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Abstract: The evolution of nuclear shape and rotational behavior along the yrast line in even-even 126~130Ba has
been systematically investigated using pairing self-consistent Woods-Saxon-Strutinsky calculation combined with
the total Routhian surface (TRS) method in the (85,7,84) deformation space. Empirical laws are applied to evaluate
nuclear ground-state properties, revealing a shape evolution from axially deformed to the non-axial vibrational con-
figuration in even-even '26-136Ba isotopes. Particularly, an extreme y-unstable shape is predicted in '3°Ba. The
shape transition of the ground state in these nuclei is confirmed by the TRS calculations. In addition, the evolution of
the nuclear shape in high spin states with varying rotational axes associated with rotation around the medium, long,
and short axes is illustrated by the TRS calculations. This variation is further characterized by the alignment of the
n(hyy /2)2 and v(hy; /2)2 configurations, highlighting a preference for non-collective oblate/triaxial shapes with
v > 0° and collective oblate/triaxial shapes with y < 0°, respectively:
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I. INTRODUCTION

Nuclear structure at high spin is typically described
by a semiclassical model of a rotating average field,
where an intrinsic shape rotates uniformly around a fixed
spatial axis, representing rotation as a specific collective
motion in finite many-body systems [1]. The physical
consequences of such motion are influenced by shape
asymmetry, characterized by the lowest order of quadru-
pole and triaxial deformations, which affect the time de-
pendence of the nuclear and Coulomb fields [2, 3]. Most
deformed nuclei exhibit axial symmetry in their ground
states, whether oblate or prolate, allowing collective rota-
tion only around the perpendicular axis. However, some
nuclei have been observed to have triaxial ground-state
deformations, as indicated by nuclear mass analyses [4].
In particular, nuclei in the A=~ 130 mass region are
known to exhibit axial asymmetry in their ground states
[5]. In this region, the proton Fermi surface lies in the
lower part of the Ay, orbitals, favoring a prolate shape,
while neutrons occupy medium- to high-Q orbitals in the
same shell, potentially driving the shape toward an ob-
late configuration [6]. The competition between these op-
posing tendencies can result in a shape resembling a tri-
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axial ellipsoid.

In a triaxially deformed potential, particles and holes
tend to align their angular momenta along the short and
long axes, respectively. According to the hydrodynamic-
al model of rotation [3], the moment of inertia along the
medium axis is the largest, favoring collective rotation
around this axis. Consequently, the total angular mo-
mentum vector has nonzero components along all three
principal axes [7]. For a triaxial nucleus, rotation can oc-
cur around any of the three principal axes. Principal axis
cranking calculations reveal that rotation can indeed take
place around any of these axes, corresponding to three
different minima in the total energy surface in the (8,,y)
plane [8]. However, the rotational axis of a triaxial nucle-
us typically coincides with the principal axis that has the
largest moment of inertia, leading to the lowest-energy
(yrast) states.

Along the yrast states, transitions can occur between
rotations characterized by varying relationships between
aligned angular momentum and rotational frequency.
Aligned quasiparticles influence the nuclear shape and
subsequent alignments. Even-even '6-13Ba belong to a
transitional region [9] where nuclear structure character-
istics have been extensively studied using various mod-
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els. The presence of two S-bands in this mass region is
commonly attributed to the shape-driving effects of
aligned hy,, neutrons and protons acting on relatively
soft nuclear cores [6]. Theoretical approaches, such as the
microscopic models [9], the Interacting Boson Model
(IBM) [10], and the General Collective Model (GCM)
[11], have also been extensively used to study the low-en-
ergy spectrum in this region. The cranking approxima-
tion for the covariant density function theory was used to
study the global dynamical correlation energies for the
nuclei from Z=8 to Z=108 [12—16]. Recently, the
cranking covariant density functional theory in a three-di-
mensional lattice space has been employed to investigate
the octuple magic nucleus '**Ba [17]. Despite some ex-
perimental data and theoretical models addressing this
phenomenon, a comprehensive and systematic study, es-
pecially regarding the stability and mechanisms of shape
evolution at high spins, is still lacking. Therefore, it is ne-
cessary to adopt appropriate nuclear models to study both
the ground state and high-spin shape evolution in Ba iso-
topes, to gain a deeper understanding of their structural
properties.

