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Abstract: We analyzed two-loop planar contributions to a three-body form factor at next-to-leading power in the

high-energy limit, where the masses of the external particles are much smaller than their energies. Calculations were

performed by exploiting differential equations for the expansion coefficients, both to facilitate linear relations among

them and to derive their analytic expressions. The results are expressed in terms of generalized polylogarithms in-

volving a few simple symbol letters. Our method can readily be applied to calculations of non-planar contributions

as well. Our results provide crucial information for establishing sub-leading factorization theorems for massive scat-

tering amplitudes in the high-energy limit.
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I. INTRODUCTION

The Standard Model (SM) of particle physics con-
tains several massive particles at the electroweak scale,
including the Higgs boson, the top quark, and the elec-
troweak gauge bosons. An important goal in particle
physics is to study the properties of these particles at the
energy and luminosity frontiers with high precision and
to probe new physics beyond the SM. This requires
highly precise theoretical predictions for production pro-
cesses involving these massive particles. However, calcu-
lating scattering amplitudes with massive particles is gen-
erally much more difficult than calculating massless scat-
tering amplitudes. Owing to the high energies of the
Large Hadron Collider (LHC) and future colliders, the
particle masses are often small compared to other kin-
ematic invariants in the scattering processes. With such
scale hierarchies, perturbative scattering amplitudes and
cross-sections can develop large logarithms involving the
ratios between small masses and large kinematic invari-
ants in the high-energy limit.
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The standard approach to addressing scale hierarch-
ies is the method of factorization. Such factorization can
be organized into different orders using an expansion
parameter, A ~m?/E?, where m denotes the low scale of
the small masses and E denotes the high scale of other
kinematic invariants. The leading power (LP) corres-
ponds to order A°. The factorization formula at the LP is
well understood [1—10]. It has been shown [10] that a
massive scattering amplitude in the high-energy limit can
be factorized into a massless amplitude, a soft function,
and several collinear functions (one for each external
leg). Such a factorization formula can be used to predict
the structure of large logarithms of the form In(m/E) at
higher orders in perturbation theory and also allows for
the resummation of these logarithms at all orders.

Given the importance of the factorization approach, it
is essential to investigate the behavior of massive amp-
litudes at sub-leading powers in 4. On the one hand, this
allows us to understand the typical size of power correc-
tions and thus provides an uncertainty estimate for calcu-
lations based on the LP factorization formula. On the oth-
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er hand, once the factorization structure at sub-leading
powers is understood, we can extrapolate high-energy ap-
proximations to intermediate energy ranges and eventu-
ally combine them with low-energy approximations
based on threshold or soft factorization. This will lead to
an adequate description of scattering amplitudes across
the entire phase space.

In recent years, studies on small-mass factorization at
next-to-leading power (NLP) in / have emerged in the lit-
erature [11-28], either within the framework of soft-col-
linear effective theory (SCET) [29—35] or based on dia-
grammatic analysis. An analysis of sub-leading soft emis-
sions was presented in [12]. The construction of an easy-
to-use helicity operator basis was studied in [13—15]. An-
omalous dimensions of sub-leading power N-jet operat-
ors were calculated in [17, 19]. Based on power counting
and region analysis, an NLP factorization formula in the
small-mass limit was proposed for the Yukawa theory
[18] and quantum electrodynamics (QED) [22, 27]. An
important ingredient in the QED factorization formula,
namely, the NLP jet function, has recently been com-
puted [28]. However, a general proof of the NLP factoriz-
ation formula is still lacking.

An important validation of the factorization formula
is to compare its fixed-order expansion with a direct com-
putation of certain massive scattering amplitudes or form
factors in the small-mass limit. The 1 — 2 massive quark
form factor has been computed at two loops [36—38], and
three-loop calculations are in progress [7, 39—-49].
However, 1 — 2 kinematics does not capture all possible
structures at the two-loop order and beyond. In this study,
we analyzed a two-loop 1 — 3 massive form factor at
sub-leading powers. At two loops, non-trivial correla-
tions can occur among at most three external particles.
Therefore, the structure extracted from 1—3 form
factors is generic enough to be applied to other form
factors and scattering amplitudes. To this end, our ulti-
mate goal is to study the QQg form factor in quantum
chromodynamics (QCD), where Q represents a massive
quark and g denotes a gluon. Owing to the complexity of
this problem, we begin with a simpler one in QED, i.e.,
the e*e™y form factor.

Scattering amplitudes involving massive electrons in
QED are phenomenologically interesting on their own.
Various high-energy and high-luminosity e*e™ colliders
have been proposed [50—56] as part of future plans for
high-energy physics experiments. For these machines, it
is important to understand standard QED processes as
precisely as possible. These processes provide crucial in-
puts for calibrating the detectors and for better under-
standing beam parameters. The analyses presented in this
paper are therefore valuable for these applications.

The remainder of the paper is organized as follows. In

Section II, we introduce the notation and describe the
method to determine independent coefficients in the
small-mass expansion in Section III. In Section IV, we
demonstrate the solution of the differential equations sat-
isfied by the independent coefficients and discuss the fi-
nal results. Finally, we briefly summarize this study in
Section V and provide an outlook for future work.

