) =
To(u)Ty(u). Then we rearrange the positions of R-matrices
in Ty5(u) to get

To5(u0) = (Ro1 (u)Ro1 ()Roz ()R () - -

(Ro,zL—l(u)Rﬁ,szl(M)Ro,i(u)Roﬂ(u)) . ©)
Thus we find that if we treat the tensor product of two
nearest quantum spaces as an enlarged new quantum
space, such as Vi3 = V2j-1® V33, and also introduce a
new auxiliary space as V5 = Vy® V5, we can define a new

Lax operator on the tensor product space Voo ®V,; ;57 as
Lo)2j-175 @) = Rozj-1 R, 5:()Ro 21 (w)R; 5;(w),  (10)
or in more general form,
Liaay b)) = Rap ()R 5 () Rap(u)Rap(u), (11)
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and then T5(u) becomes

Too () = L00).13) () Li06).3a) (W) - L), 2.1 57, (0)- (12)
Hence, we can see that T5(u) represents a new spin chain
of length L with isomorphic auxiliary space and quantum
space in each site:

Vo=V, 5 =404, j=12, L (13)

More importantly, the above spin chain is integrable since
the following R-matrix

R aay by () = Rp ()R () Rzp ()R (1) (14)
makes the "RLL" exchange relation holds:
R(aa),(bi;)(u - V)L(at_l),(cf)(M)L(bfi),(ci)(v) = (15)

Lh)coyV)Liaay o)W R aay o) (1 — V).

As a consistency condition, the R-matrix (14) itself
should satisfy the Yang-Baxter relation:

R(aa),(hi;)(u - V)Rma),(ca)(M)R(hia),(ca)(") = (16)

Rivby ey (V) Ry ce) W R{aay o5y U= V)

Using the Yang-Baxter equations (3), the above RLL
relation (15) and Yang-Baxter relation (16) can be veri-
fied straightforwardly. Notice that the Lax operator
Lawp(w), though quite similar to Rz 5 (%), does not
obey the intertwining relation:

Liazy, by U = V) Ly o)) Liphy () (V) # (17)

Lhy.coyV)Liaay, )W) Liaay wry (U — V).

We have so far established a new integrable model
which will be called the fused model since both the auxil-
iary space and the quantum space are the fusion of two
neighbouring representation spaces. The transfer matrix
of the fused model is simply the multiplication of two ori-
ginal ones,

1(u) = TrogTop(u) = T(u)T(w), (18)
and the Hamiltonian generated from #(u) is just Hapym.
However, from the viewpoint of the fused model, Hypym
turns out to be a nearest-neighbour interacting model

(19)

L
Hapim = E H(Zj—l,?j),(zj+l,2j+2)’
j=1

where the local Hamiltonian density is

H(Zj—lfj),(2j+l,2j+2) = h2j—1,27,2j+1

+hs-

2j2j+12j42°

(20

Now let us switch back to the original spin chain
where the nearest two quantum spaces 4 and 4 are separ-
ate sites, then by construction the transfer matrix #(u) for
fused model is two-site translation invariant. However we
can easily find the Lax operator has the factorized form:

2

-[:(()(')),(2];1’27)(“) ) g L(O(_)),Zj—l (M)L(()(')),Tj(ul
where

L06)2j-1() = Ro2j-1 ()R 2j-1 (u),
L(OO),Z(u) = RO’Z(M)R()’Z(L{)’

(22)

and thus the transfer matrix can be written as

1(u) = TrogLov).1 @) Lioo) 2(u) -+ 'L(o@),2L—1(”)L(og)ﬂ(u), (23)

which is obviously one-site shift invariant.