In our previous work, we have investigated the evolu-
tion of ground-state quadrupole and octupole stiffnesses
in even-even ''27159Ba using potential energy surface
(PES) calculations [18]. We noticed that/ ''3-2Ba has
more stable quadrupole deformations and we have repro-
duced their experimental properties using the TRS calcu-
lationins [19]. In addition, '26-!*Ba showed a dramatic
increase with respect to the non-axial y deformation in
[18]. Based on these findings, it is meaningful to contin-
ue studying the shape evolution in these isotopes, particu-
larly focusing on the stability of shape variations in high-
spin states.

In this work, the nuclear shape evolution and rotation-
al behavior along the yrast line in even-even '26-13Ba iso-
topes are investigated using TRS calculations in the
(B2,7,B84) deformation space. Our results reveal a trans-
ition from axially deformed shapes to non-axial configur-
ations, with extreme jp-unstable shapes predicted for
130Ba. The study also explores the evolution of the nucle-
ar shape in high-spin states, showing a preference for
non-collective oblate/triaxial shapes for y > 0° and col-
lective oblate/triaxial shapes for y < 0°.

II. THE THEORETICAL FRAMEWORK

The TRS calculation applied here is based on the pair-
ing deformation self-consistent cranked shell model
(CSM) [20—22]. This approach generally provides a reli-
able description of high-spin phenomena in rapidly rotat-
ing medium and heavy mass nuclei. The total Routhian,
referred to as “Routhian” rather than “energy” in the ro-
tating frame of reference, represents the sum of the en-
ergy of the ground state and the contribution from crank-

ing.

The energy of the ground state is composed of a mac-
roscopic component and a fluctuating microscopic com-
ponent. The macroscopic part is derived from the stand-
ard liquid-drop model (LDM) with parameters estab-
lished by Myers and Swiatecki [23]. The microscopic
correction, arising from the non-uniform distribution of
single-particle levels in the nucleus, mainly includes a
shell correction and a pairing correction, calculated using
the Strutinsky method [24] and the Lipkin-Nogami (LN)
method [25], respectively. The Strutinsky smoothing pro-
cedure employs a sixth-order Laguerre polynomial with a
smoothing range-of 1.20%iw,, where hw, = 41/A'? MeV.
The LN method is used to avoid the spurious pairing
phase transitions encountered in simpler Bardeen-
Cooper-Schrieffer (BCS) calculations. Both the shell and
pairing corrections are evaluated based on a set of single-
particle energy levels.

The single-particle energies required for the shell cor-
rection are obtained from the non-axially deformed
Woods-Saxon (WS) potential, using a parameter set com-
monly employed in cranking calculations [26]. During
the diagonalization of the WS Hamiltonian, oscillator
basis states with principal quantum numbers N < 12 for
protons and N <14 for neutrons have been used. The
nuclear shape is defined using the standard parametriza-
tion expanded in spherical harmonics [26]. The nuclear
surface radius, R(6,¢), extending from the origin to the
surface of the nucleus, is described by the expression
provided in [1].

S A
R(O.0)=RocB)[1+> > ay¥;,0.4)].

A=1 p=-1

(1

Ry represents the radius at spherical equilibrium with the
same volume R, = ryA'/> and the function ¢(B3) ensures the
conservation of the nuclear volume with a change in the
nuclear shape and 3 denotes the set of all the deforma-
tion parameters «,, are the shape parameters. In general,
a limiting value of 1 < A can be obtained by a crude es-
timate [27]. The nuclear surface is described, for our pur-
poses, by a second-order deformation [28].

In the present shape parametrization, we consider
quadrupole and hexadecapole degrees of freedom, includ-
ing nonaxial deformations, defined as A = (.21,
@40, U4z, ¥g:4). Assuming the existence of three sym-
metry planes—(x,y), (y,z) and (x,z)— the number of inde-
pendent coefficients a is reduced to five. These are ex-
pressed as

@ = a2, @4 = Ay-2, @44 = Ay—4, )

with ay, and a4y, which can be expressed in terms of the
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standard (B,,vy,4) parameters as

@y = P2COSY
1 .
@y = 01’2-2 = $ﬁz smy
Q40 = 6ﬁ4(5 cos’y+1) (3)
1
gy = Ay = T \/%ﬂ4 sin 2’)/

Qg4 = Q44 = I \/%34 Siﬂ27~

This leads to a three dimensional problem with the
usual (B,,7.84) degrees of freedom. The quadrupole de-
formation parameter B, represents the magnitude of the
deformation and the triaxiality parameter y describes the
deviation from axial symmetry.