II. CALCULATION SETUP
Let us consider the 1 — 3 QED process,

Y'(ps) = €' (p)+e (p2) +y(p3). (1
The independent kinematic variables are

si2=(p +P2)2, 523 = (p2 +P3)2,

si3=(pi+pa+ps). pi=py=m’, )
where m is the mass of the electron. For convenience, we
define the following dimensionless variables:

2
m S12 523

x= y=-, =22 (3)

) - ) .
—5123 $123 $123

The results for tree-level amplitude M and one-loop
amplitude M are well established [57, 58]. In this
study, we focused on the two-loop amplitude M®. We
generated the relevant two-loop diagrams and corres-
ponding amplitudes using QGRAF [59]. These diagrams
can be categorized into eight integral families: five planar
and three non-planar. We only considered the planar fam-
ilies in this study. The amplitudes containing Lorentz and
Dirac indices can be decomposed into an appropriate
basis with scalar coefficients (form factors). For simpli-
city, we demonstrated our method using the interference
term in the squared-amplitude 7@ = (MOIM®), where
the indices are summed over. We used FeynCalc [60—63]
and FORM [64, 65] to manipulate the expressions. The res-
ults are expressed in terms of two-loop scalar integrals.
These scalar integrals can be expressed as

[ 4% A 1
i) = €2 (—5103)" d/ 1 42 H — 4)
i=1

od . a,
in? in? 1 Di

where a = )", a; and an appropriate power of (—s;3) is in-
troduced to make the scalar integrals dimensionless. Each
set {D;} defines an integral family. There are five planar
families involved in this study. The corresponding {D;}
are expressed as
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{kf - mz,(kl —Pl)z, (k1 —p1 —P2)2 - mz,(kz —P1- P2)2 - m2, (ko= p1—p2 —P3)2 - m27k§ - mz, (ki — kz)za

(k= p1—p3)* (ko= 1)},

(5a)

{k% —mz,ki,(kl —k2)2 _mz,(kl _Pl)z,(kl — P —P2)2 _mz,(kl —P1— P2 —P3)2 —mz,(kz —1?1)2 —mz,(kz —Di —Pz)z,

(kx=p1=p2—p3)’},

(5b)

{kf —m?, k5, (ki — ka)* —=m®, (ky — p2)*, (ki — pa = p3)*, (ki = pr = pa = p3)* —m?, (ko — p2)* —m?, (ko — po — p3)* —m?,

(ky—p1—p2—p3)},

{k%—m2,k§,(k, —kz)z,(kl _pl)z,(kl — D1 —Pz)z—mz,(kl -p

(ky—p1—pa—p3)* —m’},

(5¢)

1= D2 —173)2 —mz,(kz —Pl)z,(kz —Di —172)2 _mz,

(5d)

(ki —=m*, kg —m?, (ki — ko), (ky — p1)*, (ki = pr = p2)> =m?, (ki = p1 = pa = p3)* —=m*, (ks — p1)*, (ko — p1 — o),

(ky—p1—pa—p3)* —m*}.

Note that an integral family may contain several topo-
logies; a topology is defined according to which D; ap-
pear in the denominator of Eq. (4) (i.e., a; > 0). The topo-
logies belonging to each of the five families are illus-
trated in Fig. A1 of Appendix A.

For each family, we used Kira [66, 67] to reduce the
scalar integrals to a set of MIs 7;(x,y,z) by solving integ-
ration-by-parts (IBP) relations. Thus, the contribution
from this family to the two-loop squared-amplitude can
be decomposed as

2 2e
FP 5 (“—) Zﬂi(e,x,y,z)f i(x,y,2), (6)

—8123

where u is the renormalization scale and coefficients A,
are the rational functions which can be easily expanded in
the limit of small values of x. The remaining task is to
compute the master integrals in the high-energy limit
x — 0, while keeping the exact dependence on the vari-
ables y and z. To illustrate our method, we focused on the
family (5¢). There are 123 MlIs in this family. In the high-
energy limit, these MIs admit the following asymptotic
expansion:

00 M3 max

Ti(x.2= 3 > Cinmm (72 €" ¥ log"(x).  (7)

ny=-2np=0 n3=0

The objective of this study was to calculate the coeffi-
cients as a function of y and z. Note that the two-loop in-
tegrals considered in this study have no soft-collinear
overlapped divergences, and the minimal power of € is
—2. The integrals also have no power-like singularities in

(5¢)

[
the limit m — 0; therefore, the minimal power of x is 0.
The maximal power of log(x), n3max, depends on the val-
ues of n; and n,. In practice, we truncated the series in €
and x for calculating the squared-amplitude ¥® up to x'
and €. This corresponds to the NLP in the high-energy
expansion. Nevertheless, our method can be used to com-
pute higher power terms as well.

III. DIFFERENTIAL EQUATIONS AND
INDEPENDENT COEFFICIENTS

To compute the coefficients, we adopted the method
of differential equations [68—70]. From the IBP reduc-
tion, we can construct the differential equations of the
Mls I; with respect to the variable ¢ € {x,y,z}:

I, P P I,

0
EP : = : - : : . (8)
I (1231 P(lt;3,123 Lo

where ‘Pft; are rational functions of e, x, y, and z. The dif-
ferential equations with respect to x lead to relations
among the coefficients. Therefore, we only need to com-
pute a set of independent coefficients, which is conceptu-
ally similar to the master integrals. After determining the
set of independent coefficients, we can employ their dif-

ferential equations with respect to y and z to obtain their
analytic expressions.