One last point we would like to mention: We could
also use Rz (1) as the Lax operator to generate a new
integrable spin chain, as shown below,

f(u) = TrosR 06).12) (R 00).33) () - ‘R(o()),(u_lﬂ)(u)- (24)

The relation between #(u) and #(u) can be found as
follows: Notice that

7Q(O(’»,aj—l,z*/)(“) = Rz.f—l,Z(O)L(om.(zj—1,2*./')("‘)R;;—1,27‘(0)’ (25)

where the similarity transformation matrix R,; ,5(0) =
—-2+K,, ,5; has the properties

sz—l,Tj(O)T =Ry;1 5700, Rz.f—l,Z(O)Tsz—l,Tj(O) = 4L 135
(26)

thus can be seen as a rotation in local quantum space
V157 =V2-1® V5. Then we find #(u) and #(u) are re-
lated by a global rotation in the whole Hilbert space
®5‘1:1V2j—1,27j’

fu) = At(w)A™, 27)

where

A =R3(0)R3(0)--- Ry, 57(0), (28)
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so do the Hamiltonian Hag;y obtained from #(u) and
Hpim:

Hupiv = AHapiuA ™' 29

B. Boost operator

Now we proceed with an investigation of the boost
operator for the fused model which can be used to gener-
ate higher conserved charges.

From the definition of the fused R-matrix in (14), we
find

R(aa),(bé)(o) = 4P Pyp. (30)

The R-matrix with the above condition is usually called
regular. For the integrable model with regular R-matrix,
the way to construct the boost operator is well-known in
the literature [18] and applied to our fused model as fol-
lows: First it can be easily shown that the Lax operator is
P-symmetric, that is

L(aa),(bi;)(“) = L(bé),(aa)(’/i), €20)
and thus the RLL relation in (15) can be written as
R(li),(ﬂ)(V)L(OO),(Q)(M + V)L(OO),(SZD(M) (32)

= -E(O()),(ﬂ)(”)-[:(o()),(12)(” + V)R(li),(ﬂ) ).

Then by taking the derivative with respect to v on both
sides and setting v = 0 in the end, we get

R(li),(si)(o)-ﬁ(o()),(lz)(”)~£<0()),(31>(“)
+ R(li),(ﬂ)(o)‘z(oﬁ),(li)(u)L(O(_)),(ﬂ)(u)
= L(OO),@Z@)(M)-.&OO),(12)(U)R(12),(34)(0)

+ L(oﬁ),(ﬁn(”)-ﬁ(oﬁ),(12)(”)7?(12),(3&) ). (33)

Multiplying R3)33(0) on both sides from the left and us-
ing the regularity condition R3)33,(0) = 4P13P5; gives

L

1 6R(12),(341)(O)R(li),(ﬁt)(o)s L(oO),(li)(“)LwO),(ﬂ)(U)

= —-K(OO),(1§)(M)L(00),(34)(u) + L(O()),(lz)(M)£(06>,(31)(M), (34)

1 .
where Eﬂui),(ﬂ)(o)ﬂﬂ,ﬂ(o) is just the local Hamiltonian

H5,3) plus an identity operator and thus can be re-
placed by H5 33 in the commutation relation. By the

substitution of the indices: 1 = 2k—1,2 - 2k, 3 — 2k +1,
4 — 2k+2, we have

[H 2130,k 1,353 L106). 24120 WL 09), 2xer1 7553) (“)]

== -E(o()),(zk—1,ﬁ)(“)L(OO),(zkH,M)(“)"'

L(Oﬁ),(Zk— 1.2k) (M)L(O(_)),(Zk+ 1,2k+2) (w). (35)

Then, by multiplying 15 Lo, 0,135 from the left
and [T7e2 Loo)0j-15)® from the right to both sides of
the above equation, we get

[H (2k—1,2K),(2k+1,2k+2)? TO()(U)]

k-1 L
=" [HL(OO),(Zj—l.%)(M)‘| ‘Z(O(')),(Zk—l,ﬂ)(u) [H L(oo),(zj_1,2_,')(u)‘|

j=1 Jj=k+1

K
* [HL(OO),(Zj—l,zj)(“)] Loy 21 5553 (W)

J=1

L
lH L(O()),(Zjl,zp(”)] .