Under the Lund convention [2], the Cartesian quadru-
pole coordinates were used to vary the quadrupole de-
formation in the calculations, including the y degrees of
freedom,

X =B, cos(y+30°%) Y =B, sin(y + 30°). 4)

The y parameter covers the range from —120° to 60°:
This range can generally be divided into ‘three sectors:
(-120° <y <=60°), (-60° <y <0°), and (0° <y <60°),
which represent the same triaxial shapes at the-ground
state but correspond to rotation about the long, medium,
and short axes, respectively, at nonzero cranking fre-
quency. The four limiting cases (y = —120°,-60°,0°, and
60°) correspond to the possible rotations of axially sym-
metric shapes: y =—-120° and 0° for prolate shapes, and
+60° for oblate shapes. These orientations describe dif-
ferent modes of rotation: y = —120° and 60° indicate non-
collective rotation around the symmetry axis, while
v =-60° and 0° correspond to collective rotation around
an axis perpendicular to the symmetry axis.

Cranking constrains the nuclear system to rotate
around a fixed axis (the x-axis) with a specified rotation-
al frequency. Pairing correlations depend on both the ro-
tational frequency and nuclear deformation. The result-
ing cranked-Lipkin-Nogami equation takes the form of
the well-known Hartree-Fock-Bogolyubov-like (HFB)
equation [22]. For a given rotational frequency and de-
formation point on the lattice, pairing correlations are
treated self-consistently by solving this equation within a
sufficiently large space of Woods-Saxon single-particle
states.

The symmetries of the rotating potential can be used
to simplify the cranking equations. In the reflection-sym-
metric case, both the signature quantum number 7 and the
intrinsic parity 7 remain good quantum numbers. The
solution characterized by (x,r) provides the energy eigen-
value, from which the energy relative to the non-rotating

state can be directly obtained. After calculating the
Routhians at fixed rotational frequencies, the values are
interpolated using a cubic spline function between lattice
points. The equilibrium deformation is then determined
by minimizing the total Routhian surface (TRS).

III. RESULTS AND DISCUSSIONS

In nuclear structure research, phenomenological or
empirical laws are often used as order parameters to re-
veal the shape phase evolution in nuclei [29]. Several
such quantities and their evolution with neutron number
are illustrated in Fig. 1. The energy of the first E(2}) state
serves as an indicator of quadrupole deformation 3, in
terms of the general empirical relation 64%/2J = E(2}) ~
1225/A7383 MeV [30, 31]. As shown in Fig. 1 (a), the en-
ergy of the 2} state increases as the neutron number ap-
proaches the N = 82 closed shell, which indicates the de-
creasing of nuclear quadrupole deformation 8, with neut-
ron far from the close shell number. In addition to the
E(27) states, the B(E2) transitions from the first 2* to the
ground state 0" are a powerful tool for studying the nuc-
lear deformations following the approximation:
B(E2:2%) — 0%) « 85 [3]. As illustrated in Graph 28 of
Ref. [32], the behavior of B(E2:2") is inversely related
to that of E(2}), as shown in Fig. 1. As the number ap-
proaches shell closure, the B(E2 : 2*) transitions decrease,
indicating a reduction of the prolate deformation.

Deviation of the nuclear shape from axial symmetry
can significantly influence the second-lowest 27 state,
commonly associated with the quasi-y bandhead in even-
even nuclei. As shown in Fig. 1 (b), the systematic vari-
ation of the relative position of this 23 state with respect
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Fig. 1. (color online) (a) Energies of the first excited 2}, 47,
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to the ground-state band can be clearly observed.

Empirically, the ratio E/E22]), where
E, = E(23)— E(4}), plays the role of a global indicator of
structural evolution associated with axial asymmetry [33].
In the extreme y-unstable limit [34], the 25 and 4} states
are completely degenerate, resulting in E/E(2}) =0, as
observed in '*°Ba nuclei [5]. Conversely, for a rigid tri-
axial rotor with 25° <y <30° [35], the 27} state lies below
the 47 state, reaching a minimum value of
E /E(2}) = —0.67 at the extreme triaxiality of y = 30°.

Nuclei with negative E;/E(2]) values between these
two limits, 0 and —0.67, are typically characterized by y-
soft potential with shallow minimum around y = 30°. In
contrast, the positive value of E;/E(2]) observed in
126-128B4 suggests an axially symmetric shape, as their
ground states are prolate and the 23 state lies at a relat-
ively high excitation energy compared to the 27 and 47
states.

As shown in Fig. 1 (b), ¥2!13413Ba exhibit negative
values of approximately —0.20, —0.38, and —0.38, re-
spectively, all higher than the rigid triaxial rotor limit of
—0.67. The smallest ratio, around —0.38 in '**!36Ba, re-
mains  slightly above the empirical value' of
E /E(2}) ~ —0.5, which characterizes critical-point nuclei
with maximal y softness between prolate and oblate
shapes.