A. Determination of expansion orders

Let us apply the expansion given by Eq. (7) into the
differential equations in Eq. (8) for ¢ = x:
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0
6—){’2 log" (x) = x7! [nylog™ (x) + n3log™ ' (0)] . (9)
x

That is, taking derivative with respect to x always de-
creases the power of x, but may or may not decrease the
power of log(x). Meanwhile, the matrix elements 7)53)
may also contain poles at x = 0. Therefore, the differen-
tial equations with respect to x lead to linear relations
among the coefficients C;,, »,.;(y,2). From these linear re-
lations, we can determine a set of independent coeffi-
cients. We will refer to these independent coefficients as
"master coefficients" (MCs) and express the remaining
coefficients as linear combinations of the MCs.

Before solving the linear relations (there are an infin-
ite number of them), we need to constrain the highest val-
ues of the integers n; and n, for each i, i.e., the maximal
powers of € and x in the expansion of the master integral
I; (note that the maximal power of log(x) is naturally de-
termined given the values of n; and n,). The first con-
straint comes from the required orders in the expansion of
the squared-amplitude ¥®. As we have mentioned, we
truncated the expansion in x up to the NLP, i.e., order x'.
In addition, we truncated the expansion in € up to order
€°. These requirements impose constraints on n;, and n,
for each master integral 7;. However, we found that these
constraints are too tight for our purpose: the MCs determ-
ined from these constrained linear relations are not closed
under differentiation. The reason is that there are cancel-
lations among different topologies in a family when their
contributions are introduced in Eq. (6).

To obtain a closed system of differential equations,
we need to slightly loosen the constraints. For that pur-
pose, we expand the coefficients in the differential equa-
tions as well:

Pir=D Bl (10)

kil

The lowest values of & and / are crucial for the determina-
tion of the highest expansion orders. As an example, let
us consider the differential equations with respect to x.
The constraints from y and z can be similarly studied.
Plugging Egs. (7) and (10) into Eq. (8), we obtain

np Ci,nl.nz,n3 (y7 Z) + (1’13 + I)Ci,nl,n2,113+ 1 (_Yv Z)
= 8042 Clm k11 (32). (11)

Jik,l

This is the master equation for relations among ex-
pansion coefficients. For this system to be closed, it is ne-
cessary that all coefficients contributing to a given
(m1,ny,n3) are incorporated in the above equation.

Let us focus on the equation for i =11, which arises
from the differential equation of 7; with respect to x. In

this case, we have je{l1,8,11} on the right-hand side of
Eq. (11). Concerning the NLP accuracy of the squared
amplitude, we require both 7, and 7, to be expanded to
order x*, given that the minimal power of x in A; and
Ay is =2, which means that we need to consider the
equation for n, = 3. However, the minimal value of / for
i=11, j=1 is [I=-2. Therefore, the coefficient for
ny—1-1=4 will appear on the right-hand side of the
equation. For this reason, we need to expand 7, up to or-
der x*.

Considerations similar to those mentioned above were
also applied to the constrains on ny, i.e., the expansion or-
ders in €. We performed such analysis for each sector and
updated the constraints until all equations were closed. As
a final outcome of such analyses, we provide the number
of MCs for each integral family in Table 1.

Table 1. Number of MCs in each integral family.

Integral families F F F3 Fy Fs

Number of MCs 247 359 383 158 199

B. Solving the linear relations among coefficients

After obtaining a system of linear equations for the
coefficients, we can solve the equations to express all
coefficients in terms of the MCs. Before doing so, we
need to establish a set of rules for selecting the MCs. This
is similar to the criteria used for choosing Mls in Feyn-
man integral reduction. In practice, this requires determ-
ining which of two coefficients is preferred over the oth-
er.

The choice of MCs significantly affects the process of
solving their differential equations with respect to y and z.
Ideally, the MCs should have the simplest possible ana-
Iytic expressions. From experience, this corresponds to
selecting coefficients with smaller n;, smaller n,, and lar-
ger n;. Coefficients in lower sectors are also preferred
over those in higher sectors.

After deciding the preference, we solved the linear
system using the "user-defined system" functionality of
Kira. We then constructed the system of differential
equations of the MCs. For that, we had to re-express the
derivatives of the MCs in terms of the MCs again. This
step was accomplished using Kira as well. For example,
we can rewrite the differential equation of a MC with re-
spect to y as

0 :
@Ci,nl 2,13 (y7 Z) = Z ng),k,[(y’ Z) Cj,nl —k,np—1l,n3 ()’» Z) . (l 2)
Jikil

This equation was provided to Kira along with other lin-
ear relations. We obtained the left-hand side expressed in
terms of MCs. Finally, we obtained the following differ-
ential equations:
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0 :
7 C10n9) = > A .2Ci(02).
J

Lei00= Y #0000, (13)

J

where I =(i,n;,ny,n3) and J = (j,m;,my,m3) denote two
subscript sequences that label the MCs.

IV. SOLVING THE DIFFERENTIAL EQUATIONS

After constructing the differential equations, we can
find the analytic solutions for the MCs. Ideally, the solu-
tion procedure can be greatly simplified if connection
matrices A7)(.2) and A7)(.2) take a strictly triangular
form. In that case, the solutions can be easily expressed in
terms of iterated integrals. This is similar in spirit to the
concept of canonical differential equations [71].
However, the existing tools [72—76] for finding canonic-
al differential equations do not easily adapt to the current
case. Fortunately, the connection matrices are already in a
block-triangular form with at most 3 x3 blocks. They can
be iteratively converted to a strictly triangular form, as
will be demonstrated next.