Jj=k+2

(36)

Finally, by summing up the above equation for each
k=1,2,---,L—1, we find

L-1
lz kH 5y 3% (011, 5653)> TOO(”‘)]
k=1

dT _( ) L-1 .
=— %’4 +L [H LOO,(Z_/’—l.Zj)(u)‘| LOO,(ZL—I,E)(M)' (37)

J=1

For an infinite spin chain or closed spin chain, we get

dt(u
W _ 18 1wy, (38)
du
where 8 is the boost operator defined as
B=- Z kH(zk—l,ﬂ),(zkﬂ,M)- (39)
k

The conserved charges are defined as the coefficients of
the Taylor expansion of log#(u) at u =0,

logt(u) =i Quau",

n=0

(40)

then the first charge Q, is simply —ilog#(0) which is non-
local, since
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10) = 4LP2L—3,2L—1 PPz Pa (41)

is the shift operator acting on the whole spin chain. The
second charge Q, corresponds to the spin chain Hamilto-
nian:

(42)

= HABJM-
u=0

d
iQ, = T log#(u)
The rest of the higher charges can be derived by the boost
operator B from the relation (38) as:

1
Qn+] ZZ[B’QH]’ n=273"" (43)

thus the next charge Q; is found to be

205 = _’Z [H(zj—l,fj),(zj+1,ﬁ)’ H(2j+1,2j+2),(2j+3,2jﬁ)]
J
= _lz { [h7j,2j+l,2j+2’ h2j+l,2j+2,2j+3 +h2j+2,2j+3,2j+4]
J
+AG)}
(44)

where A(j) is a local operator with interaction range over
five sites:

(45)

A()) = [hzj—l,fj,zj+1» h2j+l,2j+2,2j+3} .

The form of the third charge Q3 shown above seemingly
violates the generalized Reshetikhin condition proposed
in [20] for integrable three-site model, in which A(j) is
conjectured to be a three-site operator. However, we
would like the emphasize that our fused model is essen-
tially a two-site model with auxiliary space and quantum
space isomorphic to the tensor product space 4®4, and
thus even in its factorized form (23), we need two differ-
ent reduced Lax operators Lz () and Lz 5(u), which
are not regular either,

Laayp(0) =P (-2 +Kz),  Luays0) = (=2 +K;5)Pz5. (46)

These major differences indicate the fused model invest-
igated in this work does not belong to the normal three-
site interacting model considered in [20], and thus does
not obey the conjecture.

As a final remark on the boost operator of ABJM spin
chain, let us consider the possibility of the existence of
boost operator in either of the two sub-chains, 7(u) or

7(u). Suppose the boost operator we are looking for is a
"matrix" type operator and is composed of the local in-
homogeneous density, then we can write it in a very gen-
eral form, for instance, the boost operator b for 7(«) can
be expressed as,

b= Zf(j)bj,j+l,---,j+1—ls 47)
J

where f(j) is a function of the site position representing
the inhomogeneity of the operator and b, ;... j,-; is the
local density with the interaction range over / sites start-
ing at j-th site. The boost operator b should satisfy the
condition:

dr(u)
dl,t - [b’T(u)] s

Yu e C. (48)

At special point u =0, since [r7'(0),#(0)] =0, the above
equation will reduce to

7710)b1(0) + T(0)b7~(0) = 2b. (49)

Note that 7(0) is no longer a shift operator but has the fol-
lowing form

7(0) = (-2+K;3)- - (—2 + KQL,LE) Por 30117+ P3sPis3,
(50)

then it follows that 7(0)b; .. j+i-17'(0) not only shifts
the sites that b; ;.. -1 acts, but also increases its inter-
action range. As a result, the interaction range of the loc-
al density on both sides of (49) cannot be equal. So we
conclude that there is no matrix type boost operator with
inhomogeneous local density for integrable spin chain
7(u) or T(u).

IV. OPEN SPIN CHAIN HAMILTONIAN FROM
FUSED MODEL

In this section, we turn to the study of open spin chain
Hamiltonian for fused model. First, let us review the con-
struction of the Hamiltonian for ordinary 2L-sites altern-
ating spin chain with open boundaries. We need the fol-
lowing two so-called double row transfer matrices:

() = TroKg () To()Ky )Ty (—u),

7y (u) = Trg Ky () To(u) Ky () T3 (—u), (51)

where the symbol "b" is used to distinguish them from
the closed spin chain transfer matrices defined in 4.
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K (u)(K; (w)) and Kj(u)(K; (u)) are reflection matrices ac-
counting for the left and right boundary local Hamiltoni-
an, respectively. The two right boundary reflection

matrices Kj(u) and K;(u) satisfy four reflection equa-
tions (REs) given below:

Rap(u = v)K;, ()R (u+v)K; (v) = Ky (VR (1 +V)K (U)Rp(u —v),
R (u—v)K; (W)Rza(u+v)K; (v) = K5 (V)Rap(u+v)K; ()R (u —v),
R (u—v)K; ()R, (u+v)K; (v) = K5 (VR 5(u+V)K, (0)Rp,(u—v),

Rap(u—v)K; (w)Rya(u+v)K; (v) = K (V)Rap(u+v)KZ )Ry —v),

while the other two left boundary reflection matrices
K (u) and K7 (u) satisfy similar dual reflection equations
and can be obtained from Kj(u) and I_(g (1) by some iso-
morphism transformations. Due to these reflection rela-
tions, the transfer matrices form the commutating class,

[7p(u), T,(V)] =0,
[7p(w),T5(V)] = 0,

(7 (), 7,(V)] = 0,

Yu,veC (53)

showing the integrability of the open spin chain model.
Then the boundary Hamiltonian from the original two
open spin chains is given as

d
H), = —log (7,(u)7,())

T (54)

u=0

Now we consider the open spin chain from fused model.
Since the quantum space and auxiliary space are both
4®4, we thus introduce two reflection matrices K5 (u)
and K ;(u) defined on tensor product space V,®V;, of

which K;(u) satisfy the reflection equation,

(52)

R(aa),(bé)(u - V)K;a(u)ﬂ(b/}),ma)(u + V)Kb_[,(\’)

7 ;,_;,(V)R(ua),(bz)(u + V)K;a(u)R(bB),(ad)(u -V), (55)
and K;(u) satisfy similar dual reflection equation. The
double row transfer matrix for our fused model is

15 (u) = Trop Ko (1) o (1) K (u) Ty (—u0), (56)

and the open spin chain Hamiltonian is then obtained as

- d
H], = — log [;,(I/t)

T 57

u=0

We can see that, unlike the closed spin chain case, the
fused Hamiltonian H, is different from the Hamiltonian
H, composed of two original spin chains, hence repres-
enting two different open spin chain models. Though in
very rare cases, with highly constrained reflection
matrices, the two open spin chain models could be equi-
valent. For instance, if we assume that Kj(u)=
KiwKZ(w) and K (u) = K;(w)K; (), then the transfer
matrix reduces to:

() = Trog Ko () Kg (i) To () To () Ky (W) K5 )T (=) Ty (—u)

= TrosKy () To(w)K; (u) [K§ ) T5) Ky ) T3 (—w)] Ty (—u).

Therefore, if we further impose the following condition

(K5 T3 Ky T3 (—u), Ty (—w)] =0, (59)
then we will have t,(u) = 7,(u)7,(u), which leads to the
same Hamiltonian.

We also note that, in order to deal with the open spin
chain model with degrees of freedom on the boundary,

(58)

[
the reflection K-matrices will also act on an additional in-
ternal space. By tracing over the auxiliary spaces V,®Vj,
the interactions between the boundary and bulk can be
achieved. Hence, in the most general settings, the reflec-
tion matrices should be treated as an operator-valued mat-
rix on auxiliary space.

Finally, let us discuss the concrete open spin chain
Hamiltonian derived from the fused model transfer mat-
rix (57). Since the whole calculation is straightforward
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but quite tedious, here we directly give the final results.
For an open spin chain of length 2L with internal degrees
of freedom acting on the boundaries, the complete
Hamiltonian H, consists of three parts: the left boundary
term H,, the bulk Hamiltonian H;, and the right bound-
ary term H,,

I:Isz[+Hin+Hr. (60)

The bulk part is just the ordinary closed spin chain
Hamiltonian

2L-4

Z (2P1,1+2 - IP)l,l-¢—ZIKl,I+l - KZ,I+1P1,I+2> .