Nuclei in transitional regions often exhibit complex
level structures and soft, non-rigid shapes. Direct meas-
urement of certain quantities, such as the triaxial paramet-
er y, remains challenging. However, the energy ratio
Ryjp = Esr [Ey; serves as a reliable indicator of nuclear
shape deformation and can be used to-assess the validity
of the axial symmetry assumption. Deformations, includ-
ing axially deformed, y-unstable shapes, and spherical
shapes, are all descriptions derived from collective mod-
els and serve to characterize different nuclear configura-
tions.

For example, the energy ratio Ry, is approximately
3.3 for a well-deformed axially symmetric rotor, 2.5 for a
y-unstable shape, and 2.0 for a spherical vibrator. These
values correspond to the dynamical symmetry limit of
SU(3), O(6), and U(5), respectively, in the IBM. More
precisely, these symmetries represent different limiting
cases: SU(3) for the axially deformed (axially symmetric)
rotor, O(6) for the y-unstable shape, and U(5) for the
spherical vibrator. For the E(5) symmetry, which de-
scribes a critical point symmetry between the spherical
vibrator and y-unstable shape, the ratio is Ry, = 2.2. For
the X(5) symmetry, which is a critical point symmetry
between the spherical vibrator and axially deformed
states, it is approximately Ry, ~ 2.9 [42, 43]. It was poin-
ted out that the level energy ratios R;, are related to Ry,
[44]. Furthermore, a linear relation between R, and R4,
was established in [45] with

II-2) I(J-4
R1/2=R4/2T)— (4 )-

)

This relationship can be derived from the Mallmann
plot [44], where R;, is plotted against Ry,,. The linear re-
lationship arises from the proportionality between certain
quantities represented by the similar triangles in the plot.
This relation is universal, applying to a range of nuclear
shapes, including rotational, y-unstable, and vibrational
shapes, as well as the E(5) and X(5) symmetries.

As illustrated for even-even '26-1%Ba in Fig. 2 (a), the
linear relation between the energy ratio Re and Ry is
presented for the five typical shapes or symmetry limits,
in comparing both the theoretical and experimental val-
ues. The theoretical ratio is given by Rg; =3Rs»—3 as
described in Eq. (5), while the experimental ratio is
defined as Rs/» = Es+ /E»-. As shown in Fig. 2 (a), the ra-
tio of even-even '26-132Ba follow a trajectory from vibra-
tional “towards an axially deformed shape, passing
through an intermediate structure resembling y-unstable
shape, as noted in Ref. [46]. The calculated R4/, value of
these nuclei generally agrees well with the corresponding
experimental results, particularly for !*°Ba, which is a
typical example of the O(6) symmetry in the IBM, indic-
ating the extreme y-unstable limit, as shown in Fig. 1 (a).

From the analytical perspective, the experimental en-
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Fig. 2.  (color online) (a) A linear plot of the energy ratio

Rejp versus Ry for the typical five symmetries (empty
circles), together with the calculated (solid circles) and experi-
mental values (solid triangles) for comparison. (b) Similar en-
ergy ratio to (a) but for Re/s versus Rs/,. “Theor.” represents
theoretical values obtained using the empirical formula in Eq.
(5), while the experimental data (“Expt.”) are taken from
126Ba [36], 128Ba [37], 1*°Ba [38], !3?Ba [39], !**Ba [40] and
136Ba [41].



Exploring Shape (phase) Evolution in even-even '*"'3Ba

Chin. Phys. C 49, (2025)

ergy ratio R/, for '**Ba is 3.66, closely matching the the-
oretical E(5) symmetry value of 3.95 with a deviation of
approximately 7%. However, a more significant discrep-
ancy between theoretical and experimental energy ratio
exists for 1**Ba. Notably, Cizewski et al. pointed out [47]
that the energy ratio Re4 versus Ry, provides a more uni-
versally applicable description across nearly all collect-
ive nuclei (see Fig. 2 (b)). The ratio R/, is less sensitive
to variations in the moment of inertia, making it a more
robust and less model-dependent parameter than R,
particularly in transitional regions.

In Reference [47], the onset of quadrupole collective
motion is defined at Ry, =2.0, which corresponds to
Re¢js =1.5 in the collective model. Their plot of Rg
versus Ry, divides the parameter space into four regions:
single-particle, collective, and two forbidden regions.
Nuclei with Ry, <2.0 and R4 < 1.5 are characterized by
single-particle excitations, while those with Ry, > 2.0 and
Ress > 1.5 correspond to collective excitations. The two
forbidden regions, where R4, >2.0 but Re4 < 1.5, and
R4 <2.0 but Rgy > 1.5, indicate conditions where the
yrast structure does not align with either single-particle or
collective excitation patterns.