A. Simple cases

Let us first consider the simple cases where the deriv-
atives of a MC only depend on themselves and the
already-solved MCs:

0
ch@’ Z) = ﬂv(Y7 Z) C()’, Z) + g,\'(y’ Z) >

0
cm(yvz) :ﬂz(y5Z)C(y’Z)+gz(y’Z)» (14)

where G, and G, come from the already-solved MCs. If
coefficients A, and A, are both zero, the above equa-
tions can be easily solved by direct integration. This cor-
responds to a strictly triangular system, as discussed earli-
er. Let us consider the case where A, and A, are
nonzero.

For convenience, we introduce the following func-
tions:

M;(y,z) =exp <— / A (r,2) dy) ,
M, (y,2) = exp (—/ﬂz(y,z) dz) ) (15)

Multiplying the MC by the two functions, the differential
equations in Eq. (14) are transformed into

0
=MG,,2), PR M.CH»,2) = M.G.(3,2).

(16)

0
5 (MVC(y, Z))

Note that only already-solved MCs appear on the right-
hand side of the above two equations. We would like to
find transformation function 7 (y,z) such that

0
7, (TCO:) =TG.0.9).
' (17)

83 (TCO.2) = T6,0),
y

This is an example of a strictly triangular system of dif-
ferential equations, where the derivatives of the trans-
formed MCs only depend on already-solved ones. Com-
paring Eq. (17) with Eq. (16), we conclude that

T (3.2) = My(3.2) f:2) = M.(v,2) /(). (18)

where the function f;(z) satisfies the differential equation

0 M .(3,2)

*hlf()— M(yz)

(19)

and a similar expression can be obtained for f,(y). The
fact that the right-hand side of the above equation is inde-
pendent of y follows from the compatibility condition of
Eq. (14):

80, M
dyoz M,

= 0. A, —0,A. =0, (20)
which further follows from the linear-independence of
C(y,z) with respect to G,, G. and their derivatives. From
the above analysis, we can write

0 In MZ(y’Z)) .

To.a=moder( ol n ) e

Building on this result, we obtain a general solution to
the differential equations in Eq. (17):

Cy.2) == /Tgydy+C(z) /TQ dz+C (y)}

(22)

where C,(y) is a function that only depends on y. This is
also the case for C,(z). These two functions are related by
the second equal sign in the above formula and are only
fixed once the arbitrary constant terms of the indefinite
integrals are chosen. Using the fact that C,(y) is inde-
pendent of z, we can derive the differential equation of
C.(z) with respect to z:

6.-2 / TG, dy. 23)

which allows us to determine the analytic expression of
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C. (as well as C,) up to a constant of integration. This
constant should be fixed by a boundary condition, as will
be discussed later.

The above procedure of transforming the differential
equations to a strictly triangular form can be naturally ex-
tended to 2x2 and 3 x3 blocks, as will be discussed in
the following subsections.

B. 2x2 blocks
For 2x2 blocks, the differential equations take the

form
(1)
ool e
2

where ¢ € {y,z}, 3{,(-;-) denotes rational functions of y and z,
and GV results from already-solved MCs. To solve the
equations, we would like to find a linear combination
C' =b,C, +b,C, with b; and b, being rational functions
of y and z, such that the derivatives of C’ only depend on
themselves. Taking the derivatives, we obtain

ﬂ([ ) ﬂ(’ )
ﬂ(’ ) ﬂ(t )

3,y + by A + b AY)

9,C' = 5 2p.C
1
, O+ by A + by A,
2 . 22 b Cr+ b G + 5GP . (25)

Therefore, we require

_ Oby + b\ AN + by A iy + by A + by A,
bl bZ '

’

(26)

Once we find a suitable pair of b, and b,, the differ-
ential equation of C’ becomes

0C =AC+G,, G=bG'+hG.  (27)
The above equation resembles the one studied in Section
IV.A. We can employ the method described there to re-
move term A,C’ and effectively transform the differen-
tial equation into a strictly triangular form. After obtain-
ing the solution of C’, we can use it to derive analytic ex-
pressions for C; and C,. Taking C; as an example, we
have

ANb
6tcl (f)cl +ﬂ(t)02+g(t) — < (l? _ 1172 1 C
2
ﬂ(t)
+ b—;zC' +G7. (28)

Given that C’ is known, this equation can again be solved

using the method presented in Section IV.A. The expres-
sion for C, can be obtained from those of C’ and C;.

From the above discussion, it is clear that the task re-
duces to finding a particular solution of b, and b, that
satisfies Eq. (26). Note that Eq. (26) is a differential equa-
tion for the ratio b, /b, that can be rewritten as

b b b
5, (b2> AY ( 2) +(AY- ﬂm) 2L AN =0, (29)
1 l

This is the so-called Riccati equation. There are two pro-
cedures to find a solution of this equation.