=1

Hy, = (61)

The left boundary term can be further organized into
three parts:

H;=H;+Hp+Hp. (62)

Among them, H); is a pure left boundary term, which acts
trivially on the bulk Hilbert space, given as

4

1 _
- 5 [Tk (0) [ TrooKi(0) (—2+ Kop)] 5

dK ()

Hll = [Tro(’)Ka—()(O)} ! |:Tr0()

(63)

Hj, is in fact an bulk term acting on the leftmost two
sites,

1
H) =—§(—2+K12); (64)

Hj, representing the true bulk-boundary interaction, has
the following form:

Hpy =2 [TrogKp(0)] ™ [TronK5(0)Poi]
1 _
+3 [TrooKp(0)] ' (—2+Ky3)

X [TropK5(0) (=2 + Kog) Pgz (=2 + Kop) |

X(=2+K,3). (65)

The right boundary term can be divided into two parts,
H r= H nt Hr2v

(66)

where H,; can be seen as the remaining part of the bulk

Hamiltonian acting on the rightmost several sites, shown
below,

1 1
Pk 151 = 5 Ko 5t Prsar
2 2
1
+Pors00-1— EPZL—lZL— 1Ky 3513

1 1

- EKZL_:FL_QPZL—S,ZL—I 7 Koo

H, = PZL—Lﬂ -

(67)

H,, includes the interaction between the bulk and the
right boundary internal degrees of freedom. Since the ex-
pression of H,, is-quite lengthy, let us first define the fol-
lowing quantity,

A=(-2%K,,_,55) K, _,5:(0) (2+Ky_157) (68)

then H,, can be expressed in terms of following four
parts,

Hr2:A1+A2+A3 +A4, (69)

where

1
Ay =— ZA’I (—2+K,,_37) A,

Ay = (_2 + KZL—l,i) B [Kz_L—l,Z

of [z

u—O}

X (-2+Ky;_157) »

B 1
Az =A"" (PZL—SJL—I - EPZL—3,2L—1K2L_3’E

1 1
- EKzL—lmPZL—lqu + ﬂ%m,ﬁ) A,
Ay =A""Pymar - PRET=ETR SRl S SR 2T T)
1
+ZK2L—l,ﬂ) A.

(70)

As shown above, the boundary Hamiltonians have
very complicated forms, and by choosing different reflec-
tion K-matrices, we will have various boundary terms.
However, we can find some common structures by ana-
lyzing the indices of the components of the boundary
Hamiltonian. To be concrete, let us focus on the left
boundary, especially the nontrivial bulk-boundary inter-
action term Hj;, which acts on the boundary internal
space Vi, and two leftmost quantum spaces V; and V5,

H;; € End (Vi ®V,®V3). 71
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Note that the internal space Vi, needn'tto be iso-
morphic to V; or V; and thus can have different dimen-
sion. Now we look at the component of Hy: [HilZ} 7,
where {i, j} € Vin, {11, J1} € V1,{L5,J,} € V5. There are sever-
al terms in Hj;; and we will discuss them separately. First,

for notational convenience, let us write

B = [TrpsK5(0)] ' € End(Vsy),
M = TryyKZ5 (0)Po; € End(Vi, @ V),
S = TrsKi5(0) (=2 + Kop) Pgs (=2 + Kop) € End(Vi, ® V),

(72)
then the component of each term in Hj; reads:
B = Bt
(St = (BS)2 -6
(BES) = (BiS {7 ) -6,
(BSK)l7 = (Bisih) o7,
(BESK)f 7 = (BISEL) 607, (73)

where we have used the component forms of K:
K. = 67167 . For the other two left boundary terms, we
can easily find

HD!

i1 .2
(HIZ)I{jll L

= (Hp)! - 64,0
= (Hp)}'12 - 6] (74)

Thus we find, for each of the left boundary terms,
there exists a unique universal Kronecker delta factor, in-
dependent of the specific selection of the K-matrix. In
other words, given an open spin chain Hamiltonian, if the
components of the left boundary terms do not belong to
the boundary types shown above, then such an open spin
chain cannot be an integrable spin chain, at least not one
originated from our fused model.

For a concrete example, we may consider the open
spin chain Hamiltonian from flavored ABJM theory [13].
Due to the coupling between the bulk bi-fundamental
fields and the boundary fundamental flavors, the bulk
SU(4) R-symmetry will break into a remaining S U(2)
and a diagonal subgroup SU(2)p:

SUARr = SURRXSU2)p (75)

In this case, the boundary internal space Vi, is the two
dimensional fundamental representation space of S U(2)g,

ie. Vi,=2=2 i je{l,2}; while V| and Vs are the four-
dimensional representation spaces 2x2 and 2x2 of

SUR)rxSU(Q)p, respectively, whose component in-
dices can be formulated by a pair of SU(2) indices, i.e.
I=iA,J=jB,i,je{l1,2},A,Be{l1,2}, and thus the delta
function is simply given as: &) = ¢'6%. Then it is a simple
task to rewrite the boundary terms in (73) and (74) using
the composite S U(2)z xS U(2)p indices to replace S U(4)
indices, i.e. I — (iA). The Hamiltonian of flavored AB-
JM spin chain has the following three types of left bound-
ary terms [13, 22]:

peli . ohokore)ol,
type2 : 55 o660 oL, (76)
type3 55 oR o) 6.