As shown in Fig. 2 (b), the energy ratio R, is plot-
ted against Ry, similar to Fig. 2 (a), with the calculated
energy ratio given by Rgs =3-3/Rs andthe experi-
mental energy ratio by Re = Es/Es;-. For even-even
126-136B4, except for ¥Ba (N = 80), the experimental en-
ergy ratio of R4 fall within the region where Ry, > 2 and
Rg;s > 1.5, which is the characteristic of collective excita-
tions. As noted by Cizewski et al. in [47], several N = 80
nuclei, such as '*°Ba, exhibit energy ratio that fall into the
forbidden region. The Ry, value of these nuclei shown in
Fig. 2 (b) is all greater than 2.0, suggesting a collective,
possibly non-axial structure, while the Rq;4 value point to
a non-collective structure, typically associated with
single-particle excitations. Since the yrast energy ratios
are influenced by the coexistence of collective and non-
collective excitations, a spherical vibrator mode may
provide a more suitable description for these nuclei. This
is particularly relevant for nuclei near closed shells,
where low-energy excitations are primarily governed by
the motion of a few valence nucleons within spherical
shell model orbitals. In contrast, as one moves away from
shell closure, quadrupole collective excitations—ranging
from vibrations near shell closure to rotations in mid-
shell—become dominant. For isotopes '3*-!*Ba near the
N = 82 shell, their relatively spherical shape suggests that
their excitations can be understood as a coupling between
single-particle states and collective vibrational motion.

It is shown in Figs. 1-2 that, as the neutron number
increases from N =70 to N = 80, the collective character-
istic linked to quadrupole deformation gradually dimin-
ish. Specifically, it is shown that '*°Ba lies at the y-un-
stable point, while **Ba exhibits a non-collective struc-

ture. Since nuclear rotational properties are shaped by the
deformation and configuration of the ground state, it is
intriguing to explore the shapes that emerge from soft, y-
unstable, and non-collective configurations.

The above conclusions are based on phenomenologic-
al and empirical laws that describe nuclear deformation
and low-energy states. To gain deeper insight into the mi-
croscopic mechanisms underlying these phenomena, we
employ the TRS approach. This method allows us to not
only compare TRS results with previous experimental
data based on collective models and the IBM but also to
uncover the microscopic. origins of these experimental
observations. By-comparing the TRS calculations with
experimental findings, we can validate and refine predic-
tions from collective models and the IBM, ultimately ad-
vancing a-more comprehensive understanding of nuclear
structure. In the next section, we present result of the
TRS calculations and its integration with experimental
data and other theoretical frameworks, providing a more
precise perspective on nuclear deformation and structural
characteristics.

Within the framework of TRS calculations, the equi-
librium deformation denoted by the black dot can be ex-
tracted from the potential energy surface. As illustrated in
the example of *Ba presented in Fig. 3, the equilibrium
deformation at the ground state is around B, =0.184,
v=-10.5° B4 =-0.006. The non-zero y deformation in-
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Fig. 3. (color online) Example of the potential energy sur-
face projected on the Cartesian quadrupole coordinates for
130Ba. The equilibrium deformation denoted by the black point
is obtained by minimizing the TRS. Quadrupole deformation
B» can be read from the circles and the typical y deformations
representing the prolate shape (y =0° and y = -120°), triaxial
shape (y = +30°), and oblate shape (y = +60°) are marked.



Jie Yang, Xin Guan, Rong-Xin Nie et al.

Chin. Phys. C 49, (2025)

dicates the flexibility of the shape in '*°Ba, which agrees
with the empirical prediction of the y-unstable shown in
Fig. 1. Since this nucleus is soft, the deformations and
shapes may change easily. As known that the depend-
ence of the deformations can be studied by the single-
particle level diagram qualitatively. In Fig. 4, we present
the Single-particle energy levels as functions of quadru-
pole deformation 8, and non-axil deformation 7.