Method one: brute-force solution. For the cases we
addressed in this study, the Riccati equation can be
solved using Mathematica. As an example, we may need
to solve the system with

y+z—1 y—1
_y(y+2z—1) V:(y+2z-1)
yz+1)—(z—1* —y(3z+2)-3z+2
O-DO+2z-1) (-Dyly+2z-1)

AV = . (30)

For convenience, we set b; = 1, and the Riccati equation
with respect to y becomes

_ _ 2
8b_y(z+1) z-=1

a2

3+y?—47-2y(2+7)

dy ~ O-DO+2z-1) 7 (-yy+2z-1)
y—1 _
+y2(y+21—1)_ S

Using Mathematica, we obtained a general solution of
the above equation that involves arbitrary functions of z.
We require that the solution be rational and satisfy the
corresponding equation with respect to z. This give rises
to a particular solution:

2
- % (32)
yyz+y+z-1)
In practice, this method may be slow. If this is the case,
we may resort to the second method.

Method two: solution by ansatz. Given that the
equation only constrains b,/b;, we can assume that both
b, and b, are polynomials of y and z with integer coeffi-
cients. We can then apply the ansatz

n n—i n

=)D e b= ZZC(Z)y’z, (33)

i=0 j=0 =0 j=0

where the coefficients ngl.) and C,(,z-)
are to be determined.

We start with a small value of n and substitute the an-

as well as the degree n
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satz into Eq. (26). This then leads to a system of quadrat-
ic equations of the coefficients. If the system of equa-
tions only allows a trivial solution (i.e., all coefficients
are equal to zero), it means that the value of n is too
small. We then increase the value of » until finding a
non-trivial solution.

For the example considered above, we found that a
non-trivial solution can be obtained for n = 3:

by =-y(yz+y+z-1), by=-(-1)7, (34)

which is equivalent to the result obtained from the first
method.

C. 3x3 blocks

Similar to the 2x 2 case, the differential equations for
33 blocks have the form

C Al Ay AY
ol C |=| AL A A
Cs AL AL AL
Ci G’
x| ¢ |+ O] (35)
Cs %

The method for dealing with this system is analogous.
First, we need to construct a linear combination C’' = b,C,+
b,Cy+b3C3 whose corresponding differential equations
only involve themselves. This reduces to the following
equation:

_ Oy + b\ A + b A3 + by A

A 3
_ Ouba+ by AL + by A + b3 A
b,
_ Oyby + by A + by AY + by A
= b . (36)
This equation can be rewritten as
bz bz 2 b% b2
9 (7) _ g0 (7) ( O _ g0 _ (z);) o2
"\ p, A b, + | Ay - A - Ay b,/ b
b
+ﬂg’§b—? + AL =0,
bs 2% by bs
9 (7) _ g0 (7) ( O _ g0 _ (r)i) 03
‘\ b, Az b, + | Az - A - Ay b,/ b,
b,
+ ﬂ;f;b—l + AN =0. 37)

Note that the two unknowns b,/b, and bs;/b; are still
coupled by both equations. Thus, this system is challen-
ging to solve by brute force. Fortunately, the second
method introduced in the previous subsection still works,
offering an algorithmic procedure to address this type of
problems. We can apply polynomial ansatz for by, b,, and
b3, and solve for the coefficients from Eq. (36). Sub-
sequently, we can solve for C’ using the method de-
scribed in Sec. IV.A. As a result, we are left with a 2x2
system of C; and C, that can be solved following the
strategy described in Sec. IV.B.

Let us again demonstrate our approach using an ex-
ample:

L 3 y+2z—-1 z—1
1-y O-Dyy+z-1) O-Dyy+z-1)
qu - | e+ y(dyz+y+32-3z-1)+(1 -2z (z-D@y+z-1) _ (39)

-DO+2)

O-Dy(?+yQ2z—1)+(z-1)2)
b4 2(3y+2z-2)

OG-DO*+yQ2z—-1D+(z—1)2)
1-z

y+z

A particular solution can be found by using the ansatz for
n=2:

bi=yz, by=2z, b3;=y-—z. (39)

This gives rise to a decoupled differential equation:

ac’

By = y_—IC/ +y26V +2260 + (v -1 GY . (40)

vy +y2z—-1)+(z—1)2)

V+yQ2z—-1D+(z-1)z

[
We do not go into the details of the remaining steps in
this paper.

In this study, we did not encounter blocks greater than
3x3. As can be seen, the method introduced above can
be applied to more complex cases as well. The procedure
is iterative: one first solves for a linear combination
whose differential equation is decoupled, thereby redu-
cing the system to a simpler form.
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D. Boundary conditions and final results

To obtain the solution to the system of differential
equations, we still need to determine the boundary condi-
tions for each coefficient. For that, we used AMFlow [77]
to numerically compute the small-mass expansion of all
MIs at a specific kinematic point. During this process, all
variables (except m?> but including €), were set to exact
values (rational numbers). For each value of e, the output
has the following structure:

Jjmax

Zzwu(é) (mz)jwf(s) , (41)

i j=0

where «;(€) is a linear function of €, w;;(¢) depends on €
and the kinematic variables (which we have suppressed),
and . 18 specified according the required expansion or-
der (in m?) of the MIs. By varying e with fixed kinemat-
ic variables, we can reconstruct the coefficients in «;(e)
as well as the function w;;(€) as a power series in e:

Kmax

wi€)= > ayie. (42)

k=kmin

To determine the coefficients a;;, we need to sample at
least (kpax — kmin + 1) different values of €. Note that the
precision of the reconstructed «;; also depends on the
number of samples. Therefore, we need to choose an ap-
propriate number according to the required expansion or-
der (in €) of the MIs and the required precision for the
coefficients. In practice, this number is approximately 50.