We can easily observe that the type 2 and type 3
terms -have. the factors o7, =(52:(5}‘1 and 07 =007, re-
spectively, thus could be obtained from BM and BS
terms in (73). As for type 1 term, it mixes the indices of
all three spaces V;,®V;®V; and does not belong to any
type of boundary terms in (73) and (74). So we see that
the flavored ABJM spin chain cannot be generated from
our fused model. Besides, by the same argument, we find
the flavored ABJM spin chain cannot be obtained from
another integrable boundary model H, (54) either.

VI. CONCLUSION AND DISCUSSION

In this paper we constructed the fused model of AB-
JM alternating spin chain by gluing two adjacent
quantum spaces as well as two original auxiliary spaces.
For closed spin chain, we proved the integrability of the
fused model by constructing the R-matrix and showing
the Yang-Baxter relation holds. We obtained the boost
operator for the fused model based on the regularity con-
dition of the fused R-matrix. We also argued that the usu-
al matrix type boost operator with local densities cannot
exist in either of two original ABJM spin chains. For
open spin chain, we calculated the concrete Hamiltonian
for general fused K-matrices satisfying the reflection and
dual reflection equations. We then analyzed the bound-
ary terms of the Hamiltonian and found out some com-
mon structures of the component indices which are inde-
pendent of the concrete choices of K-matrices. By com-
paring the boundary terms, we claimed that the previ-
ously studied flavored ABJM spin chain Hamiltonian
cannot originate from the fused model or simply the com-
bination of two original sub-chains Hamiltonians, and
thus is expected to be non-integrable from the viewpoint
of algebraic Bethe ansatz method.

There are several interesting directions for future re-
search. Firstly, as we have mentioned in the main text, the
ABIM spin chain can be seen as a three-site interacting
model with homogeneous local Hamiltonian density
hjjs 2, in the sense that £, ., has the same expres-
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sion no matter the starting site j is odd or even. However,
to construct the transfer matrix of the fused model, we
have used two different Lax operators, Log,;— () on odd
quantum site and Lo,;(x) on even quantum site. This re-
markable difference makes us to search for a new con-
struction of ABJM spin chain using one single Lax oper-
ator, say L, .(u,&) with possibly additional inhomogen-
eity parameter ¢,

Secondly, we can continue to study the boost operat-
or in ABJM spin chain. Though we have excluded the ex-
istence of matrix-type boost operators in the original two
spin chains 7(x) and 7(u), there are still possibilities to
have other types of boost operators, such as differential
operator which occurs in one-dimensional Hubbard mod-
el [23], though the corresponding R-matrix is of non-dif-
ference form. As for the fused model, since we have es-
tablished the boost operator, the conserved charges can be
related by the recursive relation Q,,; ~ [B,Q,], and thus
each charge will have a definite parity under spatial re-
flection transformation. Then we can investigate the so-
called integrable initial state |¥) introduced in [24] for
ABJM fused spin chain, which is defined as a state anni-

hilated by all the conserved charges with odd parities, i.e.
Qon1|¥) =0. While for the original spin chain 7(u) or
7(u), due to the lack of boost operator, the integrable state
is defined in an alternative way as 7(u)|¥) = IIT(u)I1|¥),
where II is the reflection operator of the spin chain
[25—29], or through a more fundamental KT-relation
[30, 31].

Finally, we could also consider some general prob-
lems addressed in the past studies of integrable models
for our fused model. For instance, we can study the long
range deformation of the fused model, where the boost of
the conserved charge serves as an integrable deformation
operator. Another challenging problem is to find a sys-
tematic way to classify the integrable alternating spin
chain models, including the ABJM spin chain as a proto-

type.
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