Notably, in Fig. 4 (a), there are some differences
compared to the standard modified harmonic oscillator
Nilsson diagram (see Ref. [48]), which can be attributed
to the virtual crossings being preserved and the consider-
able y deformation. The proton Fermi surface of Z =56
lies in the lower part of the hy,,, orbitals, favoring an
elongate shape. In contrast, neutrons N =74 gap appears
at y ~ £15° which indicates the y-soft deformation and it
agrees with the empirical result of y-unstale of '*Ba as
shown in Fig. 1 and Fig. 2. Additionally, occupying me-
dium- to high-Q orbitals of the A, subshell, which can
lead to significant y deformation or oblate deformation at
v =+60°. It exhibits a strong dependence on y deforma-
tion compared to the lower-Q orbitals. This behavior
aligns with the well-established deformation-driving
properties of spin-aligned unique parity orbitals [6, 49].
When the Fermi surface is near the bottom of the shell,
prolate shapes or shapes with positive y values are ener-
getically favored. As the Fermi surface moves upward
through the shell, collective triaxial deformation be-
comes prominent, and ultimately, near the top of the
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Fig. 4.  (color online) (a) Single-particle levels calculated
with a Woods-Saxon potential for 13°Ba as a function of g, of
proton (upper) and neutron (lower) at y=-10.5° and
Ba=-0.006. The solid and dashed lines denoted the positive
and negative parity levels and marked with the asymptotic la-
bels [Nn,A]Q. (b) Similar to (a), the single-particle levels as a
function of y of proton (upper) and neutron (lower) for ground
state 8, = 0.184 and B4 = —0.006.

30 60

0.1

shell, an oblate shape is preferred.

In rapidly rotating nuclei, the Coriolis and centrifugal
interactions can become sufficiently strong to alter nucle-
onic motion and disrupt superfluid (pairing) correlations
and nuclear shape (mean-field).

Figure 5 illustrates the evolution of the axial 3, de-
formation, non-axial y deformation and hexadecapole g,
deformation for even-even '?6-36Ba isotopes. The well
deformed prolate shapes with (8, ~0.25,y = 0.0,
Bi~-0011) and . (B, ~0.22,y ~0.0,8; ~ —0.006) are
presented in '?%12Ba, whcih corresponds to the results in
[36, 37]. The significant triaxial deformations shown in
Figure 5 (middle) are predicted for the ground states of
130-134Ba isotopes-[38—41, 50, 51]. The ground state de-
formations (8,,y,B4) at hw =0 reveal systematic trends
with increasing neutron number, consistent with experi-
mental data-shown in Fig. 1, and reflect the interplay

Fig. S.

(color online) Calculated deformation parameters 3,
(top), y (middle) and B4 (bottom) of yrast states for even-even
126-136B, isotopes as a function of the rotational frequency 7iw.
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between shell effects and deformation-driving interac-
tions. The transitions in shape from prolate to y-soft and
then to spherical in isotopes '26-!1**Ba are consistent with
the microscopic analysis performed using self-consistent
relativistic mean-field theory combined with BCS calcu-
lations, as reported in Ref. [52]. Unstable y deformations
observed in isotopes '¥?Ba and '**Ba have been recog-
nized as potential candidates for E(5) behavior according
to the self-consistent Hartree-Fock-Bogoliubov approx-
imation [53] and the '3*Ba has been studied as the prom-
ising candidate Ref. [52], as well as by the self-consist-
ent Relativistic Hartree Bogoliubov formalism in Ref.
[54].

Recently, the impact of hexadecapole deformation has
garnered attention in nuclear studies due to its associ-
ation with enhanced electric hexadecapole transitions and
the low-energy k™ =4* band cf. Ref. [55]. As illustrated
in Fig. 5, the transition of hexadecapole B, deformations
from negative to positive values corresponds to a change
in shape from more prolate to more oblate, which agrees
with the calculations presented in Refs. [49, 56].

The results shown in Fig. 4 and Fig. 5 demonstrate
the feasibility and effectiveness of the TRS approach in
describing the shape evolution of atomic nuclei. The con-
sistency between the TRS calculations and empirical ob-
servations in Fig. 1 and Fig. 2 confirms that the model
can reliably capture both axial and triaxial deformation
features across the Ba isotopic chain. The evolution of
single-particle energy levels emphasizes the essential role
of proton and neutron Fermi configurations in determin-
ing the preference for prolate, triaxial, or oblate shapes.
The calculated deformation parameters (8,,y, B4) reveal
systematic trends with increasing neutron number, con-
sistent with experimental data, and reflect the interplay
between shell effects and deformation-driving forces.
Therefore, the TRS approach not only proves effective in
describing nuclear shape evolution but also provides a
possible microscopic foundation under this model for the
phenomena observed through phenomenological and em-
pirical laws in Fig. 1 and Fig. 2.