With the reconstructed coefficients, we can re-ex-
pand Eq. (41) in € and obtain the small-mass expansion
of the MIs at the chosen kinematic point in the form

Ii(e,x)= Z fiynlxnzs"z €"x" IOgnB(x)' (43)

ny,nz,n3

The minimal powers of € and x and the maximal powers
of log(x) for a given pair (n;,n,) can be read off from the
above expansion. Note that fi, .., is coefficient
Cinmn(0,2) at a particular kinematic point, and the gen-
eral solution of C;,, ,,.,(y,2) has already been obtained
from the differential equations. Such a solution can be
written in terms of generalized polylogarithms (GPLs)
with the help of PolyLogTools [78]up to some un-
known constants. These constants can then be reconstruc-
ted as transcendental numbers by the PSLQ algorithm us-
ing high-precision numbers (about 100 decimal digits) of
fim mms - The transcendental basis was generated from the
elements {r,1n(2),%,,&, 4, Lig(1/2),45) up to weight 5. It is
worth mentioning that the DEs may demand higher order
coefficients in €, as discussed in Sec. III.A. This is the
reason why weight-5 functions and constants appear, des-

pite the fact that two-loop amplitudes up to order €® only
require weight-4 at most. Note that the form of the analyt-
ic expressions can differ in distinct kinematic regions.
Specifically, we worked in the Euclidean region where all
planar Mls have no imaginary part. The expressions in
other kinematic regions can be obtained via analytic con-
tinuation. Given that our results are expressed in terms of
GPLs, their analytic structure is well understood. The
branch cuts of GPLs are uniquely determined by their
symbols, and when one analytically continues across a
branch cut, an additional term proportional to =+ir is gen-
erated, where the sign of iz depends on the direction of
crossing the cut. See [79—81] for further details.

With the analytic expressions for the Mls, we can
combine them to obtain the planar contributions to the
squared-amplitude F® up to order x' and €°. It can be
written in terms of GPLs up to weight 4 using the follow-
ing symbol letters:

1-y,y,1-22,1-2y-2z,1-2,2-2z,1-y—-z,
L 1+z,y+z, 1+y+2z (44)

There are two additional letters {1 —y, 2—y—z} appearing
in the MIs. However, they cancel out in the final expres-
sion for the squared amplitude. Note that the original
massive amplitude involves elliptic integrals but the ex-
panded amplitude can be expressed using GPLs up to the
NLP. The result for the squared amplitude is compact,
with a size of approximately 400 KB. We attach the ex-
pression as an electronic file to this paper.

We performed several sanity checks on our calcula-
tions. We applied our method to the one-loop amplitude,
for which the complete result can be easily obtained.
Upon expansion in the high-energy limit, the complete
result agrees exactly with our calculations. We also nu-
merically computed the MIs at different kinematic points
other than the chosen boundary point. We found that the
results agree with the outcomes from our analytic expres-
sions. In particular, we verified kinematic points beyond
the Euclidean region and found that the imaginary parts
agree as well. These checks demonstrate the reliability of
our method.

V. SUMMARY AND OUTLOOK

In this study, we initiate an analysis of sub-leading
power contributions to multi-parton massive form factors
in the high-energy limit, where the parton masses are
much smaller than their energies. These form factors
provide crucial information for formulating and validat-
ing sub-leading power factorization theorems for generic
scattering amplitudes. Such factorization theorems are es-
sential for resumming mass logarithms beyond the lead-
ing power and for generating approximate results for
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scattering amplitudes at higher loops.

While two-loop massive quark form factors are avail-
able, the 1 — 2 kinematics is not generic enough to be ex-
tended to multi-parton scattering amplitudes. Therefore,
we focused on 1 — 3 form factors, for which two-loop
multi-parton correlations can be studied. To establish the
calculation procedures, we started with the two-loop
planar contributions to a QED form factor y* — e*e™y.
Although only two-particle correlations are present in this
case, it is sufficient to demonstrate that our method is
capable of obtaining analytic expressions for the relevant
loop integrals as a small-mass expansion.

Our calculations are based on the differential equa-
tions satisfied by the expansion coefficients of the master
integrals. These equations can be derived to arbitrary or-
der in the power expansion using the differential equa-
tions for the master integrals. The differential equations
with respect to the mass m are then used to derive linear
relations among the expansion coefficients. Similar to
IBP reduction, these linear relations can be solved to ex-
press all coefficients in terms of a finite set of master
coefficients. The differential equations of the master
coefficients with respect to momentum invariants are then
employed to obtain their analytic expressions. The solu-
tions are expressed in terms of GPLs, which are then
combined to yield a compact analytic result for the planar
contributions to the form factor.

Several clear follow-ups to this study are in sight. A

rigorous verification of factorization at NLP requires the
inclusion of non-planar contributions to the amplitudes.
Our method can readily be applied to the non-planar con-
tributions to this form factor. The main obstacle in such a
calculation lies in the IBP reduction. We have attempted
to use state-of-the-art reduction tools such as Kira,
NeatIBP [82, 83], and Blade [84], but we did not suc-
ceed within a reasonable amount of time. It is necessary
to develop more efficient reduction methods for such cut-
ting-edge calculations. Another evident generalization is
to consider the QQg form factor in QCD, for which genu-
ine three-parton correlations can occur. This involves
more integral families, but the method established in this
work can still be applied straightforwardly. Finally, the
differential equations for the master coefficients were
solved by brute force in this study. It would be interest-
ing to investigate whether these differential equations can
be cast into a canonical form that allows direct solution as
iterated integrals. We leave these investigations to future
work.