The equilibrium deformation is determined by minim-
izing the total Routhian surface at each rotational fre-
quency, as illustrated in Fig. 3. With changes in the rota-
tion frequency, the locations of the equilibrium deforma-
tions displayed on the potential energy surfaces in Fig. 3
may also shift. In Fig. 6, we present a schematic illustra-
tion of the positions of the energy minima on the poten-
tial energy surface (PES) in the TRS for even-even
126-136Ba isotopes, with rotational frequency increasing
from 0.0 to 0.80 MeV. The circles in the figure represent
the positions of the energy minima corresponding to dif-
ferent values of rotational frequency. Each red circle in
Fig. 6 represents an energy minimum, corresponding to
the black dot in Fig. 3, indicating the equilibrium deform-
ation at different rotational frequencies.

0.3 T T T T T T
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0.0
-0.1
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T 1305,
-0.3 + + + + + +
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Q02
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=0
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rotation
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-0.1

long-axis
rotation

S x>
0.2 ~60° ~60°

[ 132, [ 1345, 1368,
-0.3 : : ; ' : :
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X=p,cos(y+30°)
Fig. 6. (color online) Schematical illustration of the posi-

tions of the energy minima in the TRS for even-even '20-130Ba
isotopes, the gradually increasing circles represent the rota-
tional frequency 7w increased from 0.00 to 0.80 MeV, the y
range can be divided into three sectors (-120°, —60°), (-60°,
0°), and (0°, 60°), which respectively represent rotation about
the long, medium, and short axes, respectively.

As the rotational frequency increases, the positions of
these minima shift, indicating the evolution of the nucle-
ar shape and deformation. To visually capture this evolu-
tion, we created the schematic diagram in Fig. 6, where
the varying sizes of the circles represent the changes in
the minima locations as frequency increases. In the case
of even-even '2-13Ba isotopes, the rotational axis
evolves from intermediate-axis rotation (—60° <y < 0°) to
short-axis rotation (0° < y < 60°) with increasing rotation-
al frequency. For the even-even 32713Ba isotopes, the
transition starts with intermediate-axis rotation and
moves towards long-axis rotation (—120° <y < —60°), ul-
timately shifting towards short-axis rotation as the fre-
quency increases.

To explore the evolution of nuclear shape and the cor-
responding rotational axes, we present the calculated col-
lective angular momenta for the even-even 2-136Ba nuc-
lei in Fig. 7, including both proton and neutron compon-
ents. As discussed previously, the even-even 126-13Ba
nuclei exhibit a rotational axis transition from an interme-
diate-axis, through a long-axis, to a short-axis rotation
with increasing rotational frequency.

The first substantial increase in total aligned angular
momentum can be attributed to the neutron contribution.
The rotational alignment of a pair of A4;;,, neutrons at
hw ~ 0.3 MeV is evident due to the significant gain of ap-
proximately 107%. A second increase in rotational align-
ment appears to occur at a higher frequency, around
hw ~ 0.5 MeV, where proton alignment becomes more fa-
vorable. This leads to distinct differences in the shape and
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Fig. 7. (color online) Calculated aligned angular
mentum (black symbols) against rotational frequency sw for
even-even !26-136Ba isotopes, together with the proton (blue
symbols) and neutron (red symbols) components. The squares,
circles and triangles represent prolate(Pro.), oblate/triaxial
(Obl./Tri.) (y <0°) and oblate/triaxial (y > 0°) (the solid sym-
bols denote non-collective mode), respectively.

mo-

rotational axis driving tendencies between protons and
neutrons. The proton and neutron 4,,,, configurations fa-
vor shapes with y > 0° (non-collective oblate/traxial) and
v <0° (collective oblate/triaxial), respectively [36—39,
50, 57].

Therefore, the alignments are seen to depend sensit-
ively on the nuclear shape and rotational axis. The signi-
ficant nuclear shape change associated with the align-
ment of the (vhy;;;)* configuration may explain why the
10" bandhead of this two-quasineutron configuration is
found to be isomeric, with measured mean lifetimes of
7=12.5+0.3 ns in ¥?Ba [50] and 91 +2 ns in '3°Ba [41].

High-j nucleons occupying orbitals close to the Fermi
surface are strongly influenced by the Coriolis interac-
tion, which tends to align single-particle angular mo-
menta along the rotation axis [58]. The '**Ba nucleus lies
near the neutron shell closure (N = 82) and in the proton
mid-shell between the Z =150 and 64 shell closures. In
this region, an interplay between quadrupole collectivity
and single-particle degrees of freedom can exist even in
relatively low-lying states [57]. The v(/;,,2)> configura-
tion is expected to be dominant in the '**!*Ba isotopes
[57, 59], where the first neutron alignment drives the nuc-
lear shape from triaxial/oblate towards non-collective
prolate (y =-120°) or non-collecitve oblate (y = +60°).
This evolution corresponds to the non-collective config-
uration predicted by the empirical laws shown in Fig. 2,
while the TRS calculations provide a clear representation
of the collective and non-collection shape characterized
by different y values, see Fig. 6.

The quasiparticle driving interaction competes with
the core's restoring interaction, which favors y=0 at
hw=0. As w increases, progressively negative y values
become energetically preferred due to the irrotational
flow behavior of collective rotation [60].

The shape-driving interactions (proportional to the
slope in Fig. 8), are exerted by the quasiparticles, particu-
larly the two-quasiproton and two-quasineutron configur-
ations in the h,,, orbital. As shown in Fig. 8, the (v/1;;,2)*
quasineutron configuration influences the evolution of the
shape more strongly than the (rh,,,,)* quasiproton config-
uration near the first rotational alignment frequency, as
depicted in Fig.~8(a). Consequently, y values tend to
cluster around y ~ —40°, where oblate and triaxial shapes
with negative y dominate, as shown in Fig. 7.

At higher rotational frequencies, the behavior changes
somewhat. The (rh;,,,)* configuration exerts a strong
driving interaction towards positive y values near the
second. alignment frequency. Adding the (rh;,,)* pair
may ultimately shift the nucleus towards a positive y ob-
late/triaxial shape. This behavior is influenced by the
Fermi surface configuration and the rotational alignment
of nucleon pairs, which is crucial in dictating the trans-
ition from collective to non-collective excitations as ob-
served in these isotopes. The shift from prolate/triaxial to
non-collective triaxial/oblate shape is thus a direct con-
sequence of the interaction between the rotational motion
and the underlying orbital structure.

Following the second rotational alignment, the col-
lective band structure is lost, and the irregular yrast se-
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Fig. 8.  (color online) (a) Calculated (r/11/2)*> and (vhj1,2)?

quasiparticles Routhians as functions of triaxial deformation y
for 130Ba at a given frequency (close to the first rotational
alignment frequency) 7w =0.250, B, =0.184 and B4 =-0.006.
(b)Similar to (a), but for a given frequency (close to the
second rotational alignment frequency) #hw=0.425 at the
B2 =0.176 and B4 = -0.006. The full line stands for the positive
signature states and the dashed for the negative signature part-
ner band.
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quence of an oblate nucleus emerges, with single-particle
angular momentum aligned along the short axis.

IV. CONCLUSION

In summary, phenomenological and empirical laws
were applied to indicate shape (phase) evolution in even-
even 26-136Ba, such as Es/E(2}), which serves as a glob-
al indicator of structural evolution involving axial asym-
metry and the shape (phase) evolution from an axially
symmetric shape to a y-soft shape. The y-unstable shape
emerging in "*’Ba is verified by the TRS calculations in
terms of the Woods-Saxon single-particle energy levels
as a function of B, and y. It reveals that the medium- to
high-Q orbitals of a high-j shell are significantly affected
by y deformation. Moreover, the analysis of energy ratios
(R4 versus Ry)p) reveals the presence of both collective
and non-collective excitations in *Ba (N = 80), suggest-
ing that a spherical vibrator description may be more ap-
propriate, which influences the non-collective configura-
tions in high spin states as demonstrated by the TRS cal-
culations. These TRS calculations not only reproduce the

observed trends but also offer a possible microscopic
foundation for the phenomenological and empirical laws,
elucidating how specific configurations of single-particle
orbitals and nucleon alignments drive the shape evolu-
tion and phase transitions in 2*-13°Ba.

Additionally, the TRS calculations for even-even
126-136B4 illustrate the shape variations linked to the trans-
ition in rotational axes, progressing from intermediate-ax-
is rotation to long-axis rotation, and finally to short-axis
rotation as the frequency increases. These shape vari-
ations are driven by the rotational alignment of specific
nucleon pairs at two critical frequencies. Near the first
critical frequency (hw ~ 0.3 MeV), the alignment of the
hi1» neutron pair results in a significant negative y de-
formation. At the second critical frequency (fiw ~ 0.5
MeV), positive y deformation becomes more favorable
due to the rotational alignment of the %, proton pair.

These findings bridge the gap between empirical ob-
servations and microscopic nuclear structure, offering
deeper insights into the mechanisms driving nuclear de-
formation and phase transitions.
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