APPENDIX A: DETAILS OF THE INTEGRAL
FAMILIES

As mentioned in the main text, we have five integral
families that contain 19 planar topologies in total, as
shown in Fig. A1. The MIs in each integral family are as
follows:

-

(a) Fy topology 1.

(b) F topology 2.

(c) Fy topology 3.

(d) Fy topology 4.

(g) F» topology 3.

(j) F> topology 6.

(e) F» topology 1.

N

(f) F> topology

(h) F topology 4.

(i) F» topology 5.

(k) F> topology 7.

(1) F» topology 8.

(m) F3 topology 1.

(p) Fs topology 4.

(n) F5 topology 2.

o) Fj topology 3.

(q) F3 topology 5.

(r) Fy topology 1.

(s) F5 topology 1.

Fig. Al.

color online) Two-loop planar topologies. Thick lines represent propagators with mass m or external legs with p?> = m?. Thin
( pp polog p propag g

lines represent massless propagators or external legs. Red lines represent external legs with p? = s123.
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F,(1,0,0,1,0,0,0,0,0),
F,(1,0,1,0,1,1,0,0,0),
F,(1,-1,0,1,0,0,1,0,0),
F,(1,-1,0,0,1,0,1,0,0),
Fy(1,1,-1,0,1,0,1,0,0),
F,(0,1,1,0,1,0,1,0,0),
F,(1,0,0,1,1,0,1,0,0),
F,(1,1,0,1,1,0,1,0,-1),
Fy(1,1,1,1,1,0,1,0,0),
F,(0,1,0,0,1,1,1,0,0),
Fy(1,1,0,-1,1,1,1,0,0),
F,(1,0,1,0,1,1,1,0,0),
F,(0,1,1,0,1,1,1,0,0),
F,(0,1,1,0,1,1,1,0,-1),
Fy(1,1,1,0,1,1,1,-1,0),
Fi(1,1,-1,1,1,1,1,0,0),
F,(0,1,1,1,1,1,1,0,-1),
F,(1,0,0,1,0,0,0,1,0),
F,(1,0,0,1,1,0,0,0,1),
F,(1,-1,0,0,1,0,1,0,1),
F,(0,-1,1,0,1,0,1,0,1),
F,(0,0,1,0,1,1,1,0,1),

F,(1,0,1,0,0,0,0,0,0),
F,(-1,1,1,0,1,0,0,0,0),
F,(-1,1,1,0,0,1,0,0,0),
F,(-1,1,1,1,0,1,0,0,0),
F,(0,0,1,1,1,1,0,0,0),
F,(0,1,1,1,1,1,-1,0,0),
F,(0,1,1,0,1,0,1,0,0),
F,(1,0,1,0,0,1,1,0,0),
F,(-1,1,1,0,0,1,1,0,0),
F,(1,0,1,0,1,1,1,0,0),
F,(-1,1,1,0,1,1,1,0,0),
F,(-1,1,1,1,1,1,1,0,0),

F,(1,0,1,1,0,0,0,0,0),
F,(1,0,0,1,1,1,0,0,0),
F,(0,1,0,1,0,0,1,0,0),
F,(0,1,0,0,1,0,1,0,0),
F,(1,0,1,0,1,0,1,0,0),
F,(-1,1,1,0,1,0,1,0,0),
F(1,1,0,1,1,0,1,0,0),
F(1,0,1,1,1,0,1,0,0),
F,(0,1,0,1,0,1,1,0,0),
F,(-1,1,0,0,1,1,1,0,0),
F,(0,0,1,0,1,1,1,0,0),
F(1,-1,1,0,1,1,1,0,0),
F(-1,1,1,0,1,1,1,0,0),

Fl (_27171’0715171’070)’

Fl (0’17071’ 1’1,170’0)$

Fl(],]3091’],]31905_1)3

Fl(ls 17 19 ls 1’ 17 19050)9
F,(0,0,0,0,0,1,1,1,0),
Fl (17090’0’ 17 19070’ 1)’

F1(1307_170,1905 170,1)a

Fl (1,0909151,0919051)9
Fl (_13031905131319()’1)9

F,(0,1,1,1,0,0,0,0,0),
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F,(0,1,1,-1,1,1,1,0,0),
F,(1,1,0,0,0,0,0,1,0),
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F>(0,1,1,1,1,1,0,0,0),

F,(1,0,1,1,0,1,0,0,0),
F,(1,0,1,1,1,1,0,0,0),
F(1,1,0,1,0,0,1,0,0),
F,(-1,1,0,0,1,0,1,0,0),
F(1,-1,1,0,1,0,1,0,0),
F(1,1,1,0,1,0,1,0,0),
Fi(1,1,-1,1,1,0,1,0,0),
Fi(1,-1,1,1,1,0,1,0,0),
F,(1,1,0,1,0,1,1,0,0),
F(1,1,0,0,1,1,1,0,0),
F(-1,0,1,0,1,1,1,0,0),
F(1,0,1,-1,1,1,1,0,0),
F(0,1,1,-1,1,1,1,0,0),
Fy(1,1,1,0,1,1,1,0,0),
F(-1,1,0,1,1,1,1,0,0),
F(0,1,1,1,1,1,1,0,0),
Fi(1,1,1,1,1,1,1,-1,0),
F,(-1,0,0,0,0,1,1,1,0),
F,(1,0,0,1,1,1,0,0,1),
F,(0,0,1,0,1,0,1,0,1),
F(1,-1,0,1,1,0,1,0,1),
F,(0,-1,1,0,1,1,1,0,1)

F2(190’1’0709170’070),
F2(1905 ]3 1’0915090’0)3
F2(1909150,1719050’0)5

F,(1,0,1,0,1,0,1,0,0),
F,(0,0,1,0,0,1,1,0,0),
F,(1,-2,1,0,0,1,1,0,0),
F,(-1,1,1,1,0,1,1,0,0),
F,(1,-2,1,0,1,1,1,0,0),

F2(0517150’1’1715_150)7

F2(191’Oa05190’0a1,0)7
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F(1,1,-1,0,1,1,1,0,0),
F(0,-1,1,0,1,1,1,0,0),
Fi(1,-2,1,0,1,1,1,0,0),
F,0,1,1,0,1,1,1,-1,0),
Fy(1,1,1,-1,1,1,1,0,0),
F(1,1,0,1,1,1,1,0,0),
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Fi(1,1,1,1,1,1,1,0,-1),

F,(1,0,0,0,1,0,0,0,1),
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Fl (1709_19151,0719051)9
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F,(0,1,1,0,1,0,0,0,0),

F2(071’1’0,0$150’0,0)’
F2(0»15171’0»15070’0)3
F2(O3191’0313170’030)5

F>(-1,1,1,1,1,1,0,0,0),

F,(1,-1,1,0,1,0,1,0,0),
F,(-2,0,1,0,0,1,1,0,0),
F,(0,1,1,0,0,1,1,0,0),
F,(0,0,1,0,1,1,1,0,0),
F,(0,1,1,0,1,1,1,0,0),
F,(0,1,1,1,1,1,1,0,0),
F,(1,1,1,0,1,0,0,1,0),
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F,(1,1,0,0,0,1,0,1,0), F,(1,0,1,0,0,1,0,1,0), F,(1,-1,1,0,0,1,0,1,0), F,(1,0,1,-1,0,1,0,1,0),
F,(,1,1,0,0,1,0,1,0), F»(-1,1,1,0,0,1,0,1,0), F,»(1,1,1,0,0,1,0,1,0), F»(1,1,1,-1,0,1,0,1,0),
F,(1,1,1,0,0,1,-1,1,0), F,(0,0,1,1,0,1,0,1,0), F,(-1,0,1,1,0,1,0,1,0), F,(0,-1,1,1,0,1,0,1,0),
F,(1,0,1,1,0,1,0,1,0), F,(1,-1,1,1,0,1,0,1,0), F,»(1,0,1,1,-1,1,0,1,0), F,(1,1,0,0,1,1,0,1,0),
F,(,1,1,0,1,1,0,1,0), F,(1,1,1,0,1,1,0,1,0), F,(1,1,0,0,0,0,1,1,0), F,(1,1,0,0,1,0,1,1,0),
F,(1,1,1,0,1,0,1,1,0), F,(1,1,0,0,0,1,1,1,0), F,(0,0,1,0,0,1,1,1,0), F,(1,0,1,0,0,1,1,1,0),
F,(1,-1,1,0,0,1,1,1,0), F,(1,0,1,-1,0,1,1,1,0), F,(1,0,1,0,-1,1,1,1,0), F,(1,0,1,0,0,1,1,1,-1),
F,(1,-2,1,0,0,1,1,1,0), F,(1,-1,1,-1,0,1,1,1,0), F»(0,1,1,0,0,1,1,1,0), F,(-1,1,1,0,0,1,1,1,0),
F(-2,1,1,0,0,1,1,1,0), F,(1,1,1,0,0,1,1,1,0), F,(1,1,1,-1,0,1,1,1,0), F,(1,1,1,0,-1,1,1,1,0),
F,(0,0,1,1,0,1,1,1,0), F,(-1,0,1,1,0,1,1,1,0), F,(1,0,1,1,0,1,1,1,0), F,(1,0,1,1,-1,1,1,1,0),
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F(,1,1,-1,1,1,1,1,0), F,(1,1,1,0,1,1,1,1,-1), F,(1,1,1,-2,1,1,1,1,0), F,(1,1,1,-1,1,1,1,1,-1),
F,(0,0,1,1,0,0,0,0,1), F»(-1,0,1,1,0,0,0,0,1), F>(1,0,1,1,0,0,0,0,1), F,»(1,-1,1,1,0,0,0,0,1),
F,(1,0,1,0,1,0,0,0,1), F,(1,-1,1,0,1,0,0,0,1), F,»(1,0,1,-1,1,0,0,0,1), F,(0,0,1,1,1,0,0,0,1),
F,(-1,0,1,1,1,0,0,0,1), F,(1,0,1,1,1,0,0,0,1), F,(1,-1,1,1,1,0,0,0,1), F,(1,0,1,0,0,0,1,0,1),
F,(1,-1,1,0,0,0,1,0,1), F,(1,-2,1,0,0,0,1,0,1), F,(0,0,1,0,1,0,1,0,1), F,(-1,0,1,0,1,0,1,0,1),
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